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Abstract: Epigenetics, referring to genetic modifications that change gene expression, but which
are not encoded in DNA, has been shown to be related to oncology, with the potential to influence
associated treatments. As such, epigenetic drugs comprise an important new field in cancer therapy;
however, drug development is a high-cost and time-consuming procedure. Different epigenetic
modifications, such as mutations in DNA methyltransferase and somatic mutations in core histone
genes that lead to a global loss of the histone modifications, have innumerable relationships. In this
article, we propose a graph neural network-based model for the extraction of molecular features,
thus reducing the computational requirements. Through integration with a popular and efficient
supervised learner, our model achieves higher prediction accuracy in both single- and multi-target
tasks and can determine the pleiotropy associated with drugs, providing theoretical support for drug
combination and discovery research.

Keywords: graph neural network; XGBoost; DNA methylation; histone modification; multi-target
prediction; drug discovery

1. Introduction

Over time, the epigenetic modification (including DNA methylation, histone modifi-
cation, and microRNAs) of genes has played an increasingly important role in the study
of tumor genesis and development, especially DNA methylation and histone modifica-
tions. DNA methylation is regulated by DNMT and, as one of the most important genetic
modification modes, regulates gene transcription levels related to tumor occurrence by inac-
tivating tumor suppressor genes through promoter methylation [1]. Histone modification
mainly consists of histone acetylation regulated by histone acetylation transferases (HATs)
and deacetylation enzymes (HDACs), besides histone methylation regulated by histone
methyltransferases (HMTs) and histone demethylase (HDMs). Studies have shown that
histone deacetylation and methylation usually play a role in gene transcription inhibition
together with DNA methylation; almost all types of human tumors have abnormal histone
modification and DNA methylation. Notably, many tumor suppressor genes are silenced
by DNA methylation or histone demethylation in cancers [2,3].

Recently, due to the development of epigenetic research, epigenetic drugs have be-
come a new field, which, differing from the traditional drug mechanisms, are developed
from the gene regulation level. To date, three batches of drugs utilizing epigenetic targets
have been released, including DNMT inhibitors, HDAC inhibitors, and HMT (targeting
EZH2) inhibitors. However, drug development is a costly and time-consuming procedure.
Furthermore, the diverse range of molecular mechanisms used by cancer cells to alter
epigenetic patterns poses various issues. Different epigenetic modifications, such as muta-
tions in metabolic enzymes, which regulate histone and DNA demethylation, and somatic
mutations in core histone genes, which lead to a global loss of histone modifications, have
innumerable links [4]. Furthermore, more and more researchers have shown that DNA
methylation and histone modification have a certain degree of correlation. For instance,
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a specific transcription inhibitor MeCP2 has been found to co-exist in one complex with
the histone deacetylase (HDAC) in cells [5], and DNMT1 has proven capable of binding to
HDAC by identifying the specific binding site. Moreover, the relationship between DNA
methylation and histone methylation also has been found gradually [6–14].

Therefore, due to the complex relationship between DNA methylation and histone
modifications, a single epigenetic target in drug discovery is not significant enough for
cancer research. On the contrary, the design of inhibitors should consider multiple targets.
Recent research has demonstrated that one of the dual inhibitors of LSD1 (lysine-specific hi-
stone demethylase) and HDACs, corin, provided more effective and sustained inhibition of
the REST co-repressor complex than existing HDAC inhibitors, and more potently inhibited
melanoma proliferation [15]. However, the identification of molecules that act on multiple
targets simultaneously through experimental evaluation is costly and time-consuming. The
ongoing development of molecule libraries that bind to a specific reader, writer, and eraser
domains, such as ChEMBL [16] and the Therapeutic Target Database [17], has opened up
the opportunity to construct ligand-based models to assist in small-molecule target predic-
tion; some currently available methods include Similarity Ensemble Approach (SEA) [18],
Polypharmacology Browser (PPB) [19], and SwissTargetPrediction [20]. However, these
methods usually assign the targets for a given small molecule according to the known
targets of the most similar ligands in their data sets. As such, unless the similarity of a
known ligand is high enough, these methods are less likely to predict the potential targets
of small molecules. This points out a need to develop more effective prediction models
focused on multi-target fishing to assist researchers in the medicinal chemistry field.

Conventional methods to extract molecular features usually calculate the three-dimensional
structures of molecules, then predict their properties using quantitative structure–activity rela-
tionship (QSAR) models [21]. Machine learning algorithms, such as support vector machine
(SVM) [22], random forest (RF) [23], and artificial neural networks (ANNs) [24], have been used
to predict molecular targets. As machine learning models usually adopt traditional molecu-
lar fingerprints, such as Extended Connectivity Fingerprints [25], Morgan fingerprints, and
so on, large-scale epigenetic target prediction has been limited by their less-effective perfor-
mance in predicting molecular properties compared to more recently developed deep learning
algorithms [26,27]. Moreover, few studies have focused on multi-target prediction to date.

The symmetry of atomic systems suggested that neural networks that can be applied
to network graphs can also be applied to molecular models. For this study, we aim to
develop an accurate deep learning model for multiple epigenetic target fishing, integrating
GNN-based feature extraction and the conventional classifier extreme gradient boosting
algorithm (XGBoost) for classification, which is an efficient implementation of the gradient
boosting strategy [28,29]. Graph neural networks (GNNs) can achieve major breakthroughs
in learning inter-atom connections, including various GNN sub-types, such as graph
convolutional networks (GCNs) [30], gated graph neural networks (GGNNs) [31], and
directed message-passing neural networks (DMPNNs) [32]. These various GNN sub-types
extract molecular features by capturing the inter-mode relationships through message
passing between graph nodes.

We compared the performance of target prediction for three integrated predictive
models: GCN+XGBoost, GGNN+XGBoost, and DMPNN+XGBoost. The three integrated
models intended for constructing binary classification models were applied to predict the
compound-protein associations for 10 key targets related to HDAC, 6 targets related to
HMT, 1 target related to DNMT, 2 targets related to HAT, and 5 targets related to HDM. Our
investigation demonstrates that multi-target fishing for epigenetic modifications is useful
in predicting chemical–protein interactions for the discovery of multi-target inhibitors,
providing a useful strategy for the discovery of inhibitor drugs aimed at diseases caused
by DNA methylation and/or histone modification.
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2. Results

The workflow is depicted in Figure 1. First, we developed three integrated graph neu-
ral network-based models for identifying the target-associated compounds for the five kinds
of epigenetic targets. Second, five-fold cross-validation and test set validations were con-
ducted to evaluate the performance of all models. Third, by combining the 24 single-target
binary classifiers, we obtained one multi-target classifier. Finally, the MPNN+XGBoost
model was employed to predict drug multi-targets for multiple epigenetic targets including
DNMT1, HDACs, HMT, HDM, and HAT. Finally, 33 compounds, including 18 approved
DNA methylation and histone modification drugs, as well as 15 other compounds, were
predicted to be DNA/histone multi-target inhibitors. These results are detailed below:
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Figure 1. Workflow of our study.

2.1. Experimental Dataset Analysis

As shown in Figure 2, a total of 10 targets related to HDAC, 6 targets related to HDM,
5 targets related to HMT, 1 target related to DNMT, and 2 targets related to HAT were
obtained from the Therapeutic Target Database (TTD) [17] and ChEMBL Database [16]
(version 23, https://www.ebi.ac.uk/chembl/ (accessed on 1 May 2022)). A total of
24 targets related to DNA methylation and histone modifications were included and dis-
tributed. The compiled chemogenomic data set contained 26,318 unique compounds and
28,845 compound–protein associations, with 17,653 of them being labeled as active (as
shown in Figure 3), for an average proportion of active compounds of 61.2%. Moreover,
there were 18,679 compounds (71%) in the data set that had known associations to a sin-
gle target, 485 compounds had known associations to more than 4 targets, while only
20 compounds had known associations to at least 10 targets.
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Figure 3. Composition of the target-associated compound data sets. Epigenetic target-associated
compound datasets consisted of 693 compounds on average, all 24 compound datasets had differ-
ent class imbalance levels, showing an average proportion of active compounds of 61.3%, with a
maximum of 91.4% of EZH2.

2.2. Performance Evaluation and Comparison of Different Graph Neural Networks in
Single-Target Performance

Three different binary classification models were built for each of the 24 target-
associated compound data sets. Internal five-fold cross-validation and external test set
validation were conducted. The performances of the three-graph neural network-based
classifiers in the 24 single-target predictions are detailed in Table 1. Among the 10 targets of
HDAC, 90% (i.e., 9 out of 10) obtained higher performance metrics in the DMPNN model.
Targets HDAC1, HDAC6, and SIRT3 achieved better BA; in other words, our algorithm
predicted almost all of the right compound–protein associations on these targets. Among
all five targets of HMT, DMPNN achieved the best performance, whereas PRKCB and
EHMT2 were the most sensitive targets of HMT. However, two out of four targets (KDM6B
and KDM5A) achieved the best BA and MCC with the GCN model. For the targets of HAT
and DNMT, the DMPNN model achieved a better performance. These results suggest the
DMPNN+XGBoost algorithm as the best combination to derive binary classifiers for the
current sets of DNA and histone modification targets studied. Overall, most of the targets
in the three models performed well in the single-target prediction task, obtaining mean
MCC and F1 scores higher than 0.5, and mean BA higher than 0.7.

Although MCC, F1 score, and BA are well-suited metrics for model performance, in
a practical medical chemistry application, the correct identification of active compounds
is usually more important than the correct identification of inactive ones. Therefore, the
performance of the three models was studied in terms of precision and recall, as detailed in
Table 2. A lower number of compounds predicted as active was associated with a lower
recovery of known active compounds. A high recall (TPR) indicates high precision in
the prediction of active compounds. Most targets showed mean values of precision and
recall higher than 0.6 and 0.8, respectively, suggesting high reliability with regard to the
prediction of active compounds.
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Table 1. Single-target performance comparison of three GNNs. The supervised learning algorithm
was XGBoost. Three performance metrics: MCC, F1, and BA were adopted for these 24 single-target
binary classifiers.

Object Target
GCN GGNN DMPNN

MCC F1 BA MCC F1 BA MCC F1 BA

HDAC

SIRT3 0.516 0.556 1 0.411 0.526 0.833 0.516 0.556 1

SIRT1 0.667 0.78 0.75 0.624 0.75 0.732 0.602 0.734 0.725

HDAC9 0.391 0.725 0.735 0.282 0.725 0.644 0.482 0.784 0.75

HDAC8 0.669 0.896 0.862 0.69 0.901 0.867 0.721 0.913 0.863

HDAC7 0.283 0.55 0.55 0.33 0.613 0.543 0.436 0.655 0.667

HDAC6 0.637 0.941 0.93 0.625 0.938 0.93 0.689 0.948 0.94

HDAC4 0.482 0.714 0.727 0.43 0.64 0.775 0.6 0.767 0.82

HDAC3 0.55 0.919 0.89 0.56 0.92 0.9 0.6 0.93 0.91

HDAC2 0.44 0.91 0.86 0.314 0.9 0.84 0.48 0.92 0.88

HDAC1 0.46 0.92 0.89 0.46 0.922 0.91 0.57 0.94 0.92

HMT

PRMT3 0.315 0.643 0.75 0.167 0.571 0.667 0.667 0.87 0.762

PRKCB 0.553 0.935 0.906 0.51 0.925 0.901 0.615 0.937 0.934

EHMT2 0.04 0.61 0.82 0.05 0.88 0.81 0.25 0.9 0.83

DOT1L 0.27 0.42 0.8 0.285 0.643 0.64 0.247 0.66 0.571

EZH2 0.403 0.942 0.892 0.323 0.92 0.90 0.32 0.931 0.875

CARM1 0.12 0.667 0.63 0.34 0.77 0.68 0.13 0.667 0.63

HDM

KDM6B 0.201 0.133 1 0.276 0.522 0.667 0.189 0.6 0.526

KDM5A 0.341 0.375 0.75 0.434 0.526 0.71 0.167 0.25 0.5

KDM4E 0.176 0.4 0.6 0.186 0 0 0.28 0.556 0.625

KDM4C 0.173 0.6 0.437 0.309 0.59 0.59 0.45 0.68 0.64

KDM1A 0.42 0.89 0.84 0.55 0.9 0.89 0.537 0.891 0.91

HAT
KAT2B 0.19 0.65 0.52 0.24 0.67 0.5 0.267 0.647 0.58

CREBBP 0.36 0.86 0.77 0.245 0.83 0.77 0.368 0.82 0.83

DNMT DNMT1 0.316 0.83 0.8 0.438 0.76 0.86 0.55 0.83 0.88

Table 2. Single-target performance comparison of three GNNs. The supervised learning algorithm
was XGBoost. Results of Precision and Recall for these 24 single-target binary classifiers.

Model Object PRECISION RECALL

GCN

HDAC 0.819 ± 0.091 0.796 ± 0.013
HMT 0.782 ± 0.11 0.94 ± 0.081
HDM 0.762 ± 0.19 0.64 ± 0.13
HAT 0.65 ± 0.15 0.98 ± 0.03

DNMT 0.88 1

GGNN

HDAC 0.79 ± 0.02 0.766 ± 0.06
HMT 0.74 ± 0.21 0.91 ± 0.11
HDM 0.611 ± 0.32 0.58 ± 0.06
HAT 0.602 ± 0.21 0.975 ± 0.04

DNMT 0.86 1

DMPNN

HDAC 0.85 ± 0.02 0.95 ± 0.13
HMT 0.85 ± 0.17 0.945 ± 0.02
HDM 0.66 ± 0.11 0.71 ± 0.3
HAT 0.705 ± 0.19 0.99 ± 0.01

DNMT 0.89 1

Moreover, in order to demonstrate the superior feature extraction ability of the graph
neural network, we also compared the combination of DMPNN features and the supervised
learner (XGBoost) with that of the popular Morgan fingerprint features and XGBoost.
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Figure 4 shows that the DMPNN-extracted features achieved better AUC performance on
all data sets.
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2.3. Multi-Target Validation

In order to find the multi-target inhibitors of DNA and histone modifications, 24 classifiers
were constructed to predict compounds that were active against DNA and histone modifications.
First, we compared the global performance of three models and the Morgan fingerprint, when
evaluated on the compound data set in which compounds had at least two known active
protein targets. In this case, only the correct identification of active compounds (TPR), the
correct identification of inactive compounds, and the false discovery rate (FDR) were calculated,
considering only the predictions with a truly known label. The performance results of the three
models are summarized in Figure 5. Under this validation strategy, DMPNN likewise achieved
better multi-target performance, with TPR higher than 0.7, while the NPV was higher than 0.8.
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Hence, the DMPNN+XGBoost multi-target classification model was employed as our
DNA methylation and histone modification multi-target predicting model.
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2.4. Retrospective Identification of Multi-Targets

To verify the application of our graph neural network-based multi-target classifier,
DMPNN+XGBoost was developed to predict and explore the multiple bioactivities of ap-
proved drugs and new compounds that target DNA methylation and histone modification-
related proteins. We adopted 18 approved drugs that target DNA and histone modifications,
including 7 drugs targeting DNMT1, 2 drugs targeting HAT, 4 drugs targeting HMT, 1 drug
targeting HDM, and 4 drugs targeting HDAC, as well as 15 new compounds with known
activity targeting at least one of the 8 most sensitive targets considered in our study (i.e.,
HDAC6, HDAC1, PRKCB, EHMT2, KEM6B, KDM5A, CREBBP, and DNMT1).

Case1: Prediction and analysis of polypharmacology of known drugs.

The detailed polypharmacology prediction results for the known drugs are presented
in Table 3 and Figure 6, where the hypergeometric test was employed to determine the
statistically significant targets (i.e., HDAC, HAT, HDM, HMT, DNMT) of every drug. The
results indicate that all known targets of the drugs were predicted correctly, where the
colors that represented objects in this table are consistent and ‘Sig’ is colored red. Moreover,
we also determined the pleiotropy of these DNA methylation and histone modification
inhibitors, which, on the other hand, allowed for certification of evaluation in the multi-
target drugs. In particular, the approved DNA methyltransferase inhibitors azacitidine and
decitabine were predicted by our model to significantly target HDAC, which is reasonable,
as histone deacetylation has inextricable links with DNA methylation. Harada T. et al.
have shown that HDAC3 can regulate DNMT1 expression [33]. Moreover, researchers have
demonstrated that a drug combination for inhibition of DNMT and HDAC can block the
tumorigenicity of cancer stem-like cells and attenuates mammary Tumor Growth [34]. In-
versely, the inhibitors procaine, cephalothin, and procainamide have high target specificity.
Furthermore, in our model, the four HDAC inhibitors (belinostat, vorinostat, romidepsin,
and panobinostat) were not only predicted with the correct target (HDAC) but also ex-
hibited other active target predictions. For example, the first approved HDAC inhibitor,
vorinostat, was also predicted to be active with the DNMT target. Consistently, it has been
stated that the JmiC family of lysine demethylases contain an active site iron cation, such
that vorinostat was found to inhibit the demethylase JMJD2E [35].

Table 3. Retrospective prediction of known drugs with their known targets. Different colors represent
different epigenetic objects: Blue: DNMT, orange: HAT, yellow: HMT, light blue: HAT, green: HDAC. Sig
indicates statistical significance in the Hypergeometric test for all targets in each object (p-value < 0.05).

Drug Name HDAC HMT HDM HAT DNMT
AZACITIDINE Sig No No No Sig
DECITABINE Sig No No No Sig
TRYPTOPHAN No Sig Sig Sig Sig
HYDRALAZINE Sig No Sig Sig Sig
PROCAINE No No No No Sig
CEPHALOTHIN No No No No Sig
PROCAINAMIDE No No No No Sig
CURCUMIN No No Sig Sig No
FLUCONAZOLE Sig No No Sig Sig
TACRINE Sig Sig No Sig Sig
TAZEMETOSTAT Sig Sig No No Sig
VORINOSTAT Sig Sig No No Sig
DIPHENHYDRAMINE No Sig Sig Sig Sig
BENZTHIAZIDE No No Sig No Sig
PANOBINOSTAT Sig Sig Sig Sig No
BELINOSTAT Sig No Sig Sig No
ROMIDEPSIN Sig Sig No No Sig
VORINOSTAT Sig No No No Sig
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Figure 6. Polypharmacological analysis of 18 known drugs with four epigenetic objects. Different
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each object. Black lines indicate proven targeting interactions.

Case2: Multi-target prediction of new compounds

A set of 15 compounds (Figure 7) with known activity targeting at least one of the
8 most sensitive targets of our model was retrieved from the ChEMBL database. The
prediction results of our multi-target classifier on these 15 compounds are shown in Figure 8,
where drugs were likewise clustered based on the predicted active targets. For example,
the compound CHEMBL4297494 (name: GSK-3117391), which is under investigation
in clinical trials for Rheumatoid Arthritis, presented similar multi-targets as compound
CHEMBL8809 (name: raclopride) which is under investigation in a phase 1 clinical trial
studying Parkinson’s Disease. Both of them targeted proteins HDAC6, HDAC1, PRKCB,
CREBBP, and DNMT. Furthermore, compounds CHEMBL2036482, CHEMBL4297366 (CG-
200745), CHEMBL3693786 (citarinostat), and CHEMBL1420319, among others, showed
congruous targeting of HDM proteins KDM6B and KDM5A, as well as the HAT protein
CREBBP, indicating the correlation between histone demethylation with acetylation.
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2.5. Molecular Docking Verification

In order to verify the multi-target predicting results of our algorithm, molecular
docking analysis was conducted by the software AutoDock Vina [25]. Here we verified
the binding sites of the first approved HDAC inhibitor, vorinostat with target protein
HDAC1 and the predicted target protein DNMT1 (Figure 9A,B). Then the binding modes
of the other two new compounds: citarinostat (which has been approved to be one specific
HDAC6 inhibitor), and CHEMBL375661 show the active binding with the protein targets
predicted by our algorithm (Figure 9C–F).
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7LMM) and PRKCB (PDB: 210E).

3. Discussion

The epigenetic modification of genes, including DNA methylation and histone mod-
ification, has attracted more and more attention due to its role in the regulation of gene
transcription, rather than changing the DNA sequence. In particular, the epigenetic modifi-
cation of genes has been shown to play an increasingly important role in tumor develop-
ment; studies have shown that almost all types of human tumors present abnormal histone
and DNA methylation, causing the silencing of tumor suppressor genes, and demonstrat-
ing that there is a certain degree of correlation between them. Due to developments in
chromatin biology, novel drugs directed at chromatin and associated components have
been identified, mainly focused on DNA methylation inhibitors and histone deacetylase
inhibitors. However, epigenetic changes are complex and anfractuous; for instance, methy-
lation of histone protein H32K9 can (directly or indirectly) influence the DNA methylation
mode while, simultaneously, some DNA methylation may follow as a result of histone
methylation. Concurrently, among the seven epigenetic anti-cancer drugs, few work well
alone in treating cancer; in contrast, combinations of DNA methylation and histone deacety-
lation inhibitors have yielded more positive results.

However, traditional drug research, following the idea of trial and error to explore
targets, not only has high costs and a long cycle but also may lead to bottlenecks in
accuracy; it cannot meet the demand for multi-target prediction. As a branch of machine
learning in artificial intelligence, deep learning has been applied in the field of biomedicine,
providing enhanced expressive power in identifying, processing, and inferring complex
patterns of molecular data. Molecular property prediction is one of the most important
problems in drug development; however, most deep learning methods adopt traditional
molecular fingerprints, such as Morgan fingerprints, extended connectivity fingerprints,
and so on, which do not allow for the extraction of spatial features of molecules. The
insufficient extraction of molecular features seriously affected the downstream prediction
results. Moreover, epigenetic therapies have broad specific targets of drugs. Therefore, the
current trend in epigenetic cancer research is to target two or more proteins, which needs
innovative multi-target prediction algorithms.

In this study, we proposed a graph neural network-based molecular feature extraction
algorithm, which was constructed by embedding a popular supervised learning algorithm
to build multiple classifiers, which can be used to predict epigenetic targets (especially those
related to DNA methylation and histone modification). Then, by combining these DNA and
histone-related classifiers, a multi-target predictive model was built. The proof-of-principle
study demonstrated that the integration of DMPNN and XGBoost may efficiently improve
the performance of prediction problems regarding DNA methylation and histone modifica-
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tion targets. Furthermore, the achieved multi-target prediction may serve as foundational
guidance for drug combination and development research. The carried performance evalu-
ations demonstrated the directed message-passing neural network extracted more sufficient
molecular features than the traditional Morgan fingerprints. Actually, the directed message-
passing neural network has been demonstrated can be applied to chemical prediction tasks
to learn the characteristics of molecules directly from molecular graphs and are not affected
by graph isomorphism.

Although experimental validation of the predictions from all models is required to
provide better means of comparison, our findings reinforce the potential usefulness of a tool
focused on the prediction of multiple epigenetic targets for drug discovery. Furthermore,
molecular docking simulations have been adopted to verify the prediction results of several
drug targets on the predicted epigenetic proteins by our algorithms. In the future, we intend
to study more molecular docking modes of multi-target compounds of interest, further
assisting AI-based drug discovery focused on DNA methylation and histone modification.

4. Materials and Methods
4.1. Data Set Preparation

The quantitative compound–protein associations related to DNA methylation and
histone modifications were extracted from ChEMBL 27 [36] and PubChem [28], in order
to build epigenetic target-associated compound data sets, following the criteria: (1) Com-
pounds with an IC50, EC50, Ki, or Kd lower than or equal to 10 µm were retained as “active”,
while those higher than 10 µm were retained as “inactive”; (2) target proteins containing at
least 30 compounds were labeled as “active”, while those with at least 30 compounds were
labeled as “inactive”.

4.2. Molecular Graph

The simplified molecular-input line-entry specification (SMILES) information of com-
pound molecules, composed of a series of ASCII-encoded strings, cannot be directly input
into graph neural network models. Thus, first, we needed to express the SMILES data
using a quantized molecular graph. We used the RDKit tool [36] to process these SMILES
encoding compounds in order to obtain the associated molecular graphs.

4.3. Multi-Target Fishing Model Generation

In this study, first, we adopted three GNN models to extract the molecular features
and then utilized the extreme gradient boosting algorithm (XGBoost) for classification.
The states of the graph nodes were updated using the node embedding method, which is
described as follows: ht

i = U(ht−1
i , mt

i), where the ith node is updated using the previous
state ht−1

i and a message state of the interaction term mt
i with its neighborhoods. Based

on this simplest version of GCN, the GGNN utilizes gate recurrent units (GRUs) in the
propagation step, while the directed MPNN (DMPNN) propagates information through
directed bonds and generalizes various existing GNNs. By inputting the molecular graph
information and the active/inactive information on protein targets, the three GNNs carried
out supervised learning, resulting in the feature representation.

Secondly, the graph representations were loaded as sample features into the supervised
learner, XGBoost, to complete the prediction of classifications. XGBoost is an effective
implementation of a gradient enhancement strategy. Similar to a decision tree, it uses
gradient lifting trees as a weak classifier and integrates strong classifiers by voting or
weighted grounding. Moreover, the original loss function, yloss = ∑

i
l(y′i, yi), was improved

by adding a regular penalty term, as follows: yloss = ∑
i

l(y′i, yi) + ∑
k

Ω( fk), where fk is the

weight information of each decision tree in the training process.
Concurrently, in the training process, the Adam optimizer [37] was used, in order to

force the loss function as close as possible to the global lowest point in the BP process. This
optimizer controlled the step size of the learning rate and the gradient direction according
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to the first- and second-order momentum and suppressed the stationary phenomenon of
the gradient near saddle points to prevent oscillation of the gradient.

Finally, by combining these 24 single-target binary classifiers, we obtained one multi-
target classifier.

4.4. Performance Metrics

To compare the models generated herein in a more global context, cross-validation was
adopted for each model, which was used to calculate the performance metrics (Mathews
correlation coefficient, MCC; F1; and balanced accuracy, BA), where MCC, F1, and BA
are well-suited metrics for model performance estimation in imbalanced data sets, which
balance the recall rate with the precision rate.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

F1 = 2× TP
2TP + FP + FN

BA =
0.5TP

TP + FN
+

0.5TN
TN + FP

where TP denotes true positives, TN denotes true negatives, FP denotes false positives,
and FN denotes false negatives, with positive and negative referring to active and inactive
compound labels, respectively.

4.5. Experimental Environment

The experiment in this paper was run on an Ubuntu system under the Linux bit
4.15.0-173-generic #182-Ubuntu SMP X86_64 GNU/Linux version, and the running en-
vironment was built using Conda. We used Python version 3.8.13 as the programming
language, an NVIDIA GeForce RTX 3090 graphics card with CUDA version 11.4, the RDKit
2022.3.1 package for molecular fingerprinting, and Pytorch 1.11.0 version to complete the
construction process of the deep learning network.

5. Conclusions

In the past, “one protein, one drug, one disease” was the mainstream research model.
However, with the development of polypharmacology and multi-target therapy, in ad-
dition to huge challenges in processing large amounts of complex data from genomics,
proteomics, microarrays, and clinical trials, this has changed. The pharmaceutical sector
has modernized using machine learning and deep learning algorithms in drug discovery
processes such as peptide synthesis, virtual screening, toxicity prediction, drug monitoring
and release, pharmacophore modeling, quantitative structure-activity relationship, multi-
pharmacological, physiological activities, and so on. Therefore, intelligent multi-target
drug discovery with deep learning algorithms has become an important direction of drug
research and development.

Within the field of drug discovery, the first and most important step is to identify
appropriate targets (e.g., genes, and proteins) related to the pathophysiology of the disease,
then find drugs or drug-like molecules that interfere with those targets. In the era of
big data, we have huge chemical databases at our disposal, such as PubChem, ChEMBL,
DrugBank, and so on. In this study, in view of epigenetic targets, a significant focus for
discovery research, we proposed one multi-target prediction algorithm based on a feature
extraction algorithm using the deep learning method. In this algorithm, the graph neural
network-based molecular feature extraction algorithm embeds one popular supervised
learning algorithm, to build multiple classifiers, predicting the epigenetic (especially, DNA
methylation and histone modification) targets. By combing these binary classifiers, one
multi-target prediction model was constructed. Our algorithm could extract molecular
features sufficiently, thus resulting in efficient prediction results. The prediction results
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demonstrate that the integrated deep learning model showed high performance in the
prediction of epigenetic multi-targets. Furthermore, to illustrate the application of our
model, molecular docking was adopted in several small molecules and target proteins,
which verified the possibility of our prediction results.

Thus, the results showed that it is possible to design specific inhibitors targeting two
or more DNA methylation and histone modification targets simultaneously. In addition,
an individual compound was determined to have coinhibitory ability against more than
one target. In the future, based on our algorithm results, we will conduct trials of drugs
using DNA methylation and histone modification that have been preliminarily screened by
our model.
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