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Abstract: Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in
response to various hormones, cytokines, and growth factors. These proteins act by binding to their re-
ceptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades,
downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-
dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2
(ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numer-
ous proteins including transcription factors leading to increased steroidogenic gene expression. How
these various kinases and transcription factors come together to appropriately induce steroidogenic
gene expression in response to specific stimuli remains poorly understood. In the present work, we
compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription
factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated
known cooperation between kinases and transcription factors, but we also identified novel coopera-
tions that have not yet been before reported. Some transcription factors were found to respond to
all three kinases, whereas others were only activated by one specific kinase. Differential responses
were also observed within a family of transcription factors. The diverse response to kinases provides
flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.

Keywords: Leydig cells; Steroidogenesis; signaling cascade; Nuclear receptors; bZIP factors; MEF2
factors; GATA4; CAMKI; PKA; ERK1/2

1. Introduction

Leydig cells are located in the interstitial space between the seminiferous tubules in the
mammalian testis where they produce two hormones, androgens (mainly testosterone) and
insulin-like 3 (INSL3). During fetal life, these hormones are essential for masculinization
on the male embryo while in postnatal life they are responsible for the development of
internal and external male characteristics that occur at puberty, for the initiation and
maintenance of spermatogenesis, and for bone metabolism. Testosterone synthesis requires
several transporters and enzymes. The process begins with the shuttling of cholesterol, the
substrate for all steroid hormones, from the outer to the inner mitochondrial membrane
to deliver it to the CYP11A1 enzyme which makes pregnenolone. Pregnenolone then
diffuses out of the mitochondria and reaches the smooth endoplasmic reticulum where it is
transformed into testosterone by the sequential action of CYP17A1, HSD3B1, and HSD17B3
(reviewed in [1–3]). The transport of cholesterol, which constitutes the rate-limiting step
in steroidogenesis, involves a large protein complex [4] which includes the steroidogenic
acute regulatory (STAR) protein [5]. The importance of the STAR protein in Leydig cell
steroidogenesis is supported by the existence of naturally occurring mutations in the human
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Star gene responsible for lipoid congenital adrenal hyperplasia and by inactivation of the
Star gene in the mouse where males display female external genitalia, consistent with
impaired testosterone production (reviewed in [6]).

Steroidogenesis in Leydig cells is regulated by several growth factors, cytokines, and
hormones, the main one being the pituitary luteinizing hormone (LH). Binding of LH to
its G protein-coupled receptor on the surface of Leydig cells activates adenylate cyclase
leading to cAMP synthesis, which in turns activates several signaling pathways (reviewed
in [1,7]). Similarly, growth factors and cytokines bind to their respective receptor lead-
ing to activation of intracellular signaling cascades (reviewed in [7–11]). Downstream of
these pathways are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-
dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1
and 2 (ERK1/2) (reviewed in [1]). These kinases participate in hormone-induced steroido-
genesis by phosphorylating numerous proteins that include several transcription factors
leading to increased steroidogenic gene expression (reviewed in [1,12]).

Because of the vital role of the STAR protein in steroidogenesis and because Star
gene expression is strongly and rapidly induced in response to LH/cAMP stimulation
(reviewed in [13]), the transcriptional regulation of the Star gene has been actively studied
to identify Star promoter regulatory elements and their corresponding transcription factors
that bind to these elements. Multiple transcription factors have been proposed to increase
Star transcription (reviewed in [1,14,15]). These include members of the nuclear receptor
family (SF1/NR5A1, LRH1/NR5A1, NUR77/NR4A1, COUP-TFII/NR2F2), bZIP family
(cJUN, cFOS, CREB, CREM, C/EBPβ), GATA family (GATA4, GATA6), MADS box family
(MEF2A, MEF2D), and the STAT domain family (STAT5B) (reviewed in [1,12,16–21]). While
some of these transcription factors are de novo synthesized in response to LH/cAMP, such
as NUR77 [22–24], most are activated by phosphorylation by one of three main kinases
(PKA, CAMKI, ERK1/2).

Despite the significant progress that have been made in identifying the signaling
pathways and transcription factors regulating hormone-induced steroidogenesis in Leydig
cells, important questions remain. For instance, in the majority of the studies performed so
far, the effect of a given kinase on transcription factor activation and Star promoter activity
has been limited to studying individual transcription factors. However, PKA, CAMKI,
and ERK1/2 are all activated in response to LH/cAMP and therefore can target and
activate several transcription factors simultaneously. In the present study, we have deter-
mined the ability of PKA, CAMKI and ERK1/2 to activate and functionally cooperate with
15 different transcription factors belonging to 5 distinct families. This allowed us to de-
scribe distinct transcription factor/kinase cooperation profiles that lead to increased Star
gene transcription.

2. Results

To determine whether the three main kinases (PKA, CAMKI, and ERK1/2), previously
shown to activate Star transcription, can increase the transactivation potential of various
transcription factors belonging to different families, we performed transient transfections
in both a steroidogenic (MA-10 Leydig) and a non-steroidogenic (CV-1 fibroblast) cell line.
Cells were cotransfected with a Star reporter plasmid along with expression vectors for the
various transcription factors with or without expression vectors for the PKA catalytic sub-
unit α, constitutively active CAMKI, and constitutively active MEK1 which phosphorylates
and activates ERK1/2.

2.1. Cell- and Kinase-Specific Cooperations with bZIP Family Members

We first tested three members of the bZIP family (cJUN, CREB, and C/EBPβ) alone. As
shown in Figure 1, CREB and cJUN activated the Star promoter in both MA-10 Leydig and
CV-1 fibroblast cells, with the activation by cJUN being stronger in MA-10 cells (~10-fold
vs. ~4-fold in CV-1 cells). In contrast, CREB-mediated activation was stronger in CV-1 cells
(~4-fold). There was a tendency towards an activation by C/EBPβ but it did not reach
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statistical significance (Figure 1). We next repeated these experiments but in the presence
of a kinase. All three kinases (CAMKI CA, PKA Cα, MEK1 CA) increased Star promoter
activity (up to 7-fold in MA-10 cells and up to 3.8-fold in CV-1 cells) on their own. The
activation by CAMKI CA and PKA Cα was much stronger in MA-10 Leydig cells than
in CV-1 fibroblast cells, while the reverse was true for MEK1 CA. This indicated that the
kinases activate transcription factors already present in the cells, mainly in MA-10 cells for
CAMKI CA and PKA Cα, and in CV-1 cells for MEK1 CA. When assessed for functional
cooperation, CAMKI CA potently enhanced cJUN- (up to 25-fold) and CREB- (up to 10-fold)
dependent activation of the Star promoter in both MA-10 Leydig and CV-1 fibroblast cells
(Figure 1). PKA Cα also cooperated with cJUN and with CREB but only in CV-1 cells
(Figure 1). Finally, a cooperation between MEK1 CA and cJUN (up to 15-fold) and C/EBPβ
(up to 10-fold) was observed solely in CV-1 fibroblasts (Figure 1). Together, these results
indicated that although the transactivation by all three bZIP family members is enhanced
in the presence of a kinase, the resulting cooperation is kinase- and cell type-specific, with
cJUN and CREB activity being mainly enhanced by CAMKI CA and PKA Cα, and MEK1
CA (ERK1/2) with C/EBPβ and cJUN.

2.2. Some Nuclear Receptors Cooperate with All Three Kinases while Others Are Stimulated by a
Single Kinase

The nuclear receptor family is composed of 48 members, several of which are expressed
in Leydig cells where they regulate expression of numerous genes, including Star (reviewed
in [16]). As previously demonstrated [23,25], members of the NR2F (COUP-TFI, COUP-TFII)
and NR4A families activated the Star promoter both in MA-10 and CV-1 cells (Figure 2).
We next determined whether cooperation, between the kinases and seven nuclear receptors
belonging to three distinct families, occurs on the Star promoter. As shown in Figure 2,
the activation of the Star promoter by COUP-TFI and COUP-TFII (NR2F family members)
was significantly enhanced by CAMKI CA and PKA Cα in both MA-10 and CV-1 cells.
On the other hand, all three kinases activated at least one of the NR4A family members
(CAMKI CA with NURR1 and NOR1; PKA Cα with NOR1, and MEK1 CA with NURR1
and NOR1) in MA-10 Leydig and/or CV-1 fibroblast cells. Finally, the two members of
the NR5A family, SF1 and LRH1, were only stimulated by MEK1 CA and exclusively in
CV-1 fibroblast cells (Figure 2). Together these results establish that stimulation of nuclear
receptor activity is highly kinase-dependent, which is determined by the family the nuclear
receptor belongs to.

2.3. MEF2 Factors Cooperate with PKA Cα and MEK1 CA in CV-1 Cells

Of the four MEF2 family members, three are expressed in Leydig cells (MEF2A,
2C and 2D) where they are known to regulate the expression of several genes [26–31].
To determine whether the three kinases could enhance MEF2 transactivation potential,
transient transfections were performed in MA-10 Leydig and CV-1 fibroblast cells. As
shown in Figure 3, cooperation was observed between PKA Cα and MEF2C and MEF2D as
well as between MEK1 CA and MEF2A and MEF2D. These cooperations were observed
exclusively in CV-1 cells, which is consistent with the fact that MA-10 Leydig cells already
contain high levels of MEF2 proteins [28].
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Figure 1. Transcriptional cooperation between bZIP family members and the kinases CAMKI consti-
tutively active (CAMKI CA), PKA catalytic subunit alpha (PKA Cα), and MEK1 constitutively active
(MEK1 CA activates ERK1/2) on the mouse Star promoter. MA-10 Leydig (black bars) and CV-1
fibroblast (white bars) cells were cotransfected with either an empty expression vector as a control or
expression vectors for the different bZIP factors (cJUN, CREB, C/EBPaddress information is correct)
and kinases (CAMKI CA, PKA Cα, MEK1 CA) individually or in combination as indicated, along
with a −980 to +16 bp mouse Star reporter. Results are shown as Fold Activation over control ± SEM.
An asterisk (*) represents a statistically significant difference in activation by the transcription factor
or the kinase compared to control (empty expression vector, value set at 1, p < 0.05). A dagger (†)
represents a statistically significant difference in activation between the transcription factor + the
kinase compared to the corresponding transcription factor alone (p < 0.05). A hashtag (#) represents a
statistically significant difference in activation between the transcription factor + the kinase compared
to the kinase alone (p < 0.05). The number (n) of replicates is indicated.
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Figure 2. Specific cooperation between select members of the nuclear receptor family and the kinase
CAMKI constitutively active (CAMKI CA), PKA catalytic subunit alpha (PKA Cα), and MEK1
constitutively active (MEK1 CA activates ERK1/2) on the mouse Star promoter. MA-10 Leydig (black
bars) and CV-1 fibroblast (white bars) cells were cotransfected with a −980 to +16 bp mouse Star
reporter along with an empty expression vector as a control or expression vectors for the different
nuclear receptors (COUP-TFI, COUP-TFII, NUR77, NURR1, NOR1, SF1, LRH1) used individually
(A) or in combination with CAMKI CA (B), PKA Cα (C), and MEK1 CA (D). Results are shown as
Fold Activation over control ± SEM. An asterisk (*) represents a statistically significant difference in
activation by the transcription factor or the kinase compared to the control empty expression vector
(whose value was set at 1, p < 0.05). A dagger (†) represents a statistically significant difference in
activation between the transcription factor + the kinase compared to the corresponding transcription
factor alone (p < 0.05). A hashtag (#) represents a statistically significant difference in activation
between the transcription factor + the kinase compared to the kinase alone (p < 0.05). The number of
replicates is indicated.
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Figure 3. Cooperation between members of MADS box family of transcription factors and the kinases
PKA catalytic subunit alpha (PKA Cα) and MEK1 constitutively active (MEK1 CA activates ERK1/2)
on the mouse Star promoter. MA-10 Leydig (black bars) and CV-1 fibroblast (white bars) cells
were cotransfected with an empty expression vector as a control or expression vectors for various
MADS box family members (MEF2A, MEF2C, MEF2D) and kinases (CAMKI CA, PKA Cα, MEK1
CA) individually or in combination as indicated, along with a −980 to +16 bp mouse Star reporter.
Results are shown as Fold Activation over control ± SEM. An asterisk (*) represents a statistically
significant difference in activation by the transcription factor or the kinase compared to control
(empty expression vector, value set at 1, p < 0.05). A dagger (†) represents a statistically significant
difference in activation between the transcription factor + the kinase compared to the corresponding
transcription factor alone (p < 0.05). A hashtag (#) represents a statistically significant difference in
activation between the transcription factor + the kinase compared to the kinase alone (p < 0.05). The
number (n) of replicates is indicated.
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2.4. GATA4 Activity Is Strongly Enhanced in the Presence of CAMKI CA, PKA Cα, and
MEK1 CA

The GATA4 transcription factor is a known activator of Star promoter activity in Leydig
cells [27,32–37]. Consistent with this, GATA4 was found to activate the Star promoter both
in MA-10 Leydig (3-fold) and CV-1 fibroblast (5-fold) cells (Figure 4). Combination of
GATA4 with CAMKI CA (up to 13-fold), and PKA Cα (up to 16-fold), enhanced GATA4
activation both in MA-10 and CV-1 cells (Figure 4). A MEK1 CA/GATA4 cooperation was
only observed in MA-10 Leydig cells (Figure 4). These results suggest that GATA4 is a
common target downstream of diverse intracellular signaling pathways and kinases.
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Figure 4. The zinc finger transcription factor GATA4 cooperates with CAMKI constitutively active
(CAMKI CA), PKA catalytic subunit alpha (PKA Cα), and MEK1 constitutively active (MEK1 CA
activates ERK1/2) on the mouse Star promoter. MA-10 Leydig (black bars) and CV-1 fibroblast
(white bars) cells were cotransfected with a control empty expression vector or expression vectors for
GATA4 and the different kinases (CAMKI CA, PKA Cα, MEK1 CA) individually or in combination
as indicated, along with a −980 to +16 bp mouse Star reporter. Results are shown as Fold Activation
over control ± SEM. An asterisk (*) represents a statistically significant difference in activation by
the transcription factor or the kinase compared to control (empty expression vector, value set at
1, p < 0.05). A dagger (†) represents a statistically significant difference in activation between the
transcription factor + the kinase compared to the corresponding transcription factor alone (p < 0.05).
A hashtag (#) represents a statistically significant difference in activation between the transcription
factor + the kinase compared to the kinase alone (p < 0.05). The number (n) of replicates is indicated.

2.5. STAT5B Cooperates with All Kinases

STAT5B is a transcription factor activated in response to growth hormone (reviewed
in [38]). Recently, STAT5B was found to mediate GH-induced Star gene expression in
Leydig cells [39]. In agreement with this, a constitutively active form of STAT5B (STAT5B
CA) activated the Star promoter by ~3-fold in MA-10 Leydig and CV-1 fibroblast cells
(Figure 5). Combination of STAT5B CA with any kinase (CAMKI CA, PKA Cα, MEK1 CA)
resulted in a synergistic activation of the Star promoter reaching nearly 20-fold in both
MA-10 Leydig and CV-1 fibroblast cells (Figure 5). This indicates that STAT5B is a versatile
transcription factor that can be stimulated by various kinases.



Int. J. Mol. Sci. 2022, 23, 13153 8 of 16Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. Cooperation between STAT5B and CAMKI constitutively active (CAMKI CA), PKA cata-
lytic subunit alpha (PKA Cα), and MEK1 constitutively active (MEK1 CA activates ERK1/2) on the 
mouse Star promoter. MA-10 Leydig (black bars) and CV-1 fibroblast (white bars) cells were co-
transfected with an empty expression vector as a control or expression vectors for constitutively 
active STAT5B (STAT5B CA) and the different kinases (CAMKI CA, PKA Cα, MEK1 CA) individu-
ally or in combination as indicated, along with a −980 to +16 bp mouse Star reporter. Results are 
shown as Fold Activation over control ± SEM. An asterisk (*) represents a statistically significant 
difference in activation by the transcription factor or the kinase compared to control (empty expres-
sion vector, value set at 1, p < 0.05). A dagger (†) represents a statistically significant difference in 
activation between the transcription factor + the kinase compared to the corresponding transcription 
factor alone (p < 0.05). A hashtag (#) represents a statistically significant difference in activation be-
tween the transcription factor + the kinase compared to the kinase alone (p < 0.05). The number (n) 
of replicates is indicated. 

3. Discussion 
Hormone-induced Leydig cell steroidogenesis is a strictly regulated process that re-

quires changes in gene expression and protein phosphorylation. Expression of the Star 
gene, which is induced upon stimulation of steroidogenesis has been the subject of intense 
studies since its discovery nearly 30 years ago [5]. This has led to the identification of 
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various kinases, including PKA, CAMKI and ERK1/2, that are themselves activated in re-
sponse to different hormones known to increase Star expression and steroidogenesis in 
Leydig cells (reviewed in [1]). In other systems, some of these transcription factors are 
known to be activated downstream of different signaling pathways and kinases. How 
these kinases and transcription factors are integrated to appropriately induce Star tran-
scription in response to specific stimuli remains poorly understood. The main objective of 
this work was to compare the effect of three key kinases on the transactivation potential 
of 15 transcription factors belonging to 5 distinct families on Star promoter activity. As 
described below, this allowed us to validate existing cooperations as well as to identify 
new ones. As summarized in Figure 6, some transcription factors were activated by mul-
tiple kinases indicating that they may act downstream of multiple signaling cascades. Fur-
thermore, the fact that all the transcription factors and kinases were assessed 

Figure 5. Cooperation between STAT5B and CAMKI constitutively active (CAMKI CA), PKA cat-
alytic subunit alpha (PKA Cα), and MEK1 constitutively active (MEK1 CA activates ERK1/2) on
the mouse Star promoter. MA-10 Leydig (black bars) and CV-1 fibroblast (white bars) cells were
cotransfected with an empty expression vector as a control or expression vectors for constitutively
active STAT5B (STAT5B CA) and the different kinases (CAMKI CA, PKA Cα, MEK1 CA) individually
or in combination as indicated, along with a −980 to +16 bp mouse Star reporter. Results are shown
as Fold Activation over control ± SEM. An asterisk (*) represents a statistically significant difference
in activation by the transcription factor or the kinase compared to control (empty expression vector,
value set at 1, p < 0.05). A dagger (†) represents a statistically significant difference in activation
between the transcription factor + the kinase compared to the corresponding transcription factor
alone (p < 0.05). A hashtag (#) represents a statistically significant difference in activation between the
transcription factor + the kinase compared to the kinase alone (p < 0.05). The number (n) of replicates
is indicated.

3. Discussion

Hormone-induced Leydig cell steroidogenesis is a strictly regulated process that re-
quires changes in gene expression and protein phosphorylation. Expression of the Star
gene, which is induced upon stimulation of steroidogenesis has been the subject of intense
studies since its discovery nearly 30 years ago [5]. This has led to the identification of
several transcription factors that act via regulatory motifs clustered within the proximal
Star promoter (reviewed in [1,40,41]). Some of these transcription factors are activated by
various kinases, including PKA, CAMKI and ERK1/2, that are themselves activated in
response to different hormones known to increase Star expression and steroidogenesis in
Leydig cells (reviewed in [1]). In other systems, some of these transcription factors are
known to be activated downstream of different signaling pathways and kinases. How these
kinases and transcription factors are integrated to appropriately induce Star transcription
in response to specific stimuli remains poorly understood. The main objective of this
work was to compare the effect of three key kinases on the transactivation potential of
15 transcription factors belonging to 5 distinct families on Star promoter activity. As de-
scribed below, this allowed us to validate existing cooperations as well as to identify new
ones. As summarized in Figure 6, some transcription factors were activated by multiple ki-
nases indicating that they may act downstream of multiple signaling cascades. Furthermore,
the fact that all the transcription factors and kinases were assessed simultaneously allowed
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for a direct comparison of the significance (or strength) of the transcription factor/kinase
cooperation (summarized in Table 1).
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(MA-10) vs. non-steroidogenic (CV-1) cells. The three-set Venn diagram highlights the transcrip-
tion factors that cooperate with CAMKI CA (green circles), PKA Cα (blue circles), and MEK1 CA
(activating ERK1/2, orange circles) in MA-10 Leydig (A) and in CV-1 fibroblast (B) cells.

Table 1. Transactivation potential of transcription factors by different kinases.

Control CAMKI CA PKA Cα MEK1 CA

MA-10 CV-1 MA-10 CV-1 MA-10 CV-1 MA-10 CV-1

Control 1.0 1.0 6.9 3.4 8.1 2.8 1.3 3.1

bZIP
cJUN 8.8 3.5 27.5 10.4 7.2 7.2 3.8 13.2
CREB 1.0 2.9 11.4 14.7 7.1 13.1 1.3 3.1

C/EBPβ 0.7 1.1 2.8 3.4 5.1 2.8 1.7 9.7

Nuclear receptors

COUP-TFI 3.7 2.1 11.4 6.7 7.6 12.8 4.1 4.2
COUP-TFII 2.5 5.8 16.0 13.4 17.2 13.9 4.0 7.6

NUR77 0.8 0.7 3.1 1.6 5.0 3.1 1.0 4.1
NURR1 2.6 2.8 17.9 6.7 15.1 7.7 4.1 19.3
NOR1 2.0 1.1 19.2 4.1 4.3 6.5 1.8 13.7

SF1 1.0 0.9 5.8 2.9 2.5 3.6 1.3 21.8
LRH1 0.9 1.1 6.7 3.2 6.9 3.7 1.3 21.5

MADS box
MEF2A 0.8 2.0 8.0 4.4 7.6 5.6 1.4 4.8
MEF2C 1.0 1.0 7.6 1.8 5.3 4.4 1.3 1.3
MEF2D 0.9 1.5 7.3 4.1 5.2 4.7 1.2 4.8

GATA GATA4 2.1 4.9 13.5 12.6 18.4 15.9 3.8 6.8

STAT STAT5B 1.8 2.4 13.3 6.3 15.3 10.0 13.1 18.6

Fold activations are compared to the control (empty expression vector) for which the value was set to 1.

Experiments were performed in two cell lines, the MA-10 Leydig cell line and the CV-1
fibroblast cell line. MA-10 Leydig cells endogenously express the various transcription
factors and kinases tested as well as the Star gene. Therefore, expression of a kinase often
leads to a significant activation since it activates transcription factors already present in
the cells. The transcription factor could be the factor of interest or another transcription
factor. On the other hand, CV-1 cells are considered heterologous cells since they do not
express the Star gene and all transcription factors normally found in a Leydig cell. Using a
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heterologous cell line therefore allows to detect promoter activation by a transcription factor
or a cooperation between factors that would otherwise be undetectable in a homologous
cell line like MA-10 Leydig cells. In agreement with this, the activity of some transcription
factors was only stimulated by a kinase in CV-1 cells (Figure 6).

3.1. New Cooperations between Transcription Factors and Kinases

The roles of PKA and MEK1 (activating ERK1/2) have been well characterized and
they are known to stimulate various transcription factors in different cell types. However,
their effects on most of the transcription factors in the activation of the Star promoter
remained to be characterized.

3.1.1. PKA-Induced Transcription Factor Activity

Of the 15 transcription factors tested, 3 were activated by PKA Cα in MA-10 Leydig
cells while in CV-1 fibroblast cells, the same 3 plus an additional 6 (9 in total) were activated
(blue circles in Figure 6). PKA is known to stimulate cJUN activity, but this was shown using
a synthetic reporter [42]. We found that cJUN-dependent activation of the Star promoter
is significantly induced by PKA Cα in CV-1 cells. Similarly, CREB is a classic target of
PKA [43] and therefore the cooperation between CREB and PKA Cα on the Star promoter
was not unexpected. We also found that PKA Cα stimulated the activity of the orphan
nuclear receptors COUP-TFI and COUP-TFII on the Star promoter in both MA-10 and CV-1
cells, which was unknown for the Star gene. A previous study in a different system did
report that PKA could cooperate with COUP-TFI on the Vitronectin promoter [44]. Similarly,
the stimulatory effect of PKA Cα on NR4A family members (NUR77, NURR1, NOR1)
has only been observed on the Pomc promoter in pituitary corticotrope cells [45]. Here,
we found that PKA Cα enhanced NOR1-dependent activation of the Star promoter. Of
the different MEF2 family members, we found that PKA Cα increased the transactivation
potential of MEF2C and MEF2D on the Star promoter. A previous study in the heart
found that PKA represses MEF2A activity [46], indicating the existence of cell type-specific
responses. The transcription factor GATA4 has been described as a direct target for PKA,
which increases its transactivation potential on the Star promoter [47]. Our current study
reproduces this observation, thus validating the appropriateness of our experimental
system. We also observed a potent stimulation of STAT5B-dependent activation of the
Star promoter by PKA Cα both in MA-10 Leydig and CV-1 fibroblast cells. STAT5B is
known to be phosphorylated by members of the JAK kinase family in response to growth
hormone (reviewed in [48]) in many cell types, including in Leydig cells [49]. Whether PKA
directly phosphorylates STAT5B or whether it acts on STAT5B-interacting partner remains
to be established.

3.1.2. MEK1-Induced Transcription Factor Activity

We found MEK1 CA to enhance the transactivation potential of 2 transcription factors
in MA-10 Leydig cells and 9 in CV-1 fibroblast cells (orange circles in Figure 6). The ERK1/2
kinases activated by MEK1 are known to phosphorylate and activate GATA4-dependent
transactivation in the heart [50] as well in the mouse testis where phosphorylation of
GATA4 Ser105 is required for testosterone production [51]. However, a direct effect of
MEK1 CA on GATA4-dependent activation of the Star promoter as we observed had never
been reported. This suggests that in addition to being stimulated by PKA, GATA4 activity
is also activated by ERK1/2 on the Star promoter. Similar to GATA4, the transactivation
potential of STAT5B on the Star promoter was also enhanced in the presence of MEK1 CA.
A cooperation between STAT5B and ERK1/2 has never been reported. We also found that
MEK1 CA enhances the activity of the NR5A nuclear receptors SF1 and LRH1. Although
ERK1/2-mediated SF1 and LRH1 phosphorylation can stimulate their transactivation
potential [52,53] in HeLa and JEG-3 cells on either the Cyp7a1 or a synthetic promoter, this
potentiation had not been reported on the Star promoter. With respect to the NR4A family of
nuclear receptors, ERK1/2 was previously reported to phosphorylate and stimulate NUR77



Int. J. Mol. Sci. 2022, 23, 13153 11 of 16

leading to enhanced activity of an artificial promoter in AtT-20 corticotrope cells [54].
Although we did not observe any effect of MEK1 CA (ERK1/2) on NUR77-dependent
activation of the Star promoter, MEK1 CA did nonetheless significantly enhance the activity
of the other two NR4A family members NURR1 and NOR1. This suggests the existence
of a cell- and promoter-dependent response of transcription factors to different kinases.
The bZIP factors cJUN and C/EBPβ were also found to cooperate with MEK1 CA on the
Star promoter. This was unexpected since activated ERK1/2 is believed to inactivate cJUN,
while other MAPK members such as JNKs phosphorylate and activate cJUN (reviewed
in [55]). In 3T3-L1 preadipocytes, C/EBPβ is phosphorylated in a MEK1-dependent manner,
stimulating its transactivation potential [56,57], which is similar to what we observed on
the Star promoter.

3.1.3. CAMKI-Induced Transcription Factor Activity

CAMKI is the most recently identified kinase in Leydig cells and consequently the
least studied in these cells. The transactivation potential of 8 transcription factors in
MA-10 cells and 7 in CV-1 cells was enhanced by CAMKI CA (green circles in Figure 6).
Similar to what we observed in the present study, the transactivation potential of all
members of the NR4A family of nuclear receptors (NUR77, NURR1 and NOR1) and of SF1
(NR5A1) was previously shown to be increased in the presence of CAMKI CA on the Star
promoter [23]. The nuclear receptors COUP-TFI and COUP-TFII were both activated in the
presence of CAMKI CA, as revealed by the synergistic activation of the Star promoter in both
MA-10 and CV-1 cells. The two COUP-TF factors have not been reported to be stimulated
by CAMKI, although a study showed that the activity of COUP-TFI is potentiated by the
related CAMKIV in neuronal cells [58]. Our study also revealed that CAMKI CA enhances
the activity of cJUN on the Star promoter both in MA-10 and in CV-1 cells, similar what
was recently reported on the Cx43 promoter in MA-10 Leydig cells [59]. We observed a
strong stimulation of the activity of CREB by CAMKI CA on the Star promoter. CREB is
known to be phosphorylated in different cell types by CAMKI and CAMKIV leading to
an increase in its transactivation potential [60,61]. We found that CAMKI CA significantly
enhanced the transactivation potential of GATA4 and STAT5B on the Star promoter in both
MA-10 and CV-1 cells. Both transcription factors were not previously known to cooperate
with CAMKI.

3.2. Versatility in Transcription Factor Response to Different Kinases

An interesting observation in our findings is the fact that the transactivation potential
of most transcription factors was stimulated by more than one kinase. This is clearly
apparent in the Venn diagrams presented in Figure 6. Some transcription factors were
found to respond to all three kinases such as GATA4 and STAT5B in MA-10 Leydig cells,
and cJUN and STAT5B in CV-1 cells. This flexibility in how a given transcription factor
responds to different kinases suggests that the transcription factor can likely mediate the
effects of different stimuli thus ensuring proper genomic response.

Another form of versatility exists within a family of transcription factors where dif-
ferent members respond to different kinases. For instance, in the nuclear receptor family,
NR4A members (NUR77, NURR1, NOR1) responded to all three kinases (PKA Cα, CAMKI
CA, MEK1 CA), NRF2 members (COUP-TFI, COUP-TFII) were stimulated by two kinases
(PKA Cα, CAMKI), and NR5A members (SF1, LRH1) were only activated by MEK1 CA.
Since most of these nuclear receptors can bind to the same response element in a promoter,
this differential response to a kinase might provide the specificity needed to ensure the
proper nuclear receptor is activated downstream of a signaling cascade leading to increased
gene expression.

In conclusion, our current work has identified several transcription factors whose
transactivation potential is stimulated by different kinases. Some of these transcription
factors were previously reported to be directly phosphorylated by the kinase. However, for
several others identified in our current work, it remains to be determined whether they are a
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direct target of the kinase. It is possible that the kinase might instead phosphorylate another
protein that can then interact with the transcription factor leading to a cooperation between
the two transcription factors. In this case, kinase-mediated phosphorylation of a factor
might render it more receptive to interactions and cooperations with other transcription
factors. This could be tested by determining whether the different kinases further enhance
known cooperations between two transcription factors. Additional work is needed to
answer these questions.

4. Materials and Methods
4.1. Plasmids

The mouse Star luciferase promoter construct (−980/+16 bp) was previously de-
scribed [34]. The MEF2A and MEF2D [27,28,30] and GATA4 [62] expression plasmids
were previously described. The mouse MEF2C expression plasmid was generated by
amplifying the complete coding sequence by PCR (forward primer 5′-CCC AAG CTT
ATG GGG AGA AAA AAG ATT CAG ATT-3′, reverse primer 5′-GCT CTA GAT CAT GTT
GCC CAT CCT TCA-3′) and subcloning the resulting PCR product into the HindIII and
XbaI cloning sites of the pcDNA3.1 expression vector (Invitrogen Canada, Burlington, ON,
Canada). The following expression plasmids were sourced from different research groups:
rat NUR77/NR4A1, NURRI/NURR1, NOR1/NR4A3 [63], mouse SF1/NR5A1 [64], hu-
man LRH1/NR5A2 [65], cJUN [66], CREB and PKA catalytic subunit α [67], constitutively
active MEK1 [68], C/EBPβ [69], mouse COUP-TFI/NR2F1 and COUP-TFII/NR2F2 [70],
constitutively active STAT5B [71], and constitutively active CAMKI [72].

4.2. Cells Culture, Transfections, and Reporter Assays

Mouse MA-10 Leydig cells (ATCC, Manassas, VA, USA, Cat# CRL-3050,
RRID:CVCL_D789) were grown in DMEM/F12 medium supplemented with 2.438 g/L
sodium bicarbonate, 3.57 g/L HEPES, and 15% horse serum on gelatin-coated plates. African
green monkey kidney fibroblast CV-1 cells (ATCC, Cat# CRL-6305, RRID:CVCL_0229) were
grown in DMEM medium supplemented with 3.7 g/L HEPES, and 10% newborn calf
serum. Penicillin and streptomycin sulphate were added to the cell culture media to a final
concentration of 50 mg/L, and all cell lines were kept at 37 ◦C, 5% CO2 in a humidified
incubator. All cell lines were validated by morphology and Leydig cell lines by quantifying
steroidogenic output (progesterone for MA-10) as previously described [25,27,39,73–77].
MA-10 (60,000 cells per well) and CV-1 (25,000 cells per well) were transiently transfected us-
ing polyethylenimine hydrochloride (PEI) (Sigma-Aldrich Canada, Oakville, ON, Canada)
as previously described [39,78] or the calcium phosphate co-precipitation method as de-
scribed in [23,24]. Briefly, the cells were seeded in 24-well plates and cotransfected with
400 ng of the mouse Star −980/+16 bp reporter vector along with 100 ng of an empty
expression vector (pcDNA3.1 as control), or expression vectors for the various transcrip-
tion factors (50 ng) or kinases (30 ng) individually (completed to 100 ng with the empty
pcDNA3.1 expression vector to keep the total amount of expression vector to 100 ng), or
the combination of a transcription factor (50 ng) plus a kinase (30 ng) and empty pcDNA3.1
(20 ng). For the calcium phosphate co-precipitation method, 1 µg of SP64 inert plasmid
was also added as carrier. Sixteen hours post transfection, the media was replaced, and
the cells were grown for additional 32 h. Cells were then lysed, the lysates were collected,
and the luciferase measurements was performed using a Tecan Spark 10M multimode
plate reader (Tecan, Morrisville, NC, USA) as previously described [39,78]. The number of
experiments, each performed in triplicate, is indicated in each figure. All the cDNAs are
cloned in an expression plasmid containing a strong promoter (CMV), which leads to high
expression levels. The quantity of expression vector needed to obtain specific and optimal
promoter activation was determined by performing a dose–response curve as described
in [25]. Western blots were routinely performed to ensure overexpression was achieved,
especially when using a new DNA plasmid preparation.
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4.3. Statistical Analysis

Comparisons between two groups were performed using an unpaired Student t-test
(GraphPad Prism, GraphPad Software, San Diego, CA, USA, version 9.4.1 (458)). For all
statistical analyses, p < 0.05 was considered significant.
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