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Abstract: Preeclampsia is a human pregnancy-specific disease characterized by abnormal placentation
that usually presents with maternal hypertension and proteinuria. The main hallmark of preeclampsia,
impaired trophoblast migration, and the subsequent disruption of uterine arteries remodeling lead
to several molecular alterations in the placental compartments with those occurring in the chorionic
villi being of the utmost importance. Given the essential role of the endocannabinoid system during
preimplantation and trophoblast migration, we have combined the histological and hyperspectral
imaging analyses to shed light on the involvement of two cannabinoid receptors in the macromolec-
ular alterations related to preeclampsia. The results obtained by immunohistochemistry showed a
significant increase in the protein levels of cannabinoid receptor 1 (CB1) in the preeclamptic chorionic
villi. However, no changes were reported regarding transient receptor potential vanilloid 1 (TRPV-1)
levels either in the bulk placental samples or chorionic villi when comparing control and preeclamptic
patients. Histological analysis and Fourier-transform infrared spectroscopy (FTIRI) showed an increase
in collagen deposition together with higher levels of lipid peroxidation and phosphorylated com-
pounds in the pathological villi. Since CB1 enhancement has been described as promoting fibrosis and
oxidative stress in several tissues, we proposed that the higher receptor abundance in preeclampsia
could be triggering similar molecular effects in preeclamptic term placentas.

Keywords: preeclampsia; endocannabinoid system; CB1; collagen; lipid peroxidation; FTIRI

1. Introduction

Preeclampsia is a severe trophoblast-related disorder affecting up to 8% of all pregnant
women and leading to over 50,000 maternal and 500,000 fetal deaths worldwide every
year [1,2]. It is characterized by the occurrence of hypertension (blood pressure > 140 mm Hg
and/or diastolic blood pressure > 90 mm Hg) and significant end-organ dysfunction with or
without proteinuria (>300 mg/day) after 20 weeks of gestation or postpartum in a previously
normotensive patient [3]. Depending on its clinical manifestations, it can be classified into:
early-onset or placental preeclampsia (occurring before 34 weeks), which is more often related
to intrauterine growth restriction, and late-onset or maternal preeclampsia (occurring after
34 weeks) [4].

The first stage of preeclampsia pathogenesis results from the failure of proliferative
epithelial trophoblasts to become invasive endothelial cells, impairing proper spiral artery
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remodeling. Consequently, the narrow maternal vessels formed induce relative placental
ischemia and, eventually, raise the levels of oxidative stress. In the second stage, the re-
lease of several molecules and factors from the incompletely implanted placenta triggers
endothelial cell activation and clinical manifestations [5]. Preeclamptic placentas are char-
acterized by vascular lesions, chronic inflammation, peri-villous coagulation, and villous
fibrosis. Chorionic villi (CV) include the trophoblasts and villous stroma, a structure derived
from the extraembryonic mesoderm that contains reticulum and mesenchymal cells as well
as fibroblasts [6]. Even though preeclampsia is predominantly described as a trophoblast
dysfunction, the fibrosis of villous stroma is also a defining feature of this disease [7]. Bear-
ing in mind that some women had been diagnosed with preeclampsia in the absence of
hypertension or proteinuria, the standard clinical definition needs a revision [8]. It is note-
worthy that changes in the endocannabinoid system (ECS) have been also associated with
preeclampsia [9]. The ECS is a signaling system that comprises endocannabinoids (endoge-
nous bioactive lipids, ECs), cannabinoid receptors (CBs), and the enzymes involved in their
metabolism. Besides the canonical CB1 and CB2, other EC receptors have been described,
such as the transient receptor potential vanilloid 1 (TRPV1) [10], peroxisome proliferator-
activated receptors (PPAR) [11–13] as well as G-protein-coupled receptors GPR55 [14] and
GPR119 [15]. In human term gestation, an increase in plasma levels of the most studied
endocannabinoid, N-arachidonoylethanolamine (anandamide, AEA) has been reported [16].
Compared to other reproductive tissues, the placenta produces the highest levels of AEA that,
after its synthesis, predominantly binds to CB1, its most abundant receptor in the human
term placenta [17]. The desensitization of CB1, occurring by endocytosis, is a crucial process
since an aberrant activation of this receptor has been linked to different pathologies [18–20].
As far as CB1 levels in preeclampsia are concerned, the results are not consensual: some
authors have confirmed an increase of CB1 in pathological placenta [21], whereas others have
reported no differences between control and preeclamptic samples [22]. Regardless of these
inconclusive findings, an epidemiological study carried out in central Europe showed that
a single-nucleotide polymorphism in the gene encoding CB1 (CNR1) was correlated with
preeclampsia [23]. As for TRPV-1, there is only one study in which both transcript and protein
levels in preeclamptic placenta are analyzed [24]. Therefore, the role of endocannabinoid
receptors in the onset and progression of preeclampsia is still far from being unveiled.

Preeclampsia has been described as a human-specific disease, likely resulting from the
high ratio of brain:body weight of the human fetus, which requires 60% of the nutritional
exchange from the mother in the third trimester [25]. Albeit indispensable to understanding
some pathogenic pathways of preeclampsia, the use of other mammal models may not be so
adequate for studying a multifactorial human-specific disease [26]. This fact, together with
the ethical challenges concerning the examination of pregnant women, has hindered the
comprehension of both its etiology and treatment. Unraveling the molecular mechanisms
behind preeclampsia may hold the key to accurately managing the pregnancy and labor
complications derived from this disease. In this scenario, we hypothesize that changes in
the endocannabinoid receptors CB1 and TRVP-1 could be related to the macromolecular
alterations described in preeclamptic conditions.

2. Results
2.1. Preeclampsia Increases CB1 Levels in the Chorionic Villi

CB1 levels in human term placenta were measured in control (CTRL) and preeclamptic
(PRE) patients. Although the results did not show any statistical differences between the two
groups (p = 0.0995; n = 12), protein levels of CB1 were slightly increased in PRE placenta
(Figure 1A). Considering not only the great differences in both cell type composition and
transcriptional activity found throughout the placental compartments [27], but also the high
expression of CB1 in the CV [28], the levels of the receptor were specifically measured
in these structures. The immunohistochemistry analysis showed a significant increase of
CB1 levels in the CV of preeclamptic placenta (Figure 1B) (p = 0.0287; n = 5), as well as a
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predominant expression of CB1 in the cytoplasm or in the apical membrane of CTRL and PRE
syncytiotrophoblast (SCTB), respectively (Figure 1C).
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Figure 1. Relative levels of CB1 in the two experimental groups. (A): Analysis of the CB1 levels in
placenta slices by western blot. Bars represent the densitometric analysis of CB1 (53 kDa)/β-actin
(42 kDa) ratio ± SD of twelve independent replicates (n = 12). (B): Analysis of the CB1 levels
in chorionic villi by immunohistochemistry. Bars represent the fluorescence intensity per area of
chorionic villi ± SD of five independent samples (n = 5). In confocal images (C), nuclei are marked
with DAPI (blue) and CB1 is marked in green (Alexa Fluor® 488); scale bar = 20 µm. Asterisk indicates
significant differences (* = p < 0.05) when comparing preeclamptic samples to the control group.

2.2. Preeclampsia Does Not Change TRPV-1 Levels in Placenta

As for the levels of TRPV-1, preeclampsia did not alter either the levels of the receptor
in the whole placenta (p = 0.3906; n = 12) (Figure 2A) nor the specific levels in the CV
(p = 0.0999; n = 5) (Figure 2B). Regarding its localization, TRPV-1 was mostly found in the
cytoplasm of SCTB in CTRL placenta, whereas it was also expressed in the apical membrane
of SCBT in PRE placenta (Figure 2C).
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Figure 2. Relative levels of TRPV-1 in the two experimental groups. (A): Analysis of the TRPV-
1 levels in placenta slices by western blot. Bars represent the densitometric analysis of TRPV-1
(100 kDa)/β-actin (42 kDa) ratio ± SD of twelve independent replicates (n = 12). (B): Analysis of the
CB1 levels in chorionic villi by immunohistochemistry. Bars represent the fluorescence intensity per
area of chorionic villi ± SD of five independent samples (n = 5). In confocal images (C), nuclei are
marked with DAPI (blue) and TRPV-1 is marked in green (Alexa Fluor® 488); scale bar = 20 µm.



Int. J. Mol. Sci. 2022, 23, 12931 4 of 15

2.3. Infrared Spectra Analysis and Multivariate Analysis

The average IR spectra of CTRL and PRE experimental groups are reported in Figure 3,
both in absorbance (continuous colored lines) and in second derivative (dotted black lines)
modes in the 3050–2800 cm−1, 1800–1500 cm−1, and 1330–1100 cm−1 spectral ranges. Labels
along the second derivative spectra indicate the most relevant IR bands: 2960 cm−1 and
2870 cm−1 (asymmetric and symmetric stretching vibrations of CH3 groups); 2925 cm−1 and
2850 cm−1 (asymmetric and symmetric stretching vibrations of CH2 groups); 1740 cm−1

(stretching vibration of C=O ester moieties in triglycerides and phospholipids); 1660 cm−1

and 1635 cm−1 (Amide I band components of proteins, AI) [29–31]; 1555 cm−1 and 1540 cm−1

(Amide II band components of proteins, AII) [29–32]; 1320 cm−1 (collagen’s α-helix secondary
structures) [33–35]; 1284 cm−1 and 1240 cm−1 (collagen’s triple helix) [33–35]; 1204 cm−1

(collagen’s amino acids lateral chains) [33–36]; 1172 cm−1 phosphodiester bond (COP) [34]
and 1130 cm−1 [32].
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To precisely assess the spectral modifications induced by pre-eclampsia on CV, princi-
pal component analysis (PCA) was performed, on the three specific ROI: 3050–2800 cm−1,
1800–1500 cm−1, and 1330–1100 cm−1 (Figure 4). A clear segregation was found between
CTRL and PRE groups in all the performed comparisons. The analysis of Principal
Component 1 (PC1) loadings highlight the most discriminant spectral features labelled
in Figure 4D–F.
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calculated for CTRL and PRE experimental groups in the following regions of interest (ROI):
3050–2800 cm−1 (A,D), 1800–1500 cm−1 (B,E), and 1330–1100 cm−1 (C,F). For clarity purposes,
PCA loadings are plot with different Y scales for the three selected ROI.

2.4. Collagen Deposition in the Chorionic Villi Is Increased in Preeclamptic Placenta

The collagen deposition in the CV was evaluated using a Masson’s trichrome staining
(Figure 5A,B) and Fourier transform infrared imaging (FTIRI) analysis (Figure 5C,D).
The histochemistry assessment revealed an increase in the deposition of collagen in PRE
placentas compared to CTRL ones (p = 0.00355; n = 5). In addition, FTIRI demonstrated a
significant increase of α chain/Total Protein (TOT) (p = 0.0153; n = 5) and triple helix/TOT
(p = 0.0270; n = 5) in the Amide III region of PRE placentas compared to CTRL ones,
suggesting alterations in the organization of collagen in the CV stroma.

2.5. Preeclampsia Does Not Change Lipid Composition but Triggers an Increase of
Lipid Peroxidation

Placental lipid content was evaluated within the CV at histological level by oil red O
staining (p = 0.6353; n = 5) (Figure 6A,B) and FTIRI analysis (Figure 6C,D). None of the
assessments showed any changes in the lipid content or composition (band area ratio of
CH/CH3 representing the saturation of alkyl chains (p = 0.0733; n = 5), and CH2/CH3
indicating the length and saturation of alkyl chains (p = 0.3989; n = 5). Despite this, the
analysis of IR spectra revealed a significant increase in lipid peroxidation, as indicated by
the 1740/AI band area ratio (p = 0.0309; n = 5).

2.6. Preeclamptic Chorionic Villi Characterized by an Increase in Phosphoester Bonds

Eventually, the relative levels of glycosylated and phosphorylated compounds were
assessed in the CV. Even though the levels of glycosylated compounds did not vary between
CTRL and PRE (p = 0.232; n = 5), the phosphorylated compounds were significantly
increased in the CV of PRE placenta (p = 0.001; n = 5) (Figure 7).
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Figure 5. Histological and FTIRI analysis of collagen in the two experimental groups. Analysis of
collagen deposition in CV sections using Masson’s trichrome staining (A,B). Bars represent collagen
content in the two conditions expressed as mean ± SD of five independent samples (n = 5). Histological
images show the collagen stained in blue (arrowhead) inside the CV stroma. Analysis of collagen
deposition in CV section by means of FTIRI (C,D). Bars represent the ratio of the following spectral
parameters: α chain/TOT, relative amount of α chain secondary structures in collagen; Triple helix/TOT,
relative amount of triple helix structures in collagen. Results are reported as mean ± SD of five
independent samples (n = 5), and asterisks indicate significant differences between CTRL and PRE
groups (* = p < 0.05). In false color images, the topographical distribution of protein within the mapped
area in the Amide III was reported with absorbances ranging from pink representing the highest
absorbance and blue representing the lowest absorbance.
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expressed as mean ± SD of five independent samples (n = 5). Histological microphotographs show
the lipid droplets stained in red (arrowhead) inside the CV. Analysis of lipid content and peroxidation
in CV section by means of FTIRI (C,D). Bars represent the ratio between the following spectral
parameters: CH2/CH3, length of lipid alkyl chains; CH/CH3, unsaturation degree in lipid alkyl
chains; 1740/AI, ester groups in lipid alkyl chains. Results are reported as mean ± SD of five
independent samples (n = 5), and asterisks indicate significant differences between CTRL and PRE
groups (* = p < 0.05). False-color images showed the topographical distribution of lipids within
the mapped area with absorbance ranging from pink representing the highest absorbance and blue
representing the lowest absorbance.
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Figure 7. Analysis of relative amount of glycosylated (COH) and phosphorylated (COP) com-
pounds in CV by means of FTIRI. Bars represent the ratio between the following spectral parameters:
COH/TOT an COP/TOT. Results are reported as mean ± SD of five independent samples (n = 5)
and asterisks indicate significant differences between CTRL and PRE groups (*** = p < 0.001).

3. Discussion

Pregnancy relies on the homeostasis and communication of a wide range of cells
belonging to different placental compartments. Therefore, to shed light on the causes
underlying the disruption of maternal–fetal dialogue that results in adverse pregnancy
outcomes, such as preeclampsia, more accurate assessments than the bulk analyses need
to be performed. In that regard, the FTIRI analysis of tissue samples allows a 2D morpho-
chemical correlation between the histological and spectroscopic data by topographically
detecting changes in the biochemical composition and/or conformation of the biomolecules
of interest, on the same tissue section and without any label. Moreover, FTIRI is a valuable
and reliable tool for the study of the alterations in the secondary structure of proteins
(including collagen) as biomarkers of some pathological conditions, by the thorough
spectral analysis of Amide bands [34,36]. In this study, immunohistochemistry was carried
out to analyze the specific levels of the endocannabinoid receptors in the CV, and by
combining this technique with histomorphometry and a high-throughput technique, the
FTIRI, we have investigated their potential link to the macromolecular alterations occurring
in the CV of preeclamptic placenta. Bearing in mind that the use of placenta for research
purposes can pose some problems for experimental reliability and reproducibility, we have
tried to minimize this limitation by collecting the samples in a specific region: nearby the
umbilical cord of the fetal side. For this reason, we have also analyzed approximately
half of placentas from natural delivery and half from Cesarean section, since the former
may affect placenta structure, whereas the latter can trigger changes at metabolic, gene
expression, and protein level [37].

During normal pregnancy, placental cytotrophoblasts invade the maternal uterine
wall and spiral arteries, but this process is interrupted in preeclamptic conditions [38]. In
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mice, it has been demonstrated that the tightly regulated migration of trophoblasts can be
impaired by both overexpression and repression of CB1, leading to poor placentation [39].
Considering that preeclampsia is a severe trophoblast-related disorder, we analyzed the
levels of CB1 in the placenta of control and preeclamptic patients. Our findings showed no
changes in the total receptor levels (analyzed by western blot) when comparing control and
preeclamptic groups, most likely due to the differential expression of CB1 throughout the
placental compartments [17], which could bias this outcome. In that regard, the previous
results obtained by western blot were controversial: some authors have not reported any
alterations in the overall levels of CB1 in preeclamptic placentas [22], whereas others have
demonstrated higher levels of the receptor in the pathological samples [21]. CB1 is highly
expressed in the SCTB layer as well as the endothelial cells of blood vessels [22,28], so
we performed an immunohistochemical assay to have a deeper insight into its specific
expression. In this case, the analysis did show that, in preeclampsia, CB1 levels within
the chorionic villi are significantly increased, especially in the apical membrane of SCTB.
These results are in accordance with those found by Fugedi and colleagues [21], reporting
a qualitatively higher CB1 immunoreactivity in both SCTBs and the mesenchymal core
of preeclamptic samples compared to control ones. Another important endocannabinoid
receptor is TRPV1, an ion channel also expressed in the placenta where it is involved in
the transepithelial transfer of calcium to the fetus, a process requiring a passive/active
transport from maternal blood to the cytoplasmic compartment of the SCTB [40,41]. Since
the disruption of calcium homeostasis is a hallmark of preeclampsia [42], we investigated
the levels of TRPV1 inside the CV of both control and preeclamptic placentas. The previous
results regarding TRPV-1 in preeclampsia showed that the increase in mRNA levels of the
preeclamptic placentas did not correspond to higher TRPV-1 protein levels [24]. In this
study, we have not observed any statistical differences in the TRPV-1 protein levels either
in the bulk samples or in the chorionic villi between control and preeclamptic patients. Still,
it seems that the location of this receptor follows the same pattern described for CB1, being
mainly expressed in the apical membrane of preeclamptic SCTB where it is likely to allow
the entrance of calcium from maternal blood.

As mentioned above, impaired trophoblast proliferation and migration can lead
to improper remodeling of maternal spiral arteries, which is one of the main factors
contributing to preeclampsia. It is noteworthy that an excess of collagen I led to
preeclampsia-like features in pregnant mice since it suppresses trophoblast prolifer-
ation and invasion through inhibition of ERK phosphorylation and the WNT/β-catenin
signaling pathway [43]. These authors also reported an increase in the collagen I depo-
sition as well as a higher gene and protein expression of collagen in the preeclamptic
placenta [43]. Collagen deposition has also been evaluated in first-term villi and full-term
placentas, and the results obtained by Masson’s trichrome staining and western blot also
showed higher levels of collagen in preeclampsia patients [44]. Here, we have studied
the collagen I deposition in the chorionic villi of term placenta with a novel approach that
combines the histological, histomorphometric, and hyperspectral analyses. Our findings
demonstrate not only a significant increase in collagen I deposition in the preeclamptic
villi, but also remarkable alterations in the collagen secondary structures: the assessment
of the Amide III band (mainly attributed to collagen [33,34,36]) showing higher levels of
collagen α chain and collagen triple helix in the pathological villi. Indeed, villous stroma
has been described as the main placental compartment affected by the preeclampsia,
being fibrosis of the villous stroma one of the most important features of this disease [7].
In mice, genetic and pharmacological inactivation of CB1 has been reported to decrease
liver fibrogenesis by reducing the TGF-β1 levels, thus decreasing the accumulation of
fibrogenic cells after apoptosis and inhibiting the growth of hepatic myofibroblasts [45].
Likewise, the treatment of skin-derived human fibroblasts with AM251 (a CB1 selective
antagonist) has been proven to inhibit both fibroblast differentiation into myofibroblast
and collagen deposition [46]. Therefore, the significant increase in collagen deposition
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we reported in the term chorionic villi of preeclamptic patients might well be a result of
the CB1-enhanced expression characteristic of these pathological villi.

Preeclampsia has been also associated with oxidative stress caused by the intermit-
tent arterial blood flow resulting from the impaired remodeling of the maternal spiral
arteries [47]. The increased generation of reactive oxygen species (ROS) leads to lipid
peroxidation; thus, an increase in placental production of lipid peroxides and thromboxane
has been reported in preeclampsia patients [48]. In this work, the analyses performed
using oil red O and FTIRI have shown that, despite the lack of changes in lipid composi-
tion, preeclamptic CV displayed higher levels of lipid peroxidation. This data supports
the fact that, in preeclampsia, the production of lipid peroxides and thromboxane orig-
inates from both the trophoblasts cells and villous core compartments [48]. Since CB1
activation has been stated to enhance the ROS production in macrophages, neurons, and
cardiomyocytes [18–20], there could be a link between the higher levels of CB1 in the villi
of preeclamptic patients and the rise in lipid peroxidation as well.

Along with the increase in collagen deposition and lipid peroxidation, the FTIRI
analyses showed much higher levels of phosphorylated compounds, containing a phos-
phoester bond, in the preeclamptic CV than in the control ones. Among these phos-
phorylated compounds, phosphocholine levels have been reported to change in a rat
model of preeclampsia [49] and in human preeclamptic placenta [50]. The binding of
phosphocholine to C-reactive protein localized the SCTB villi cells has been reported to
induce arterial hypertension and placental damage [51,52]. Moreover, phosphoesters
derived from phosphocholine have been found in 63% of preeclamptic blood plasma [53].
Therefore, our findings support the involvement of phosphoesters in the pathogenesis
of preeclampsia.

Overall, this study demonstrates that the FTIRI analysis is a powerful tool for the
identification of some crucial molecules involved in preeclampsia; thus, its application
at earlier stages of the disease might improve the diagnosis. Moreover, it highlights the
importance of performing specific analyses in the different placental compartments to have
a better understanding of the dysregulated molecular pathways involved in pathological
conditions, such as preeclampsia. Our findings point to the pivotal role of the endocannabi-
noid system, in particular CB1 levels, in some of the main molecular alterations related
to preeclampsia, such as fibrosis and oxidative stress, providing new insights into the
pathogenesis of this disease. Further studies will be needed to assess whether the restora-
tion of CB1 physiological levels could be an effective treatment to mitigate the molecular
alterations described in term preeclamptic placenta.

4. Materials and Methods
4.1. Ethics Declarations and Sample Collection

Term placenta samples were collected shortly after (<30 min) delivery at G. Salesi
Hospital, Ancona (Italy). Informed consent was obtained from all subjects involved in
the study. The study was approved by local ethical committee (Comitato Etico Regionale
Marche, n◦ CERM 241/2020).

After delivery, small pieces were cut from the fetal side of the placenta, nearby the
umbilical cord, under aseptic conditions. Then, one portion of placenta was frozen at
−80 ◦C for western blot and FTIRI analyses, while another portion was fixed in forma-
lin solution (Bio Optica, Milan, Italy) to be subsequently processed for histology and
immunohistochemistry.

Diagnosis of preeclampsia was performed according to data present in Table 1.
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Table 1. Clinical features of patients and diagnostic parameters. Data are reported as n (%), mean
± SD of twelve independent samples (n = 12). p < 0.05 was considered as statistically significant.
* corresponds to p < 0.05, and **** corresponds to p < 0.0001.

CTRL PRE

Number of pregnant women 12 12

Mode of delivery (%)
Natural birth 6 (50%) 7 (58.3%)
Cesarean section 6 (50%) 5 (41.7%)

Parity
Multiparous 9 (75%) 7 (58.3%)
Primiparous 3 (25%) 5 (41.7%)

Maternal age (years) 34.2 ± 3.1 37.5 ± 4.4

Gestational age (weeks) 39.4 ± 1.5 38.3 ± 1.4

Mean blood pressure (mmHg)
Systolic 116.7 ± 10.9 156.1 ± 21.06 ****
Diastolic 70.9 ± 8.6 99.08 ± 8.7 ****

Signs of organ damage (%)
Proteinuria 24 h ≥ 0.3 g/dL and/or
Protein/creatinine ratio ≥ 30 mg/mmol and/or dipstick 2+ 0 (-) 12 (100%) ****

AST and/or ALT > 40 U/Land/or gGT > 16 U/L 0 (-) 2 (15%) *
PLT < 150,000/mm3 0 (-) 0 (-)
ALP > 135 U/L and/or LDH > 240 U/L 0 (-) 9 (75%) ****
Headache and/or visual symptoms 0 (-) 7 (58.3%) ****
Presence of severe neurological symptoms 0 (-) 0 (-)
Pre-pregnancy body mass index (BM) (kg/m2) 22.5 ± 3.9 28.03 ± 8.5
Post-pregnancy body mass index (BM) (kg/m2) 27.2 ± 3.9 31.7 ± 7.9
Birth weight (g) 3410.08 ± 405.3 3168.3 ± 533.2

Fetal sex
Female 6 (50%) 6 (50%)
Male 6 (50%) 6 (50%)

4.2. Evaluation of Protein Levels by Western Blot

Slices of frozen placenta samples from 12 CTRL and 12 PRE patients were lysed in
Hanna’s buffer containing 0.125 M Tris-HCl pH 7.5, 4% (w/v) SDS, 20% (v/v) glycerol,
and 10% (v/v) β-mercaptoethanol, supplemented with 1:10 Protease Inhibitor Cocktail
(Sigma-Aldrich®, Milan, Italy). The lysate was incubated at 100 ◦C for 5 min and cen-
trifuged at 12,000× g for 15 min. The supernatant was collected, and the protein quantity
was quantified using Bradford Reagent (Sigma-Aldrich®, Milan, Italy) following the
manufacturer’s instructions. Proteins were run in SDS-PAGE gel (10% of acrylamide
for the analysis of endocannabinoid receptors and 15% for the analysis of antioxidant
proteins, loading 25 µg of total protein per well). The proteins were transferred into a
nitrocellulose membrane for immunoblotting incubating during 2 h at 250 mA in transfer
solution (25 mM Tris, 192 mM glycine, and 20% (v/v) ethanol). Blocking was conducted
with 5% BSA in TBS-T (0.1% Tween), and membranes were incubated overnight at 4 ◦C
with the corresponding antibodies diluted 1:1000: anti-β-actin (#4967, Cell Signalling
TECHNOLOGY®, Danvers, USA), anti-CB1 (ab259323, Abcam, Cambridge, UK), and
anti-TRPV1 (ab3487, Abcam, Cambridge UK). Incubation with the secondary antibody
goat anti-rabbit IgG-HRP (Sigma-Aldrich®, Milan, Italy) diluted 1:2500 was performed
for 1 h at 30 ◦C. The chemiluminescent signal was digitalized using Image Lab Software
(Bio-Rad, Hercules, Wilmington, DE, USA), whereas the measure of protein levels was
carried out using Fiji ImageJ Software (Bethesda, Rockville, MD, USA). The representative
images of the western blot bands are shown in Figure S1.

4.3. Immunohistochemistry and Image Analysis

Routine histology was carried out using 5 CTRL and 5 PRE placenta. Briefly, pla-
centas were fixed in formalin solution (Bio Optica, Milan, Italy) and paraffin-embedded
after dehydration in an ascendant alcohol series (70%, 80%, 95% and 100%; 1 h per step)
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and immersion in Xylene (Bio Optica, Milan, Italy) for 45 min. Sections of 4 µm in thick-
ness were produced using a rotating microtome (Leica, RM2125RTS, GmbH, Wetzlar,
Germany) and, after drying, were de-waxed and rehydrated. For the detection of CB1
and TRPV-1, an antigen retrieval was performed by incubating the slices in a buffer
containing 10 mM sodium citrate and 0.05% (v/v) Tween at 100 ◦C for 20 min. After
washing with distilled water, the sections were permeabilized in 1% PBS-T (triton X-100)
for 20 min. Blocking was carried out in PBS supplemented with 3% BSA and 0.1% (v/v)
Tween during 1 h in a humid box. Next, sections were incubated overnight at 4 ◦C with
the same antibodies used for the western blot but, in this case, dilute 1:100 in blocking
solution. Following three washing steps with PBS, sections were incubated with a Goat
Anti-Rabbit IgG H&L (Alexa Fluor® 488; ab150077, Abcam, Cambridge, UK) at 37 ◦C
for 1 h. Slides were washed three times with PBS, and mounted with DAPI-Aqueous
Fluoroshield (ab104139, Abcam, Cambridge, UK). The images on slides were taken using
a confocal microscope Nikon A1R, whereas the levels of CB1 and TRPV-1 in the chorionic
villi were analyzed in 5 different sections per sample using Fiji ImageJ Software.

4.4. Histochemical Analysis of Collagen and Lipid Content

Regarding collagen content analysis, samples were fixed and paraffin-embedded using
the same protocol described for immunohistochemistry. Then, four histological sections of
4 µm in thickness were cut from 5 CTRL and 5 PRE placenta samples at a distance of 100 µm
among sections to obtain representative portions of the samples and then stained with
Masson’s trichrome (Bio Optica, Milan, Italy) following the manufacturer’s instructions.

As for lipid staining, a portion of the −80 ◦C-stored samples were included in Killik
O.C.T. (Bio Optica, Milan, Italy) and cut at a thickness of 8 µm in a cryostat (MC4000,
Histo-Line) at −26 ◦C, producing four sections at a distance of 100 µm that were disposed
on a gelatin-coated slide. Frozen sections were post-fixed using paraformaldehyde (PFA)
4% for 15 min in a humid environment, washed in deionized water and left to dry for
an hour. Sections were then rinsed in 60% (v/v) isopropanol for 5 min and then stained
for 15 min with oil red O solution, which was prepared by dissolving 0.5 g of oil red O
powder in 100 mL of 100% isopropanol, forming a stock solution, and then diluted with
deionized water obtaining a working solution of oil red O in 60% isopropanol that was
filtered (0.4 µm) before being used. Sections were then rinsed in 60% isopropanol and
counterstained with Mayer’s Hematoxylin for 5 min and mounted with 90% glycerol.

All samples processed for histology were visualized under an optical microscope, the
Zeiss Axio Imager A.2 (Zeiss, Oberkochen, Germany), and 5 images were taken using an
Axiocam 503 camera for every sample and then analyzed using Fiji ImageJ Software.

4.5. FTIRI Analysis

Portions of placentas from 5 CTRL and 5 PRE groups were collected and immediately
cryopreserved at −80 ◦C. Then, from each sample, three sections (~10 µm thick) were cut
using a cryomicrotome; sections were deposited onto CaF2 optical windows (1 mm thick,
13 mm diameter) and left to air-dry for 30 min.

FTIRI measurements were performed at the ARI Lab of the Department of Life and
Environmental Sciences, Polytechnic University of Marche. A Bruker INVENIO inter-
ferometer, coupled with a Hyperion 3000 Vis-IR microscope and equipped with a Focal
Plane Array (FPA) detector operating at liquid nitrogen temperature (Bruker Optics, Et-
tlingen, Germany) was used for the acquisition of IR images. First, to identify the ar-
eas of interest, a microphotograph of each section was acquired by using the television
camera. Then, on each section, IR images were acquired in transmission mode with a
15× condenser/objective in the 4000–800 cm−1 spectral range, with a spectral resolution of
4 cm−1. Each IR image was 164 × 164 µm size and was composed by 4096 pixel/spectra;
each pixel/spectrum was the result of 256 scans and the spatial was 2.56 × 2.56 µm. Be-
fore starting each sample acquisition, the background spectrum was acquired, with the
same parameters, on a clean portion of the CaF2 optical window. All IR images were
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pre-processed using Atmospheric Compensation (to avoid carbon dioxide and water vapor
atmospheric contributions), and Vector Normalization (to correct differences in section
thickness) routines (OPUS 8.1 software package, Bruker Optics, Ettlingen, Germany).

To pinpoint the topographical distribution of specific macromolecular components,
false-color images were generated by integrating pre-processed IR images under
3000–2800 cm−1 (stretching vibrations of CH2 and CH3 groups in lipid alkyl chains;
LIPIDS); 1800–1500 cm−1 (Amide I and II bands of proteins, vibrational modes of peptide
linkage; PROTEINS); and 1350–1100 cm−1 (vibrational modes of Amide III band, mainly
attributed to collagen; COLLAGEN). A false-color scale was employed: white/light pink
indicated zones with the highest absorbance values, while black/dark blue the zones
with the lowest ones.

Based on microphotographs, mapping subsets of spectra representative of chorionic
villi were extracted from each section. The extracted spectra did not display scattering
background and spectral artifacts, and were, hence, only submitted to two-points base-
line linear fitting and vector normalization (OPUS 8.1 software, Bruker Optics, Ettlingen,
Germany) [31]. Then, the processed spectra were converted in second derivative mode
(Savitzky–Golay filter, 9 points of smoothing) and subjected to multivariate analysis, with
no further preprocessing.

The extracted spectra of CTRL and PRE groups were also averaged and submitted to
peak fitting procedure in the following regions of interest (ROI): 3050–2800 cm−1 (stretching
vibrations of CH2 and CH3 groups in lipid alkyl chains); 1800–1500 cm−1 (Amide I and
II bands of proteins, vibrational modes of peptide linkage); 1350–1100 cm−1 (vibrational
modes of Amide III band, mainly attributed to collagen, and phosphate and carbohydrates
groups). For each ROI, the number and position of the underlying bands were identified
by second derivative minima analysis and fixed during fitting procedure with Gaussian
functions (GRAMS/AI 9.1, Galactic Industries, Inc., Salem, NH, USA). The integrated areas
of definite underlying bands were used to calculate specific band area ratios.

4.6. Statistical Analysis

Statistical analyses were performed using Graph Pad Prism V8.0.1. (GraphPad Soft-
ware, Inc., San Diego, CA, USA). The normality of the data was checked using the Shapiro–
Wilk test and the appropriate statistical assay was accordingly applied. For parametric data
an unpaired t test with Welch’s correction was used, whereas, for non-parametric data, a
Mann–Whitney test was applied. Statistical significance was set at p < 0.05 for all the tests.

Regarding the IR data, the differences between groups were statistically analyzed with
the software package Graph Pad Prism V8.0.1. (GraphPad Software, San Diego, CA, USA).
All data were presented as mean ± SD. Statistical significance among groups was evaluated
using Student’s t-test. Statistical significance was set at p < 0.05. Moreover, a PCA was
performed as an unsupervised multivariate approach to compare the spectral profiles of
CTRL and PRE experimental groups (OriginPro 2018b software, OriginLab Corporation,
Northampton, MA, USA) [29,31].
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