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Abstract: A large number of SARS-CoV-2 mutations in a short period of time has driven scientific
research related to vaccines, new drugs, and antibodies to combat the new variants of the virus. Herein,
we present a web portal containing the structural information, the tridimensional coordinates, and the
molecular dynamics trajectories of the SARS-CoV-2 spike protein and its main variants. The Spike
Mutants website can serve as a rapid online tool for investigating the impact of novel mutations on virus
fitness. Taking into account the high variability of SARS-CoV-2, this application can help the scientific
community when prioritizing molecules for experimental assays, thus, accelerating the identification of
promising drug candidates for COVID-19 treatment. Below we describe the main features of the platform
and illustrate the possible applications for speeding up the drug discovery process and hypothesize new
effective strategies to overcome the recurrent mutations in SARS-CoV-2 genome.

Keywords: spike; SARS-CoV-2; COVID-19; variants; molecular dynamics; mutations

1. Introduction

As of August 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the causative agent of COVID-19, accounted for more than 599 million infections and
more than six million deaths worldwide (https://covid19.who.int, accessed on 1 October
2020). The incessant rise in the number of cases despite the development of vaccines
and the resulting immunization process reflects the impact of new variants of SARS-
CoV-2 globally. Indeed, the evolution of SARS-CoV-2 was caused by the acquisition
of several mutations since the pandemic started, as reported in the GISAID database
(https://www.gisaid.org, accessed on 1 October 2020), which collected more than one
million SARS-CoV-2 sequences. It is important to point out that the selection of ran-
dom mutations stands out as one of the main mechanisms of acquiring resistance and
represents a relevant phenomenon in viruses that mutate at high frequencies. RNA
viruses, for instance, have a mutation rate estimated at 10−4 per nucleotide per repli-
cation [1,2]. In particular, the mutations were classified as variants of concern (VOCs),

Int. J. Mol. Sci. 2022, 23, 13082. https://doi.org/10.3390/ijms232113082 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232113082
https://doi.org/10.3390/ijms232113082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5799-7863
https://orcid.org/0000-0002-3253-1821
https://orcid.org/0000-0003-2237-9755
https://orcid.org/0000-0002-8831-3380
https://orcid.org/0000-0003-4931-3019
https://orcid.org/0000-0001-5318-3654
https://orcid.org/0000-0003-0394-7438
https://orcid.org/0000-0001-6830-2695
https://orcid.org/0000-0003-3901-6926
https://orcid.org/0000-0003-4789-0955
https://covid19.who.int
https://www.gisaid.org
https://doi.org/10.3390/ijms232113082
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232113082?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 13082 2 of 14

which included Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2); vari-
ants of interest (VOI), comprising Eta (B.1.525), Iota (B.1.126), Kappa (B.1.617.1), Lambda
(C.37), Omicron (BA.1), Zeta (P.2 (484 K.V2), and Ihu (B.1.640.1); and variants of alert
(VOA) (https://www.who.int/en/activities/tracking-SARS-CoV-2-variants, accessed on
1 October 2020) [3,4]. However, this classification is dynamic, based on the spread of
different variants over time and their clinical significance. In fact, these variants were able
to emerge at the same time in multiple locations that are independent of each other, and
then they were no longer circulating after a variable period. Chronologically, we have
witnessed the emergence of B.1.1.7 in the United Kingdom (UK) [5], then B.1.351 in South
Africa [6], followed by P.1 in Brazil [7], and B.1.617 in India [8]. These new variants show
multiple mutations on their spike (S) glycoprotein and spread rapidly across the globe,
resulting in more virulence. In December 2020, the B.1.1.7 variant was identified in the
southeastern United Kingdom (UK), hence the name “UK variant”, and it is marked by
23 genetic mutations, compared to the original genome sequence that was first detected in
Wuhan, China.

As previously reported, other VOCs have also been isolated in South Africa, India,
and Brazil and have been investigated for their enhanced contagiousness and resistance to
neutralization. B.1.351 or the Beta variant that emerged in South Africa, is characterized
by 18 mutations and 3 amino acid deletions in the S glycoprotein [9]. P.1 variant, also
known as Gamma, was detected in December 2020 and has spread in an accelerated way
across Manaus, Brazil. Another variant, identified as B.1.617, has been isolated from
Maharashtra, India and is subdivided into three sub-lineages, such as B.1.617.1, B.1.617.2,
and B.1.617.3 [10,11]. In November 2021, the emergence of the new variant detected in
Botswana and South Africa, termed Omicron, alarmed the community due to the high
number of changes in the spike protein, the increased transmission efficiency, and its
ability to escape from neutralizing antibodies. However, clinical studies have reported that
the rapidly spreading Omicron variant was less dangerous than its predecessor, the Delta
variant [12]. The main differences found in this variant are to be attributed to the N-terminal
domain (NTD): deletion of V143, Y144, and Y145 residues and a 3-amino-acid insertion of
“EPE” at position 214. However, accumulating evidence suggests high transmission fitness
due to its higher affinity to ACE2 receptors and efficient immune evasion, compared to the
other VOCs [13].

To date, thanks to sequencing, the identification of emerging SARS-CoV-2 variants
and sets of mutations potentially linked to changes in viral properties has been achieved.
Due to these possible changes, the understanding of the functional consequences of VOCs
and VOIs needs to rapidly expand. To do this, much of this knowledge should concern the
impact of these variants in terms of conformational changes in the S glycoprotein, which
could enhance receptor recognition and affect the production of neutralizing antibodies.

Although assessing changes in the interaction between SARS-CoV-2 epitopes and
antibodies is difficult, the binding affinity between mutated S glycoprotein and both T-
cell receptor (TCR) and ACE2 receptor could be predicted in silico to test the immune
response and infectivity, respectively. In this regard, computational methods hold the
potential to understand resistance mechanisms, shedding light on the elusive link between
novel mutations present in the S glycoprotein and its targets. These methods exploit the
available structural information on protein–ligand complexes and structural modeling of
point mutations in the protein structure [14]. Reported examples of the use of structure-
based methods include: (i) the application of molecular docking to predict resistance or
susceptibility of antiviral targets to different inhibitors [15,16]; (ii) the use of molecular
dynamics simulations (MDs) to investigate the impact of mutations on enzyme stability
and binding affinity on the receptor [17,18] or to highlight long-range altered commu-
nications in wild-type (WT) and mutated S glycoproteins; (iii) the use of computational
mutation scanning protocols to extract insights on free energy and binding affinity changes,
resulting from the active site and non-active site mutations [19]. Even though these meth-
ods are constantly adding new pieces to the puzzle and opening opportunities in the

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants


Int. J. Mol. Sci. 2022, 23, 13082 3 of 14

understanding of drug resistance, they suffer from various drawbacks, such as being time
consuming and offering limited predictive accuracy. As a result of such limitations, the
primary challenge facing structure-based drug resistance prediction is to achieve an ac-
ceptable balance between prediction accuracy and computational efficiency to become
both reliable and fast tools to be used in the clinical context [17]. In fact, some of the
most recent reports describe the use of machine learning strategies merging both sequence
and structural data in an attempt to achieve such a balance [20,21]. In this perspective,
several platforms have been developed to assemble sequencing data, provide information
and tools to visualize the mutations present in the SARS-CoV-2 structures [22,23], and
distribute a plethora of experimental data and bioinformatic tools through the European
COVID-19 Data Platform (https://www.covid19dataportal.org/, accessed on 1 October
2020) for different purposes. Another SARS-CoV-2 immuno-analytics platform has been
developed to visualize multidimensional data to inform target selection in immunologi-
cal research by combining genomic and whole-proteome analyses with in silico epitope
predictions [24,25]. Recently, in the context of drug discovery, user-friendly platforms were
designed to identify promising drugs and targets for COVID-19, such as COVID19db [26]
and COVID Moonshot [27]. Moreover, the EU-funded project, Exscalate4CoV (https:
//www.exscalate4cov.eu/, accessed on 1 October 2020), released additional web services,
such as https://viralseq.exscalate4cov.eu/ and https://mediate.exscalate4cov.eu/ (ac-
cessed on 1 October 2020), to support the scientific community. The majority of created
platforms collect data present in the literature and integrate databases that consider the
SARS-CoV-2 targets, their mutations, and related clinical and immunological information.
Unlike known platforms, we created an open access portal that provides original structural
insights related to the SARS-CoV-2 spike variants. Our platform offers these mutated
structures already modeled and previously equilibrated through molecular dynamic simu-
lations, saving time and effort in the SARS-CoV-2 field of research. Therefore, we developed
the Spike Mutants website (https://spikemutants.exscalate4cov.eu/, accessed on 1 October
2020), which contains the tridimensional coordinates of the mutated structures of the
known VOCs and VOIs and their MDs trajectories. With the support of Exscalate4CoV, this
platform acts as a solid starting point for more advanced studies, taking into account the
impact of the mutations on the drug discovery process and the identification of effective
strategies to plan new drugs and vaccines. Herein, we describe the main features of the
portal and illustrate the possible applications for the scientific community.

2. Results

Unfortunately, with the rapid speed at which mutations occur in the S-protein, the
crystal experimental structure of new variants is not feasible in a short period of time. In
this context, computational models of the new variants can be developed for structural
stability studies, design of new drugs, and baseline studies for the development of new
vaccines, among others.

However, developing a realistic model of the new variants is a process that demands
not only human time, but also computational time.

For a better understanding of the complexity of building the models of the new
variants, we detail some of the steps of our workflow: (1) analysis of the sequences of
the new variants in order to determine which mutations are the most significant to be
modeled; (2) homology modeling for the construction of a first 3D system based on the
crystallographic structure of WT; (3) insertion of the glycans to the model in the correct
position; (4) construction of the topology taking into account the correct description of the
glycans force field and the new glycan–protein bonds that should be inserted into the new
models; (5) MD system setup and simulations; (6) MD analysis.

The complexity of this workflow is mainly due to the difficulty of inserting glycans
covalently attached to the S protein and also to the equilibrium of the mutated systems,
especially in the regions of insertion and deletion where secondary structures can be formed
or undone.

https://www.covid19dataportal.org/
https://www.exscalate4cov.eu/
https://www.exscalate4cov.eu/
https://viralseq.exscalate4cov.eu/
https://mediate.exscalate4cov.eu/
https://spikemutants.exscalate4cov.eu/
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For in silico experiments, an important aspect, which must not be neglected in the
building of the 3D molecular model of the S glycoprotein of SARS-CoV-2, is the presence of
numerous glycans on the surface of the protein. More specifically, the S glycoprotein of
SARS-CoV-2 shows 18 N-glycosylation sequons [28] per monomer, two O-glycosylation [29]
sites in the “head” (comprising S1/S2 subunits, residues 27–1140), and another four N-
glycosylation sequons on the “stalk” portion of the protein (residues 1141–1234). Glycans
not only determine the correct folding of the S glycoprotein but also shields the epitopes
from antibody recognition [30], thus, modulating the structural and dynamical properties of
protein [31]. In particular, the glycans on the “head” region of S glycoprotein are involved
in the modulation of dynamics of the opening and closure of the protein [32–34] and in its
capability to bind the ACE2 receptor.

All these modeled structures were modeled and equilibrated through MDs and were
collected in an open access portal to make these structures were available for the scientific
community in order to represent a solid starting point for more advanced studies.

The main page of the Spike Mutants portal (https://spikemutants.exscalate4cov.eu/,
accessed on 1 October 2020) allows downloading the 3D structure of the spike trimeric
protein in glycosylated form, as previously described [34], with its corresponding MD
trajectory 100 ns long (see Figure 1) in PDB and GROMACS xtc format, respectively.
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The Spike Mutants website distributes 3D structures of SARS-CoV-2 S unglycosylated
variants in three sections named “Variants of Concern”, “Variants of Interest”, and “Variants
under Monitoring” (see Figure 2A–C, respectively) from which PDB structures can be freely
downloaded.
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of the S protein in interaction with the human receptor ACE2 embedded in a membrane bilayer.
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On our website, it is also possible to visualize a graphical representation of the phy-
logenetic tree using the maximum likelihood method based on whole genome sequences
of SARS-CoV-2 (Figure 3 and Figure S1) and a video of a 3D model of the S protein in
interaction with the human receptor ACE2 embedded in a membrane bilayer (Figure 2D).
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The last section of the Spike Mutants website distributes 3D models of the main SARS-
CoV-2 S variants in glycosylated form, accompanied by their related MD trajectories (see
Figure 4). All major WHO-labeled variants are present, highlighted in colored boxes. Their
complete list is reported in Table 1 with “WHO Label”, lineage, and a list of mutations
for each variant. In the same website section, additional sub-variants are distributed,
highlighted with white boxes (Figure 4).
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Table 1. SARS-CoV-2 spike variants whose 3D models and MD trajectories are distributed through
the web portal.

WHO Label Lineage List of Mutations

Alpha B.1.1.7 HV69-70∆, Y144∆, N501Y, A570D, D614G, P681H,
T716I, S982A, D1118H

Beta B.1.351 D80A, D215G, R246I, K417N, E484K, N501Y, D614G,
A701V, LAL242-244∆

Delta B.1.617.2 T19R, EE156-157∆, R158G, L452R, T478K, D614G,
P681R, D950N

Epsilon B.1.427, B.1.429 S13I, W152C, L452R, D614G

Eta B.1.525 Q52R, A67V, HV69-70∆, Y144∆, E484K, D614G,
Q677H, F888L

Gamma P.1 L18F, T20N, P26S, D138Y, R190S, K417T, E484K,
N501Y, D614G, H655Y, T1027I, V1176F

Iota1 B.1.526 T95I, D253G, S477N, D614G, A701V

Iota2 B.1.526 T95I, D253G, E484K, D614G, A701V

Kappa B.1.617.1, B.1.617.3 E154K, E484Q, D614G, P681R, Q1071H

Omicron

BA.1

A67V, HV69-70∆, T95I, G142D, VYY143-145∆, N211∆,
L212I, EPE214ins, G339D, S371L, S373P, S375F, K417N,
N440K, G446S, S477N, T478K, E484A, Q493R, G496S,
Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K,
P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

BA.5

PPA25-27∆, HV69-70∆, G142D, V213G, G339D, S371F,
S373P, S375F, T376A, D405N, R408S, K417N, N440K,
L452R, S477N, T478K, E484A, F486V, Q498R, N501Y,

Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y,
Q954H, N969K

Zeta P.2 (484 K.V2) E484K, D614G, V1176F

Ihu * B.1.640.1
P9L; E96Q; CNDPFLGVY136-144∆; R190S; I210T;

R346S; N394S; Y449N; F490R; N501Y; D614G; P681H;
T859N; D936H; K1191N

Note that the first residue in the models is number 27 and the higher is 1146, not considering the glycosyl groups.
Therefore, the variants outside this range are reported only for the sake of completeness. * Not a WHO Label.

The modeling and simulation protocol is described in Materials and Methods.
Together with the 3D model, through the web portal there is also a short MD trajectory

available, 100 ns long, for each analyzed variant. Even though a better understanding of the
structural and dynamic perturbation of the system is obtained with longer simulations (see
results with one microsecond reported in recent works) [34–36], we found that interesting
features can be inferred by them.

The root main square fluctuations (RMSF) plot for some of the mutants in comparison
to WT shows several examples (Figure 5).

(i) The monomer in the UP position (monomer 2, red in Figure 1) has higher fluctuations in a
larger portion of its RBD in all mutants, as compared to WT, but, in particular, in some sys-
tems: i.e., Kappa, Alpha, Iota1, Iota2, and Epsilon (panel A, B, G, H and I, respectively);

(ii) Some of the mutants have higher RMSF peaks (higher than 10 Å) than WT and other
mutants: Iota1, and Epsilon >12 Å; Iota2 > 10 Å (note that the y-axis has a different
scale in panel G–I);

(iii) All mutants have higher fluctuations in the 834–853 region, namely the fusion-peptide
proximal region (FPPR), as compared to WT and nearly all in monomer 3 (green
in Figure 1), with the exception of Ihu (where monomer 2 and monomer 3 have
comparable RMSF) and Epsilon (where monomer 2 has higher RMSF);
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(iv) Several mutants have a higher RMSF peak at residue 681, at the boundary of S1 and
S2, as compared to WT: i.e., Kappa, Ihu, Delta, and Iota1.
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highlighted with dashed lines. The S1/S2 boundary at residue 681 is highlighted with a dotted line.

In the context of the EXSCALATE4COV (E4C) (www.exscalate4cov.eu, accessed on
1 October 2020) project, the Spike Mutants website was first made available in January 2021
as a public resource. From then, 1575 researchers from all over the world (see Figure 6A)
registered on the website and downloaded the distributed structures and MD trajectories,
with the USA being the country with the largest number of users (Figure 6B).

Regarding the main research objectives of the registered users, drug repurposing is
the first subject, with 46% of users, while the vaccine is the second, with 20.9% of users (see
Figure 6C). The reported numbers are constantly increasing.

www.exscalate4cov.eu
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3. Discussion

With drug development being a series of crucial decisions to be considered to select
the right target and binding site and to analyze the mutational pattern, it seems evident that
computational chemistry can support each of those evaluations by capturing the value of
simulation data into useful predictive models. In the context of COVID-19, the SARS-CoV-2
proteome has been deeply studied. One just has to think of all the tridimensional structures
deposited in the Protein Data Bank, thus, discovering its complex mechanism and seeing the
binding interactions with different chemical entities to accelerate the drug discovery process.
Instead, regarding the virus’ genetic variability, the rate of onset of mutations on SARS-
CoV-2 proteins makes it almost impossible to keep abreast. The emergence of new variants,
as it is known, represents a major threat to public health. Indeed, they could compromise
the therapeutic efficacy, developing resistance to antibodies and drugs [37]. Thus, the goal
of this new platform is to provide a basis for further studies on how variants may influence
the pandemic. Indeed, the scientific community could increase their knowledge in the
fields of vaccines and antibodies by starting with the prepared models on our website and
speeding up the drug repurposing and drug design of novel chemical entity processes. As
evidence, this resource has recently been used to obtain effective results in the fields of
neutralizing antibodies [38], studying the interaction between spike and aptamers [39], and
providing important hints about spike protein mutant variants’ heparin interactions for
potential resistance [40].

The Spike Mutants website provides a fast and easy way to understand the impact
of the mutations on the binding affinity to human receptors and antibodies, aiming to



Int. J. Mol. Sci. 2022, 23, 13082 11 of 14

enhance novel therapeutic and preventive solutions. Given the mutational profile’s fast
pace of growth in the SARS-CoV-2 spike, we will promptly update the platform.

4. Materials and Methods
4.1. Data Storage and Web Implementation

The Spike Mutants website was developed to ensure sharing of our results. The
website is based on the common LAMP software stack (Linux, Apache, MariaDB, PHP). The
frontend interface was built on bootstrap 4, jQuery, and HTML5 doctype. The embedded
survey service is SurveyJS.

4.2. Modeling of S Glycoproteins

The 3D protein models of the WT and the mutated spike were initially built by
homology modeling using the web tool SWISS-MODEL [35]. The reference sequence used
to align and model the missing atoms of the pre-fusion form of the cryo-EM structure
(PDB ID: 6VYB) [36] was NCBI YP_009724390.1 (UniProt: P0DTC2 SPIKE_SARS2). In this
structure, the RBD of the second monomer was in the up conformation, also known as
open conformation, which favors the interaction with the ACE2 receptor. The full protocol
of the WT model generation was described by Tagliamonte et al. [29]. For the variants, the
mutated sequences taken into account were in accordance with the WHO classification and
were reported in Table 1.

4.3. Mutant Modeling

The glycosylation of N- and O- sites of the WT and the variants (residues 27–1146) was
built by using the glycoprotein builder available at GLYCAM-Web (www.glycam.org), as
described by Borocci et al. [34]. Asymmetric glycosylation of the asparagine residue of the
three monomers of the WT and the variant protein was used, as reported in Tables S1–S3.
The presence of steric clashes between atoms of protein and glycans was removed by
changing the dihedrals of the N–glycosidic bond.

4.4. Glycosylation of S Proteins

The modeled spike glycoprotein structure of the WT and the variants (residues 27–1146)
contains N-glycosylation [28] and O-glycans [29] sites and was constructed, as described by
Borocci et al. [34]. Tables S1–S3 detail the glycans that are bounded with the spike amino acids.

4.5. Molecular Dynamics Simulation and Analyses

The full MD protocol is described in previous work [34]. Briefly, the forcefields
Amber14SB [41], GLYCAM06 [42], and TIP3P [43] were employed to model the protein,
the glycans, and the water molecules, respectively. The ACPYPE script [44] was used
to convert the topology into the GROMACS format. All the MD simulations were run
with GROMACS 2020.6 package [45]. The P-LINCS [46,47] algorithm was used to restrain
h-bonds and the SETTLE [48] algorithm was employed to constrain the water molecules.
The particle mesh Ewald method (PME) [49] was used to model the short-range interactions.
The systems were firstly minimized in vacuum, applying harmonic potential restraints of
1000 kJ mol−1 nm−2 to the protein atoms. Then, cubic simulation boxes were created and
neutralized. Unrestrained MD simulations were performed with a time step of 2 fs and
with a length of 100 ns for each system. The 300 K temperature and the 1 bar pressure were
controlled, respectively, by V-rescale [50] and Parrinello–Rahman barostat algorithms [51].
For the RMSF analyses, which were performed by the GROMACS RMSF tool, the first 5 ns
of each trajectory were excluded. For the variants with deletion, dummy residues with null
fluctuations were inserted in the RMSF plot to preserve the WT residue numbering. All the
simulations and analyses were performed on the supercomputer Marconi-100, CINECA,
Bologna, Italy.

www.glycam.org
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4.6. Phylogenetic Analyses

SARS-CoV-2 genome sequences were retrieved from GISAID [52] and high-quality,
full-length genome representatives for main lineages were analyzed as follows. Whole-
genome alignment was performed with MAFFT v7.271 [53]; multi-sequence alignment
was then manually controlled and 5′ and 3′ UTR regions were excluded from further
analysis. Maximum likelihood (ML) phylogenetic analysis was performed with IQ-TREE
v.1.6.12 [54]; the best tree model was selected using ModelFinder [55]; the best trees were
found performing 5000 bootstrap ultrafast replicates. Strain “Whuan-Hu-1” was used as a
phylogenetic outgroup (PANGO-lineage B, NCBI Acc. Numb. NC_045512.2).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232113082/s1.
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