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Abstract: Alzheimer’s disease (AD) is the leading cause of dementia, but the pathogenetic factors are
not yet well known, and the relationships between brain and systemic biochemical derangements
and disease onset and progression are unclear. We aim to focus on blood biomarkers for an accurate
prognosis of the disease. We used a dataset characterized by longitudinal findings collected over
the past 10 years from 90 AD patients. The dataset included 277 observations (both clinical and
biochemical ones, encompassing blood analytes encompassing routine profiles for different organs,
together with immunoinflammatory and oxidative markers). Subjects were grouped into four
severity classes according to the Clinical Dementia Rating (CDR) Scale: mild (CDR = 0.5 and CDR = 1),
moderate (CDR = 2), severe (CDR = 3) and very severe (CDR = 4 and CDR = 5). Statistical models were
used for the identification of potential blood markers of AD progression. Moreover, we employed
the Pathfinder tool of the Reactome database to investigate the biological pathways in which the
analytes of interest could be involved. Statistical results reveal an inverse significant relation between
four analytes (high-density cholesterol, total cholesterol, iron and ferritin) with AD severity. In
addition, the Reactome database suggests that such analytes could be involved in pathways that are
altered in AD progression. Indeed, the identified blood markers include molecules that reflect the
heterogeneous pathogenetic mechanisms of AD. The combination of such blood analytes might be an
early indicator of AD progression and constitute useful therapeutic targets.

Keywords: Alzheimer’s disease; blood neurodegenerative biomarkers; generalized linear mixed-
effects models; pathways

1. Introduction

Pathogenetic factors of Alzheimer’s disease (AD), the main form of dementia in the
world, are not yet known, and the relationships between altered biochemical pathways and
disease onset and progression are still unclear. Indeed, currently, a definitive diagnosis of
AD and an evaluation of the progression severity can be conducted only after postmortem
brain analysis by the assessment of neuropathological markers such as amyloid plaques
and neurofibrillary tangles [1]. However, the concurrent observation of gliosis and neu-
roinflammatory driving cells has highlighted the importance of the mutual relationship
between those aberrant proteins and inflammatory molecules often secreted for triggering
AD pathological changes [2–6]. In this context, understanding how global perturbations
in metabolism and body functions are related to AD neuropathology would be crucial,
albeit challenging, for a prompt diagnosis, a correct prognosis and effective treatments [1,7].
A potential tool for AD diagnosis and prognosis is represented by blood biomarkers [8–10].
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Different technical approaches have been used to look for neurodegeneration-related
specific blood biomarkers, such as those of proteomics [11,12] or miRNomics [13,14] or
metabolomics [15,16], attempting to detect specific brain molecules —amyloid-beta (Aβ),
tau and glial fibrillary acidic protein neurofilaments light chains [17,18]. On the other
hand, fewer studies have been performed to assay non-specific blood analytes in patients
with neurodegenerative illnesses [19,20], and more specifically AD [11,21,22] to find out
novel interesting and useful correlations to brain biomarkers. Levels of blood biomarkers
have been recently proposed to predict brain (Aβ) deposition [21] and, consequently, a
cognitive impairment. In our study, we aimed to correlate patients’ routine blood analytes,
often requested by general practitioners, to AD progression by using a rigorous and robust
statistical modeling approach.

From a methodological point of view, in previous studies, the computational evalua-
tion of AD severity indexes and biomarkers often relies on basic statistics [23] and machine
learning techniques [24]. However, the clinical datasets are often characterized by repeated
(dependent) measures and non-Gaussian categorical indexes, such as those indicating
the severity of the disease. These critical issues are often addressed by transforming the
categorical data, using non-parametric tests, or relying on classical ANOVA robustness
to non-normality. Nevertheless, the application of such strategies could violate many
required assumptions of statistical tests and models (e.g., independence of data) or reduce
the quantity of data (averaging repeated measures), limiting the robustness of results
and hiding possible remarkable findings. On the other hand, machine learning methods
afford an easy-to-use tool to predict categorical variables but often represent “black box”
models and it is not straightforward to interpret how the input variables are combined to
make predictions.

In this study, we built a database including longitudinal observation of several routine
blood analytes of AD patients with different levels of disease severity. The blood analytes
were used to build mathematical models to investigate their possible role in inferring the
state of AD progression. In this scenario, to overcome the aforementioned methodological
limitations, we applied generalized linear mixed-effects models accounting for repeated
measures and hierarchical data structures. In addition, we investigated whether the
identified potential disease-severity-related analytes converge towards common pathways
of neurodegeneration. The correlation of pathways with AD is discussed.

2. Materials and Methods
2.1. Patient Population and Clinical Data
2.1.1. Study Population

The dataset was characterized by longitudinal observations collected over the past
10 years (from 2012 to 2022) from 90 late-onset AD patients (54 women; age 84 ± 4.5). The
dataset included 277 observations, each of which was characterized by both clinical and
biochemical information. Particularly, each observation combined the Clinical Dementia
Rating (CDR) score [25] and the values of 61 blood analytes describing routine profiles
of kidney, liver, pancreas and heart functions, parameters of hemostasis and metabolism
and markers of inflammatory, oxidative and immunological activity (see Table 1).

The clinical information is summarized by the CDR, which represents a global de-
mentia staging instrument primarily conceived for use in persons with dementia of the
Alzheimer’s type. The CDR score is derived from a standard set of information that encap-
sulates semistructured outcomes from other well-known scales [26] and cognitive tests [27].
Of note, the CDR rates the patient’s cognitive performance in six different domains that
are usually assessed with separate cognitive tests: memory, orientation, judgment and
problem solving, community affairs, home and hobbies and personal care. The global
CDR is derived from a synthesis of the individual domains’ ratings, and it is expressed
on six levels: 0.5 (questionable), 1 (mild), 2 (moderate), 3 (severe), 4 (very severe) and
5 (extremely severe).
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Table 1. List of Analytes used in the study.

Inflammation and Immunology Plt Platelets

Bas Absolute basophils count PT Protrombin time

Bas% Basophils percentage PTT Partial thromboplastin time

Eos Absolute eosinophils count PTTr
Partial thromboplastin
time ratio

Eos% Eosinophils percentage RBC Red blood cells

ESR Erytrocyte sedimentation rate
Metabolism

Fibr Fibrinogen

gGl Gamma globulins ALT Alanine aminotransferase

Lym Absolute lymphocytes count Amy Amylase

Lym% Lymphocytes percentage AST Aspartate aminotransferase

Mon Monocytes absolute count BA Biliary acids

Mon% Monocytes percentage Bil Bilirubin

Neu Neutrophils absolute count Chol Total cholesterol

Neu% Neutrophils percentage CK Creatine kinase

PAlb Prealbumin Cre Creatinine

WBC White blood cells Fe Iron

Basics Fer Ferritin

a-1Gl Alpha-1 globulins FA Folic acid

a-2Gl Alpha-2 globulins gGT Gamma glutamyltransferase

Alb Albumin Glu Glucose

βGl Beta globulins HDL-Chol
High density
lipoprotein cholesterol

Ca Calcium LA Lactic acid

Cl Chloride LDH Lactic dehydrogenase

Hb Hemoglobin Lip Lipase

Hct Hematocrit Trig Triglicerids

INR International normalized ratio Urea Urea

K Potassium VitB12 Vitamin B12

MCH Mean corpuscule hemoglobin Oxidative Stress

MCHC Mean corpuscule hemoglobin content FRD Free radical derivatives

MCV Mean corpuscule volume GPx Glutathione peroxidase

Mg Magnesium GR Glutathione reductase

Na Sodium SOD Superoxide dismutase

P Phosphorus TPAO Total plasma antioxidants

In addition, data regarding comorbidities were collected alongside AD-specific clinical
information. In particular, among the study population, 26% of the patients suffered
from dyslipidemias and were treated using statins, 40% from cardiovascular diseases or
hypertension, 15% were affected by diabetes Mellitus and 18% suffered from dysthyroidism.
Additionally, half of the patients suffered from depression. Each comorbidity was regularly
diagnosed after a medical evaluation.

Twenty-seven healthy subjects (15 females; age 80 ± 4.5) were also recruited as the
control population, and their blood samples were acquired over time. Each control subject
was classified as such, following the same clinical assessment protocol as AD patients.
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All blood samples were withdrawn in the mornings (between 8.00 a.m. to 9.30 a.m.)
from fasting patients and were analyzed according to the good laboratory practice (GLP)
protocol by the laboratory of chemical–biochemical analysis of the Azienda Ospedaliera
Universitaria di Pisa (AOUP).

The number of blood withdrawals per subject varied from a minimum of one to a
maximum of thirteen.

2.1.2. Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria for patients’ enrollment were established.
Subjects of both sexes, aged from 60 to 90 years, were considered for the study. We recruited
subjects with premorbid conditions (i.e., Mild Cognitive Impairment (MCI) with both
single and multiple cognitive domain impairment according to the diagnostic criteria of
Petersen et al. [28]) and patients with a diagnosis of Alzheimer’s Disease (AD) with severe
cognitive impairment according to the NINDS-ARDA criteria [29].

We excluded from the study patients with a diagnosis of subcortical dementia (such as
Lewy Body Disease Dementia [30] or other neurodegenerative diseases) and demented pa-
tients with a diagnosis of vascular dementia according to the NINDS- AIREN criteria [31,32]
or with a prevalent vascular component (i.e., “mixed dementia” [33], characterized by the
coexistence of degenerative and cerebrovascular disease in the same demented patient).
In addition, patients with severe psychiatric disorders, traumatic brain injury, pseudo-
dementia or neoplastic disease in the last 5 years were not eligible for the study.

2.1.3. Screening Procedures

According to international guidelines of good clinical practice (Vayamanthan et al.
2008), the following Protocol was applied. In order to verify enrollment criteria, data
regarding the clinical history and pharmacologic treatments for the cognitive deficit and
possible comorbidities were collected. All subjects performed a battery of neuropsychologi-
cal tests, including the Mini-Mental State Examination (MMSE) [34], the Montreal Cognitive
Assessment (MoCA) [35] and the Milan Overall Dementia Assessment (MODA) [36], which
were used—together with the Activity Daily Living (ADL) and Instrumental Activity Daily
Living (IADL) scales [37]—to obtain clinical data on both cognition and functional auton-
omy to assign the correct Clinical Dementia Rating (CDR) [25] scores. Furthermore, we
employed the Beck Depression Inventory (BDI) [38] for mood disorders. The modified
Hachinski Ischemic Scale (HIS) [39] was used for differentiating clinical types of dementia
(primary degenerative, vascular or multi-infarct and mixed type). Moreover, all subjects
performed brain Magnetic Resonance Imaging (MRI) in order to support the differential
diagnoses, between degenerative and vascular dementia, according to specific cortical and
subcortical changes having diagnostic significance. Particularly, reduced cortical thickness,
enhanced perivascular spaces and impairment of hippocampus volume, all remarkable
signs of degenerative dementia, and focal ischemic lesions as hallmarks of vascular demen-
tia, were considered [40]. Only for a few patients, further confirmation of AD diagnosis
correctness was given by cerebrospinal fluid (CSF) amyloid and tau biomarkers analyses.
Of note, magnetic resonance and biomarkers tests were not repeated over time during
the follow-up evaluations due to their invasiveness or economic cost. Finally, the subjects
with a suspected diagnosis of dementia performed brain 18F-deoxyglucose (FDG)-Positron
emission tomography (PET), which provides as an early pre-clinical biomarker a pattern of
reduced brain FDG metabolism [41].

2.2. Dataset Manipulation

Each patient was followed over time, and his/her blood data were collected about
every three months until their death or when they stopped their periodic visits. Conse-
quently, (i) not all patients had the same number of observations over time, and (ii) each
CDR level was associated with a different number of samples. According to the study’s aim
of investigating AD progression both at a single-subject and group level, we considered in
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the analysis only those patients with at least four blood samples collected over time. In this
way, we mitigated the risk of fitting models at the single-subject level with an insufficient
number of points. As a result of this manipulation, we performed the statistical analysis
considering eighteen patients with a number of blood samples from 4 to 5, thirteen acquired
from 5 to 7 times, and 3 with more than 7 withdrawals. To define the different severity
levels, we built on the CDR scale. In more detail, for the sake of clarity and to reduce
the risk of overfitting, we considered 4 levels of AD severity, grouping the CDR scores as
follows: (i) mild (CDR = 0.5 or CDR = 1), moderate (CDR = 2), severe (CDR = 3) and very
severe (CDR = 4 or CDR = 5). Accordingly, 45 patients’ blood samples were labeled as
mildly severe, 44 as moderately severe, 50 as severe and 47 as very severe. The statistical
modeling, described in the next section, was performed by modeling these aggregated
classes.

2.3. Model Definition

We designed computational models aimed at explaining AD severity, described
through the CDR score, as a function of the measured blood analytes. The four levels
of severity (mild, moderate, severe and very severe) were considered as an ordinal categor-
ical variable. To model the trajectory of such a non-Gaussian variable without neglecting
the data interdependency depending on the subjects’ repeated measures, we adopted a
mixed-effects modeling approach. More specifically, we took advantage of the ordered
logit mixed-effects (OLME) framework, which accounts for binomial distributed residuals
using a logit link function. Accordingly, each analyte in the dataset was used as a fixed
effect in an OLME model of AD severity, including a subject-varying random intercept that
accounted for the data’s idiosyncrasies. The general expression for the models is formally
defined in Equation (1):

Pr(Yij|ai > k) = logit−1(ai + xij · β− θk)

ai ∼ N(0, σ2)

logit(p) = ln( p
1−p )

(1)

where Yij represents the jth severity level collected from the ith subject, k defines the kth-
ordered class of AD severity, ai indicates the normally distributed random intercept with
zero mean and σ2

a variance, xij is the analyte measured from the ith subject during the jth
acquisition and θk can be interpreted as a threshold parameter characterizing the kth class
of AD severity.

2.4. Model Fitting

To identify the parameters of the models, we estimated the maximum likelihood
(ML) of both the blood analyte fixed effect (β) and the standard deviation of the random
intercept (σa). In a hierarchical context, the ML parameters’ estimation requires integrating
likelihoods over all possible values of the random effects. To this aim, multiple strategies
can be implemented, characterized by different accuracy and speed of convergence. They
include the penalized quasi-likelihood (PQL) [42], the Laplace approximation (LA) [43]
and the Gauss–Hermite Quadrature (GHQ) [44]. Given its proven higher estimation
accuracy [45], we adopted a GHQ over 20 quadrature points for the analyte OLME model
fitting. Whenever the model related to a specific analyte failed to converge with such
a GHQ method, it was re-fitted using the LA approach. Finally, in the very few cases
where the model did not converge with either the GHQ or LA, the PQL method was used.
The analytes models, which due to their non-linear nature did not converge with any of
these 3 methods, were excluded from the analysis. The fitting procedure is summarized in
Figure 1.
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Figure 1. OLME model parameters estimation procedure.

2.5. Statistical Inference

We performed two statistical analyses: (i) the statistical significance of the analytes
was evaluated using the Wald Z test [45] under the null hypothesis of no effects of the
models’ analytes. Additionally, we estimated the contribution of each significant analyte
in terms of explained variance by computing both the conditional and marginal R2 [46].
In particular, the marginal R2 defines the variance explained by the only fixed effects,
while the conditional R2 indicates the variance explained by the whole model including
the random effects. The significant models were ranked based on their p-values. (ii) A
statistical comparison between the control population and the AD patients at each severity
level (i.e., mild AD, moderate AD, severe AD and very severe AD) was performed for
each analyte using a non-parametric Mann–Whitney test under the null hypothesis of no
difference between AD patients and control subjects. Repeated measures were averaged to
consider an unpaired data design, and the Bonferroni correction was applied to compensate
for multiple comparisons.

2.6. Blood Analytes Examination

Blood analytes that resulted statistically significantly related to AD severity were
examined through the Reactome pathway databases, an online bioinformatics tool sup-
plying integrated analyses of the biologic reaction network, which can be used to search
how analytes perform their function through specific pathways [47]. More specifically,
the Reactome database is an open-source knowledge base of biomolecular pathways pro-
viding tools for basic research, genome analysis, modeling and systems biology. Using
the aforementioned database, an over-representation analysis was performed to detect
the pathways in which the deferentially expressed biomolecules exceed the number that
could be randomly expected. In Reactome, the statistical significance of each pathway
was calculated through the combination of the Binomial Test and the False Discovery Rate
(FDR) correction to avoid misleading results. The FDR correction was applied using the
Benjamini–Hochberg approach.

3. Results

Supplementary Table S1 reports descriptive statistics, including the grand mean and
the corresponding severity class mean and standard deviation for each analyte reported in
Table S1 .

3.1. Statistical Modeling Evaluation

Each model converged with at least one of the three fitting methods. Thus, no analytes
were excluded from the analysis. The Wald Z test revealed a total of eight statistically sig-
nificant analytes. The estimated significant β parameter and the results from the statistical
analysis, including marginal and conditional R2, are reported in Table 2.

Among the significant analytes, three of them resulted significantly positively cor-
related with AD progression, while an inverse relationship with the severity index was
observed for six of them. Particularly, creatinine (p = 0.0015, β = 7.403), Na (p = 0.0345,
β = 0.282) and Cl (p = 0.0025, β = 0.313) increased as the severity of the disease grew. Con-
versely, HDL-cholesterol (p = 0.0013, β = −0.157), Ferritin (p = 0.0090, β = −0.017), Fe
(p = 0.0154, β = −0.031), total cholesterol (p = 0.0241, β = −0.031) and LDH (p = 0.0430,
β = −0.022) tended to decrease for the higher values of severity level. More precisely, in
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this ordered multinomial context, the slopes of the regression variables (i.e., the β param-
eters) do not indicate a linear increasing or decreasing trend as in a standard correlation
analysis. Indeed, they correspond to the dependent variable’s change in the log-odds
scale resulting from a one-unit variation of the regressor in its proper measurement scale.
It is worthwhile noting that the negatively correlated ones were the most informative
(i.e., higher values of R2), with a unique exception represented by creatinine, explaining a
relevant 16.9% of AD severity variability.

Table 2. Results of the statistical evaluation. “p” column contains, for each analyte, the result of the
Wald test in terms of p-value. The “β” column shows the slope of the corresponding model. The “R2”
column reports the CDR variability explained by the only model’s fixed effect, and the last column
provides the fitting method for each analyte model.

Blood Analyte p β R2 Fitting Method

HDL-cholesterol 0.0013 −0.157 0.197 GHQ

Creatinine 0.0015 7.403 0.169 GHQ

Cl 0.0025 0.313 0.002 PQL

Ferritin 0.0090 −0.017 0.155 GHQ

Fe 0.0154 −0.031 0.051 GHQ

Total cholesterol 0.0241 −0.031 0.046 GHQ

Na 0.0345 0.282 0.002 PQL

LDH 0.0430 −0.022 0.032 GHQ

A detailed description of the statistical results of the comparison between controls and
the patients with different severity levels can be found in Supplementary Table S2 . Only
a small percentage of analytes significantly differed from the control values, regardless
of the severity class of the observations. It is worthwhile noting that among the analytes
significantly related to AD progression, only chlorine showed a significant difference
between the control group and the AD patient with mild severity (p = 0.002).

3.2. Biomarker Analysis and Pathway Search

The role of each analyte that resulted significantly related with AD severity was
examined through the Reactome databases to identify the pathways linked to their differ-
ential expression. A detailed description of the pathways involved is reported in Table 3.
Results show the convergence towards Immune system, Transport of small molecules and
Vescicle-mediated transport.

Table 3. List of the main significantpathways identified by the analysis on the Reactome database
(Column 2); Student’s t-test: p < 0.01 (FDR).

Pathway Identified Analytes p-Value Involved Subpathways

Transport of
small molecules

Ferritin, Fe 1.65 × 10−2 Fe uptake and transport

Vesicle-mediated
transport

Ferritin, Fe,
total cholesterol,
HDL-cholesterol

1.59 × 10−2

Fe uptake and transport,
Scavenging by Class A Receptors,
Binding and uptake of ligands
by Scavenger Receptors,
Membrane trafficking

Innate immune
system

Ferritin, Fe, total
cholesterol, Cl, Na 1.78 × 10−2 Scavenging by Class A Receptors
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Of note, among the significantly AD severity-related analytes, only Na, Cl, total and
HDL-cholesterol, Fe and Ferritin were involved in the identified pathways. Particularly,
Ferritin, Fe, Total cholesterol and HDL-cholesterol were implicated in vesicle-mediated
transport. Fe and Ferritin were also involved in the transport of small molecules. Moreover,
we observed a significant role of six significant analytes in the network of biological
processes implicated in the immune system (i.e., Ferritin, Fe, Total cholesterol, Cl and Na).
Although statistically significant effects on CDR progression of LDH and creatinine were
observed, no resulting pathways included these molecules.

4. Discussion

In this study, we performed a statistical model analysis to identify blood biomarkers
significantly associated with AD progression. To address all the critical issues related to the
hierarchical structure of the dataset without neglecting the repeated measures over time, we
mathematically modeled diachronic variations of subject-dependent dynamics. Specifically,
we adopted generalized linear mixed-effects models to account for random variability
among subjects and fully match the nature of the AD severity index, providing a powerful
tool to make robust inferences of regressors (i.e., no violated statistical assumptions of the
model) and easily interpret their contribution to the model. As a result, the correlation
between CDR and specific blood analytes was thoroughly quantified.

From the generalized linear mixed-effects model, eight analytes resulted significantly
related to AD severity. Among these, due to their very weak relationship with AD severity
(R2 = 0.002), Na and Cl are not further discussed. On the other hand, Fe, ferritin and
total and HDL-cholesterol were all inversely related to AD severity and were shown by
the Reactome database analysis to be involved in the subpathway of small molecules
and vesicle-mediated transport and to converge towards an overactivation of scavenger
receptors (SRs). SRs consist of a broad family of multifunctional proteins found on the
membrane of a variety of cells, including microglial cells, involved in the binding and
clearance of toxic ligands [48,49]. This altered signal could be indicative of an increased
molecule trafficking during the neuroinflammation progression [50–52]. Moreover, differ-
ent SRs are expressed both by endothelial cells and by a plethora of leukocytes such as
lymphocytes and neutrophils [53,54]. Therefore, these immune responsive cells coming
from systemic circulation can undesirably sustain and exacerbate inflammation already
taking place in AD-affected brains by the recruitment of resident glial and macrophage cells.
In this way, peripheral leukocytes could infiltrate the brain by crossing the brain–blood
barrier (BBB) either in normal conditions or, more dramatically, as a result of the damage of
the same barrier, often invoked but not definitely assessed to play a boosting effect in the
progression of AD. SRs share the ability to recognize and internalize modified low-density
lipoproteins (LDL) and several other ligands, including Aβ, in both its fibrillary and soluble
form, suggesting the fascinating interpretation of an alternative compensatory mechanism
for Aβ clearance [55].

One of the main unresolved questions in neurodegenerative diseases is whether
neuroinflammation stands after aberrant protein accumulations or if it is causative of
their production. Aβ plaques have been considered for many years as the main cause of
neurotoxicity in AD onset and progression, but development of Aβ plaques is a common
phenomenon in most people during aging and does not necessarily lead to cognitive
decline. As a matter of fact, based on postmortem analyses, individuals with Aβ plaques
and large Fe deposits are highly likely to develop dementia [56], possibly implicating that
a tendency towards brain Fe accumulation could be a factor increasing AD susceptibility.
In addition, during the onset of AD, microglial cells are believed to protect the brain by
incorporating extracellular Aβ filaments that are prone to bind several metals, such as Cu,
Zn and Fe [49,57], until their maximum buffering capacity [57]. In this way, across years,
Fe ions could increase and accumulate within the brain.

In humans, Fe is incorporated into proteins as a component of heme and is involved in
numerous oxidation-reduction reactions, such as those involved in erythropoiesis, energy
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production, lipid peroxidation, myelin formation, neurotransmitters’ synthesis and cellular
immune responses. Circulating and cellular Fe is linked to proteins and other transporters,
such as ferritin, to secure its vital functions and limit its potential toxicity. Fe can enter the
cell via transferrin 1 receptor and be reduced from ferric to ferrous form via a metallore-
ductase in the endosome: in such a form, Fe can be stored in ferritin, or exported from
the cell through ferroportin [56,58]. Fe accumulation with age in several brain compart-
ments has been known for a long time, even though no satisfactory explanation has been
drawn on that regard, including all the related consequences and implications [49]. Since
brain Fe content increases more dramatically during neurodegenerative diseases, causing
the onset of sideroptosis (ferroptosis), an Fe-dependent and lipid peroxidation-driven
type of programmed cell death [59], it is likely that ferroptosis may offer an additional
contribution to neurodegeneration in AD. Ferritin degradation through the nuclear recep-
tor coactivator 4 (NCOA4) contributes to ferroptosis by increasing the free intracellular
Fe levels [58]. Dysregulation of NCOA4-mediated ferritinophagy disrupts systemic Fe
homeostasis with deleterious effects on oxidative stress modulation, leading ultimately
to enhanced neurodegeneration [60]. Fe accumulation [61], lipid peroxidation [58] and
mitochondrial dysfunction [62], the main hallmarks of ferroptosis, are observed early in AD
pathology, suggesting that targeting ferroptosis in AD may lead to the prevention of symp-
toms’ manifestation such as cognitive decline. Given the dysregulation of intraneuronal Fe
homeostasis, more and more blood Fe from the labile pool is consumed and, on the other
hand, brain ferritin molecules are numerically less sufficient for Fe storage, which tends to
accumulate in excess in neurons. Our findings regarding a progressive reduction in plasma
Fe and ferritin concentrations in AD patients in respect to disease severity worsening might
correlate with increased demand for Fe and ferritin by the brain.

The possibility to track ferritin and Fe in blood during the first neurodegenerative
signals might offer a potential early marker for AD and point out possible therapeutic
targets [58,63–65]. Other molecules we found to be reduced in blood inversely to AD
severity are total cholesterol and HDL-cholesterol. Cholesterol amounts measured in
blood include HDL- and LDL-cholesterol, intermediate density lipoprotein (IDL), very-
low-density lipoprotein (VLDL)-cholesterol and oxysterols. Cholesterol constitutes the
main building block for brain development, accounting for about 23–25% of total body
cholesterol as the main component of cellular membranes, therefore involved in enriching
the myelin sheath, in signal conduction and in synaptic vesicles production for neuro-
transmission function [66]. A large portion of the cholesterol pool is synthesized directly
inside the brain (namely by astrocytes and neurons), whereas a small portion is exchanged
between the brain and blood circulation in the form of oxysterol metabolites, such as
24S-hydroxycholesterol (24S-OHC) and 27-hydroxycholesterol (27-OHC). Although the
paramount role of for normal brain metabolism, its specific significance in the pathogenesis
of neurodegenerative diseases has not been fully elucidated.

Many studies report conflicting results related to the risk of dementia in people with
high blood cholesterol [67] or low HDL-cholesterol [68] and on the balance between brain
and blood cholesterol amounts [69]. In healthy people, the BBB prevents the passage of
cholesterol from the blood to the brain but, at the onset of neuroinflammation, the BBB
undergoes a destructive process caused indeed by inflammatory mediators such as reactive
oxygen species (ROS), neutrophils-released metalloproteases and Fenton reaction [70].
Cholesterol has been shown to accumulate in mature Aβ-plaques in AD patients [69], and
its brain levels positively correlate with the disease severity in AD patients. Cholesterol
balance is finely regulated, but the causes of its accumulation in the brain remain still
unclear [24]. In healthy conditions, excess of cholesterol in the brain is converted into
24S-OHC (by cytochrome Cyp46A1) to make it suitable for diffusion across the BBB from
the brain. Remarkably, almost the total amount of plasmatic 24S-OHC is derived from brain
metabolism, making this latter an appealing biomarker to monitor cholesterol turnover
and fluctuations in the brain related to different stages of AD [71]. Recent papers have
investigated the displacements of cholesterol between the brain and peripheral blood
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during various diseases, including neurodegenerative, however, its role remains still
controversial [50–52]. Indeed, it has been already shown that 24S-OHC is elevated in
early or mild AD but decreased in more advanced illness stages [71].

27-OHC is a cholesterol metabolite that, after having been synthetized in various
cellular compartments of the body, is able to enter through the BBB and, once into the brain,
be converted into 7A-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) by Cyp7B1 [72]. Notably,
upon neuroinflammatory conditions, 27-OHC uptake is increased, likewise, to restore
demyelination or microglia activation. Moreover, since the activities of Cyp46A1 and
Cyp7B1 are suppressed, the efflux into the blood is reduced, whereas retention in the brain
increases [72]. Another explanation for enhanced cholesterol and Fe brain levels might
be the occurrence of hemolytic events fostered by the increased oxidation milieu in AD
brains; in fact, enhanced ROS amounts in the brain consequent to microglia activation
together with Fe overload may cause hemolysis that, in turn, might cause further release
of Fe and cholesterol [73]. This could provide a reasonable explanation for the total
cholesterol progressive reduction in blood along the AD progression [74]. It is known that
27-OHC is the most abundant oxysterol in the circulation and HDL-cholesterol is its main
carrier in plasma [75]. Changes in the concentrations of HDL-cholesterol are paralleled by
equidirectional changes in HDL-27-OHC levels, thus indicating that HDL acts as a passive
acceptor and transporter of 27-OHC, explaining up to 40% of the variation in HDL-27-OHC
levels. Our findings regarding a progressive reduction in HDL-cholesterols in plasma from
AD patients according to their disease worsening might correlate with the alteration in
cholesterol turnover in the brain. Therefore, dysregulation of cholesterol transport and Fe
metabolism in the central nervous system contributes to poor prognoses of AD.

Notably, the comparison between a control group and the AD patients showed that
the potential blood biomarkers of AD progression did not significantly differ from the
healthy interval. This suggests that the relevant information of such analytes is not in the
value itself but in their dynamic trend as the severity of the disease varies. Although some
of the analyte values could be altered by the drugs to correct or mitigate comorbidities
(e.g., statins), our statistical results are not significantly affected by this. Indeed, our
mathematical framework intrinsically models intrasubject variations of CDR as a function
of blood analytes. Thus, since the patients were treated in the same way over periodic
medical visits, the drug’s effect should not affect the model coefficient, which describes
the relationship between the analytes and AD severity, but only the model intercept. This
aspect makes our mathematically rigorous models even more crucial and relevant. Indeed,
the values of such analytes, within the healthy range, either naturally or recovered through
the use of specific drugs, could hide the potential informative power of the identified
analytes to the common clinical practice often based on the clinician’s experience.

A possible limitation of the study is the fact that the investigated blood analytes
are not AD-specific parameters. This, alongside the fact that the models adopted do
not allow causality considerations, could lead to the risk of an overspeculation. However,
although limited in number, there are already other studies in the literature that have shown
robust and interesting results about the relationship between routine blood analytes and
AD [6,21], supporting their possible role as AD biomarkers. It should also be considered that
the investigation of non-specific parameters could have a great impact on the study of AD,
in fact, contrary to the most common specific biomarkers (e.g., CSF, tau), these are much less
invasive, easier to be collected, and less expensive. In this regard, a comparison with AD-
specific biomarkers would have been interesting but not possible. Indeed, patients would
have undergone an invasive procedure (e.g., lumbar punctures) during every follow-up
visit (approximately every three months). Thus, contrary to blood withdrawals representing
an easy-to-sample tool, it was not possible to include these procedures so frequently in the
common clinical routine.
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5. Conclusions

Our results show that AD progression significantly are correlated with levels of Fe,
ferritin and cholesterol, which might be considered as markers of the progression of cogni-
tive impairment. The inverse relationship with AD progression can be due to their higher
brain retention already at the onset of the cognitive impairment, although further research
work is needed. Indeed, an initial increase in Fe, ferritin and cholesterol, together with Aβ
plaques, could saturate the microglia and also some neurons, causing an accumulation of
these substances, with consequent loss of functions up to cell death. Such events might lead
to the recall of these analytes from the blood with consequent progressive reductions in
plasma Fe, ferritin and cholesterol levels; the more evident, the more the disease progresses.

This work paves the path towards an objective and rigorous support system that could
help clinicians to an early prediction of the course of the disease and could lead to innovative
targets in host-directed therapies. Moreover, it gives new insight that could support the
research of an early diagnosis of AD. Future studies will investigate the relationship
between non-specific blood analytes and the progression of other forms of dementia (e.g.,
Fronto-temporal dementia, Lewy body dementia) as well as other neurodegenerative
diseases often associated with dementia symptoms (e.g., Parkinson disease [76]). Our
methodological approach could highlight similarities and differences with AD, providing
not only a tool for a more objective prognosis of such different forms of dementia but also
a powerful approach for a differential diagnosis. To this aim, we will focus not only on
increasing the number of patients in the dataset, opening the recruitment to other forms of
dementia, but we will also expand the analytes set, also introducing synthetic variables
derived from a linear or non-linear combination of blood analytes, as in [76].
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2. Šimić, G.; Španić, E.; Horvat, L.L.; Hof, P.R. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer’s disease.
Prog. Mol. Biol. Transl. Sci. 2019, 168, 99–145. [PubMed]
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Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines
2022, 10, 1760. [CrossRef]

21. Kim, H.J.; Park, J.C.; Jung, K.S.; Kim, J.; Jang, J.S.; Kwon, S.; Byun, M.S.; Yi, D.; Byeon, G.; Jung, G.; et al. The clinical use of
blood-test factors for Alzheimer’s disease: improving the prediction of cerebral amyloid deposition by the QPLEXTM Alz plus
assay kit. Exp. Mol. Med. 2021, 53, 1046–1054. [CrossRef] [PubMed]

22. Hansson, O.; Edelmayer, R.M.; Boxer, A.L.; Carrillo, M.C.; Mielke, M.M.; Rabinovici, G.D.; Salloway, S.; Sperling, R.; Zetterberg,
H.; Teunissen, C.E. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease.
Alzheimer’s Dement. 2022. [CrossRef]

23. Varesi, A.; Carrara, A.; Pires, V.G.; Floris, V.; Pierella, E.; Savioli, G.; Prasad, S.; Esposito, C.; Ricevuti, G.; Chirumbolo, S.; et al.
Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells 2022, 11, 1367. [CrossRef] [PubMed]
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