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Abstract: Transcription factors members of the basic leucine zipper (bZIP) class play important roles
in the regulation of genes and functions in testicular Leydig cells. Many of these factors, such as cAMP
responsive element binding protein 1 (CREB1) and CCAAT enhancer binding protein beta (CEBPB),
are regulated by the cAMP/protein kinase A (PKA) pathway, the main signaling pathway activated
following the activation of the luteinizing hormone/choriogonadotropin membrane receptor LHCGR
by the - hormone LH. Others, such as X-box binding protein 1 (XBP1) and members of the cAMP
responsive element binding protein 3 (CREB3)-like superfamily, are implicated in the endoplasmic
reticulum stress by regulating the unfolded protein response. In this review, the influences of bZIP
transcription factors, including CREB1, CEBPB and activator protein 1 (AP-1) family members, on the
regulation of genes important for cell proliferation, steroidogenesis and Leydig cell communication
will be covered. In addition, unresolved questions regarding the mechanisms of actions of bZIP
members in gene regulation will be identified.
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1. Introduction

There is increasing evidence that transcription factors of the basic leucine zipper
(bZIP) class play important roles in gene regulation and function of testicular Leydig
cells. This class of more than 50 members includes the cAMP responsive element binding
protein/activating transcription factor (CREB/ATF), activator protein 1 (AP-1), CCAAT
enhancer binding protein (CEBP) and musculoaponeurotic fibrosarcoma (MAF) families of
transcription factors. The bZIP transcription factors are proteins found only in eukaryotes.
They bind to specific double-stranded DNA sequences as homodimers or heterodimers
to activate or repress gene transcription. Most of the genes encoding bZIP factors are
classified as immediate early genes and are inducible by a multitude of endocrine and
paracrine agents leading to the activation of intracellular signaling pathways. The pri-
mary stimulatory hormone acting on Leydig cells is luteinizing hormone (LH) from the
anterior pituitary gland. This hormone interacts with its membrane receptor luteinizing
hormone/choriogonadotropin (LHCGR) and mostly activates the cAMP/protein kinase A
(PKA) pathway. Then, PKA phosphorylates a multitude of transcription factors, including
bZIP members, leading to their activation and regulation of transcription of their target
genes. Although the roles of certain bZIP transcription factors, such as CREB1, CEBPB, JUN
and FBJ osteosarcoma (FOS), are well documented regarding the regulation of steroidoge-
nesis in Leydig cells, other lesser-known members may play complementary roles in the
regulation of proliferation, survival, and communication in these cells. Thus, this review
aims to present recent advances regarding the involvement of bZIP factors in the regulation
of different functions of Leydig cells from the testis.

2. Classification of bZIP Transcription Factors

Transcription factors members of the bZIP class are characterized by the presence of a
bZIP domain consisting of an approximately 40 amino acid-long α-helix (Figure 1). The
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N-terminal third of this helix has multiple positively charged side chains such as arginine
and lysine and is defined as the basic region involved in DNA-binding. The C-terminal
two-thirds of the helix is the leucine zipper and plays a role in protein dimerization. The
leucine zipper is amphipathic with the hydrophobic regions on the two copies of the leucine
zipper interacting to bring the two bZIP domains together in a parallel orientation. The
two basic regions can then bind to DNA by passing through the major groove on opposite
sides of the double helix. Importantly, the bZIP domain facilitates the dimerization of
two similar transcription factors of the bZIP class. The combination of two transcription
factors containing the bZIP domain enables the proper positioning of the two adjacent
DNA-binding domains in the dimeric complex. For bZIP transcription factors, dimerization
is required for DNA binding.
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Figure 1. Schematic diagram of the primary protein structure of transcription factors members of the
bZIP class. (A) Common nuclear bZIP transcription factors. (B) Transmembrane bZIP transcription
factors. Abbreviations: KID, kinase A inducible activation domain; bZIP, basic leucine zipper.

According to the latest TFClass nomenclature, the class of bZIP transcription factors
contains more than 50 members divided into families: JUN, FOS, MAF, B-ATF, X-box
binding protein 1 (XBP1), ATF4, CREB and CEBP (Table 1) [1]. The common AP-1 family of
transcription factors rather consists of members of the JUN and FOS subfamilies, whereas
the common CREB/ATF family refers to CREB1, ATF1 and cAMP responsive element
modulator (CREM) transcription factors.

Table 1. Classification of transcription factors members of the class of bZIP transcription factors
according to the TFClass nomenclature [1].

Family Subfamily Transcription Factors

JUN-related
JUN JUN, JUNB, JUND

NFE2 NFE2, NFE2L1, NFE2L2, NFE2L3, BACH1, BACH2
ATF2 ATF2, ATF7, CREB5
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Table 1. Cont.

Family Subfamily Transcription Factors

FOS-related
FOS FOS, FOSB, FOSL1, FOSL2

ATF3-like ATF3, JDP2

MAF-related
Large MAF MAF, MAFA, MAFB, NRL
Small MAF MAFF, MAFG, MAFK

B-ATF-related BATF, BATF2, BATF3

XBP1-related XBP1

ATF4-related ATF4, ATF5

CREB-related

CREB-like CREB1, ATF1, CREM
CREB3-like CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4

ATF6 ATF6, ATF6B
CREBZF-like CREBZF
CREBL2-like CREBL2

CEBP-related
CEBP CEBPA, CEBPB, CEBPG, CEBPD, CEBPE, DDIT3
PAR DBP, HLF, NFIL3, TEF

3. Mechanisms of Gene Regulation by bZIP Transcription Factors
3.1. CREB-like Subfamily Members

CREB1 is a well-known 43 kD bZIP transcription factor that binds to an octanucleotide
sequence called the cyclic AMP response element (CRE) (5′-TGACGTCA-3′) (Figure 2) [2].
This factor can bind to DNA as a homodimer or a heterodimer in association with other
members of the CREB/ATF and AP-1 families [3]. CREB1 plays an essential role in the
regulation of gene expression in response to a variety of extracellular signals. In response to
a cytosolic increase in the second messenger cAMP, CREB can be phosphorylated by PKA
at serine residue Ser133 in the kinase A inducible activation domain (KID) (Figure 2) [2].
This phosphorylation enhances CREB1 transcriptional activity by facilitating its interaction
with the 265 kD CREB-binding protein (CBP) and subsequent recruitment of CBP to target
genes [4]. This cofactor is capable of histone acetyltransferase activity and acts as an adaptor
protein between CREB and the general transcription complex.

The CREB-like subfamily members CREB1, CREM and ATF1, are expressed in the
MA-10 tumor Leydig cell model [5]. In testicular Leydig cells, the constitutively expressed
transcription factor CREB1 represents one of the most important targets of the cAMP/PKA
pathway. Among the target genes of CREB1 in Leydig cells is Nr4a1 encoding the orphan
nuclear receptor NR4A1 (NUR77). Indeed, the rapid activation of Nr4a1 gene expression in
response to LH in Leydig cells is caused, in part, by CREB1 and AP-1 transcription factors
following activation of the cAMP/PKA pathway [6]. In addition to being activated by PKA,
CREB1 can also be activated by the Ca2+/calmodulin-dependent protein kinase (CaMK),
the mitogen-activated protein kinase (MAPK) and/or AKT through phosphorylation at
Ser133 in other cell types (Figure 2) [7–10]. By binding to a G protein-coupled receptor,
the osteoblast-derived hormone osteocalcin also regulates steroidogenesis in Leydig cells
following activation of CREB1 [11].

Although the importance of protein kinase C (PKC) is less than that of PKA, these
two pathways appear to potentiate each other in the activation of steroidogenesis in
response to LH in Leydig cells [12–14]. In addition to contributing to its activation, phos-
phorylation of CREB1 by PKC isoenzymes such as PKCµ (PKD) increases its ability to
bind to CRE regulatory element [2,15]. Moreover, PMA (phorbol-12-myristate-13-acetate),
an activator of the PKC pathway, increases the phosphorylation of CREB1 [12,16].
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Figure 2. Regulation of the activity of CREB-like subfamily members by phosphorylation, followed by
recruitment to the CRE DNA regulatory element. Abbreviations: CaMK, Ca2+/calmodulin dependent
protein kinase; CRE, cyclic AMP response element; CREB, cAMP responsive element binding protein;
MAPK, mitogen activated protein kinase; P, phosphate; PKA, protein kinase A.

In addition to CREB1, cAMP/PKA-mediated increase in transcription can also involve
activation of CREM (cAMP-response element modulator protein) by phosphorylation at
Ser117 and its binding to CBP [17]. Alternative splicing of the Crem transcript can give rise
to several isoforms which act as activators (τ, τ1, and τ2) or repressors (α, β, and γ) of
transcription [18]. Among activators, CREMτ can interact with the steroidogenic factor 1
(NR5A1) and activate the steroidogenic acute regulatory protein (Star) promoter following
treatment of MA-10 Leydig cells with dibutyryl-cAMP [19]. In addition, transcriptional
activity of CREM, like that of CREB1, is increased post-translationally by phosphorylation
following activation of PKA in response to cAMP [17]. The Crem gene contains a promoter
that can be activated by the cAMP/PKA pathway. Such an activation results in the pro-
duction of transcripts encoding a particular isoform of CREM which contains the DNA
binding domain and the phosphorylatable region, but lacks the activation domain [20].
This type of isoform, called ICER (inducible cyclic AMP early repressor), binds to the CRE
regulatory element and repress transcriptional activation by the active isoform of CREM,
thereby limiting cAMP/PKA-dependent activation of target genes [21].

ATF1, another member of the CREB-like subfamily, can dimerize with CREB1 but not
with ATF2 or ATF3, whereas ATF2 can dimerize with ATF3 but not with CREB1 [22–24]. In
addition, certain CRE-binding proteins, including ATF2, ATF3 and ATF4, can heterodimer-
ize with FOS and JUN [24,25]. Interestingly, ATF1-4 are all expressed in adult human Leydig
cells [26] and may participate in the regulation of steroidogenesis. ATF1 can be phosphory-
lated at Ser63 by PKA or CAMK [27], potentially contributing to its transcriptional activity
in Leydig cells.

3.2. AP-1 Members

The AP-1 family of transcription factors, including members of the JUN and FOS
subfamilies, is ubiquitously expressed [28]. FOS subfamily members, including FOS, FOSB,
fos-like antigen 1 (FOSL1, FRA1) and fos-like antigen 2 (FOSL2, FRA2) must heterodimerize
with JUN proteins, including JUN, JUNB and JUND. However, JUN members can form
homodimers or heterodimers with other AP-1 factors. Overall, JUN-FOS heterodimers bind
DNA with more affinity and stability than JUN-JUN homodimers [29,30]. AP-1 members
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were involved in the induction of multiple cellular and viral genes through the phor-
bol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate response element (TRE)
(Figure 3) [31]. With other bZIP transcription factors such as ATF and MAF, AP-1 members
can form up to 18 different DNA-binding dimeric complexes with versatile functionality
through activation or inhibition of transcription according to the composition of the dimeric
complex and the cell context [32,33]. Despite having comparable DNA binding specificities,
AP-1 dimers differ in their transactivation efficiencies [34,35]. Unlike FOS and FOSB, FOSL1
and FOSL2 lack transcriptional activation domains.
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Figure 3. Regulation of the activity of AP-1 family members JUN and FOS by phosphorylation,
followed by recruitment to the TRE DNA regulatory element. Abbreviations: ERK, extracellular
signal-regulated kinase; JNK, JUN N-terminal kinase; P, phosphate; PKA, protein kinase A; TRE,
12-O-tetradecanoylphorbol-13-acetate response element.

Regarding their interaction with DNA regulatory elements, JUN:FOS and JUN:JUN
dimers can bind to AP-1 or TRE elements with the consensus sequence 5′-TGA(C/G)TCA-
3′ and to CRE [28]. Notably, JUN:FOS heterodimers have higher affinity for asymmetrical
TRE motifs, whereas JUN homodimers rather bind to symmetric CRE elements [29,36]. The
heterodimers formed from ATF members typically bind to CRE [3].

There may be functional redundancy among AP-1 members. Indeed, FOS, FOSB, and
JUND are dispensable but JUN, JUNB, and FOSL1 are necessary for embryonic develop-
ment [37]. Furthermore, substitution of Jun for Junb allows recovery of liver development
but not heart development, suggesting that knock-in experiments are not equivalent for all
AP-1 members [38].

There are several ways to activate and/or increase the expression of AP-1 factors. In
fact, numerous signaling pathways leading to the phosphorylation of serine and threonine
residues participate in the regulation of their expression and activity [39,40]. The Jun
promoter is primarily activated by the recruitment of JUN/ATF2 heterodimer to a major
Jun/TRE cis regulatory element [41]. Three regulatory elements—the sis-inducible enhancer
(SIE), the serum response element (SRE), and the CRE—can activate the Fos promoter in
response to a variety of hormones, growth factors, and cytokines [33,42–46]. Indeed, the
expression of Fos will be enhanced following the recruitment of ATF or CREB factors to a
CRE element in response to increased levels of second messengers cAMP and calcium [8,44].
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The SRE regulatory element can be bound by a dimer consisting of the serum response
factor (SRF) and ETS Like-1 (ELK1) being activated by exposure to UV light or growth
factors, leading to increased Fos expression [46,47]. The SIE regulatory element allows
the recruitment of dimers of the signal transducer and activator of transcription (STAT)
family, in particular STAT1 and STAT3, to activate Fos gene expression [45,48]. These
STAT members are mainly activated by the Janus kinase (JAK) pathway [49]. In most
cell types, the SRE and CRE in the Fos and AP-1 (TRE) element in the Jun promoters are
involved in basal expression of these genes [50–52]. Moreover, Jun is autoregulated by
its own expression with the JUN/ATF2 heterodimer [41,51]. Similarly, the Fos gene can
also self-regulate after its activation [53]. Hence, AP-1 members can regulate each other to
fine-tune their expression [54].

The MAPK pathway primarily regulates the activity of AP-1 members, through phos-
phorylation by extracellular signal-regulated kinases (ERK), JUN N-terminal kinases (JNK),
and p38 (Figure 3). In addition, other kinases such as glycogen synthase kinase-3 (GSK3),
p34cdc2 kinase (CDK1), casein kinase II (CKII), PKA and PKC can phosphorylate FOS or
JUN in certain cell types. The activated JNK translocates to the nucleus [47], where it phos-
phorylates AP-1 members, promoting their dimerization and transcriptional activities [33].
Interestingly, the dimerization and DNA binding of AP-1 members facilitate their phos-
phorylation by several protein kinases [40]. Different kinases participate in the regulation
of the activity of AP-1 members by phosphorylating different Ser or Thr residues. For
example, the phosphorylation of JUN at Thr235, Ser246 and Ser252 by GSK3, CKII or ERK1/2
decreases its transcriptional activity [39,55–57]. However, phosphorylation at Ser63 and
Ser73 by JNK1 and dephosphorylation at Ser246 increase the stability and transcriptional
activity of the JUN protein [39,55]. Such post-translational modifications of JUN potentiate
its transactivation capacity by increasing its interaction with the coactivator CBP, having
histone acetyltransferase activity [58]. Similar to JUN, JUNB can also be phosphorylated at
Thr102/104 by ERK2 [59,60]. However, the consequence of this post-translational modifica-
tion remains to be defined. The phosphorylation of FOS at Ser362, Ser374, Thr232, Thr325, and
Thr331 by ERK and ribosomal S6 kinase increases its protein stability and transcriptional ac-
tivity [61–63]. Moreover, FOS can also be phosphorylated at Ser362 by PKA [64]. Compared
to other AP-1 factors, JUND cannot interact directly with JNK, but can be phosphorylated
by this kinase as part of a heterodimer with JUN [65]. Hence, in addition to changes in
FOS and JUN protein levels, gene regulation can be influenced by their post-translational
modifications (Figure 3).

In addition to LH and human chorionic gonadotrophin (hCG), several growth factors
are also involved in the activation of AP-1 family members in Leydig cells. In Leydig cells
from 3-week-old pigs, basic fibroblast growth factor (bFGF) and epidermal growth factor
(EGF) increase the expressions of Fos, Jun, and Junb, whereas transforming growth factor
beta (TGF) increases the expression of Jun only, and insulin-like growth factor 1 (IGF1)
increases the expressions of Fos and Junb [66]. Interestingly, EGF and bFGF enhance the
stimulatory action of hCG on Fos and Junb expressions in this model [66]. Regulation of
AP-1 members in Leydig cells can also be influenced by testicular macrophages and tumor
necrosis factor alpha (TNFα) production through regulation of members of the MAPK
family such as ERK [67] and stress-activated protein kinases (SAPKs) [68]. In MA-10 Leydig
cells, the SAPK protein level and activity are increased, whereas those of ERK are decreased,
by TNFα and cAMP [69]. Such a regulation results in increases in JUN and FOS protein
levels and DNA binding activities [69]. In addition, others have shown that CREB nuclear
localisation is decreased in response to TNF, resulting in inhibition of steroidogenesis in
MA-10 Leydig cells [70].

Although JUN and FOS are expressed in MA-10 Leydig cells, only JUN is rapidly
increased in response to activation of the cAMP/PKA pathway [71,72]. However, hCG
increases the expressions of Fos, Fosb, Jun, Junb, Jund and Fosl2 in less than 1 h of treatment,
whereas Fosl1 is increased after 3 h of exposure of MA-10 Leydig cells [73]. In addition to
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the cAMP/PKA pathway, ERK1/2 and PKC are also involved in the activation of AP-1
members by LH/hCG stimulation of testicular Leydig cells [15,74,75].

3.3. CEBP Members

The CEBP subfamily includes six members: CEBPA, CEBPB, CEBPG, CEBPD, CEBPE
and DNA-damage inducible transcript 3 (DDIT3, CHOP) [76]. CEBPB is the major mem-
ber expressed in Leydig cells and its expression depends on Leydig cells’ differentiation
status [77]. Members of the CEBP subfamily can form homodimers or heterodimers with
members of the CREB/ATF family via the leucine zipper dimerization domain [78], which
greatly increases the diversity of DNA binding specificities and transactivation potential.
CEBP members can recognize the consensus DNA-binding sequence 5′-TKNNGYAAK-3′

(Y = C or T, K = T or G) in the regulatory regions of target genes. CEBPB, whose expression
is increased in response to LH and cAMP, plays an important role in hormonal regulation
of gene expression in Leydig cells [77]. In human, DNA-binding of CEBPB is increased
by ERK-dependent phosphorylation of Thr235 [79]. In addition, Ca2+-mediated signals
can also lead to mouse CEBPB activation through phosphorylation of Ser276 in the leucine
zipper [74]. Acetylation and sumoylation have also been implicated in the regulation of
intracellular localization and transcriptional activity of CEBP members [75,80] but have
been barely investigated in the regulation of Leydig cells’ functions.

3.4. Maf-Related Members

The family of MAF-related transcription factors can be divided in two sub-families:
the large MAF, containing MAF, MAFA, MAFB and neural retina leucine zipper (NRL),
and the small MAF, containing MAFF, MAFG and MAFK (Table 1). The heterodimers
formed by MAF factors bind to MAF recognition elements (MAREs) consisting of extended
sequences of the AP-1 motifs [81]. Depending on the binding site and binding partner,
MAF-related members can act as transcriptional activators or repressors. By E14.5 in mouse
embryo and in adult testis, Mafb expression is detected in Leydig cells [82,83]. However,
the target genes of MAFB in fetal Leydig cells during development or in adult Leydig cells
remain to be characterized. Other MAF-related members may play an important role in
regulating adult Leydig cells’ functions as MAF, MAFF and MAFG are highly expressed in
human adult Leydig cells [26].

3.5. XBP1-Related Members

The XBP1-related members family contains only the transcription factor XBP1. This
transcription factor is known to regulate the major histocompatibility complex (MHC) class
II gene by binding to a promoter element known as X-Box [84]. XBP1 is implicated in
cell differentiation, proliferation, apoptosis, cellular stress response and other signaling
pathways. It has also been associated with the expression of genes required for membrane
biogenesis and the secretory pathway [85]. Indeed, XBP1-deficient β-cells fail to secrete
enough insulin to regulate blood glucose levels [86]. Several publications have evaluated
ATF4 and XBP1 transcription factors as endoplasmic reticulum (ER) stress markers in
Leydig cells [87,88]. With ATF4 and ATF6, XBP1 has been characterized as an unfolded
protein response (UPR) transcription factor, which mediates downregulation of the 3-β-
hydroxysteroid dehydrogenase (Hsd3b1) gene expression following high or prolonged hCG
treatment in Leydig cells [89]. Such treatments result in ER stress-mediated apoptosis,
possibly through binding to the ER stress response element (ERSE) found in different gene
promoters [90]. Additionally, XBP1 can also form heterodimers by interacting with FOS [91]
and ATF6 [92]. However, other specific target genes for XBP1 in Leydig cells remain to be
further characterized.

3.6. CREB3-like Subfamily Members

The CREB3-like subfamily includes transmembrane bZIP transcription factors such
as CREB3 (also known as Luman), CREB3L1, CREB3L2, CREB3L3 and CREB3L4. These
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transcription factors play important roles in the UPR. In addition, CREB3L1 is involved in
differentiation, function, and survival of many cell types in which it is expressed. CREB3L1
can interact with other members of this subfamily such as itself and CREB3L3, as well as
with CREM [78]. Targets for CREB3L1 include genes crucial for ER stress such as XBP1
and the chaperone heat shock protein 5 [93]. In addition to forming a heterodimer with
CREB3L1, CREB3L3 can also heterodimerize with ATF6 and CEBPG [78,94]. Interestingly,
CREB3L2 and CREB3L3 can be phosphorylated by cyclin-dependent kinases and influence
cell division [63,95,96].

3.7. ATF-4 Related Members

ATF family members play essential roles in cell proliferation and differentiation, apop-
tosis, and inflammation. All members of this family, including ATF1, ATF2, ATF3, ATF4,
ATF5, ATF6 and ATF7, can be detected in human Leydig cells [26]. However, their roles
and functions in the regulation of gene expression in these cells remain to be determined.
Like CREB1, ATF1 is involved in the regulation of transcription in response to variations
in intracellular cAMP [97]. ATF2 and ATF3 regulate the expression of stress-response
genes [98]. Interestingly, these ATF members can heterodimerize with transcription factors
of the AP-1 family [3,24,99,100] to regulate gene expression. ATF4 is induced by stress
signals including hypoxia, oxidative stress, ER stress and amino acid deprivation [101].
This transcription factor can bind to asymmetric CRE elements as a heterodimer and palin-
dromic CRE elements as a homodimer. With DDIT3, ATF4 activates the transcription of
the integrated stress response regulator tribbles pseudokinase 3 (TRIB3) and promotes ER
stress-induced apoptosis of neuronal cells [102]. Interestingly, TRIB3 is highly expressed
in different Leydig cell lines such as MA-10 and LC540 [103,104]. TRIB3 expression is
rapidly modulated by xenobiotics, suggesting that its transcription may be regulated by
immediate-early transcription factors like ATF4. Of interest for Leydig cells, ATF4 can
heterodimerize with CEBPB [95] or JUN [3]. However, their target genes remain to be
characterized. In addition, the activity of ATF4 can be modulated by phosphorylation at
Ser69 [96,105], however the kinase involved and its functionality in Leydig cells remain to
be determined.

ATF5 can bind to a ATF5-specific response element (ARE) (consensus: 5′-CYTCTYCCTTW-
3′) or an amino acid response element (AARE) (consensus: 5′-WTTGCATCA-3′) present
in many promoters. This transcription factor is involved in the regulation of cell survival,
proliferation and differentiation [99,106]. Precisely, its transcriptional activity is enhanced
by cyclin D3 and is inhibited by cyclin-dependent kinase 4 [106], suggesting that ATF5 may
be an important regulator of Leydig cells’ proliferation.

Similar to CREB3-like subfamily members, ATF6 is involved in the regulation of genes
important for ER stress response [100]. These transcription factors contain a transmembrane
domain, allowing their localization to the ER in the absence of activation of the UPR.

In general, members of the bZIP class of transcription factors are involved in tumori-
genesis and normal physiological processes like cell proliferation, development, steroid
synthesis, and cell-to-cell interactions.

4. bZIP Transcription Factors and Leydig Cell Proliferation and Development

Before reaching the adult stage, progenitor Leydig cells must proliferate and differ-
entiate in the testicular interstitium to acquire their full capacity for androgen synthesis.
Stem Leydig cells (SLC) proliferate and differentiate into progenitor Leydig cells (PLC)
between postnatal day (P)7 and P14 in the rat. PLC are the major Leydig cells of the
testis from P14 to P21 [107]. At around P35, the immature Leydig cells (ILC) population is
established from the differentiation of PLC and mainly produces androstanediol (3α-Diol)
as androgen. By the end of puberty (from P55 to P90), adult Leydig cells (ALC) originate
from the proliferation and differentiation of ILC [108], and are characterized by high levels
of LHCGR and expression of the enzyme HSD3B1 [109]. These changes contribute to the
increased testosterone synthesis from ALC [110] and are essential for normal reproduc-
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tive function [111] and spermatogenesis [112]. Once differentiated, ALCs are primarily
involved in two processes important to support spermatogenesis: testosterone production,
and INSL3 synthesis and secretion.

4.1. CREB-Related Members

Among CREB-related transcription factors, ATF1 may promote gene expression, con-
tributing to Leydig cells’ proliferation. Indeed, cyclin-dependent kinase 3 has been reported
to phosphorylate ATF1 at Ser63, enhancing transactivation capacity of ATF1 and promoting
cell proliferation [113]. CREB3 is a transcriptional coregulator involved in ER-stress. In
mouse Leydig tumor cells (MLTC-1), the shRNA-mediated knockdown of CREB3 decreased
the percentage of S phase cells and increased the expressions of cyclin A1, B1 and D2, lead-
ing to reduced apoptosis and increased cell proliferation [114]. However, the use of tumor
Leydig cell lines to study normal Leydig cell proliferation may not be appropriate, and the
interpretation of the data should be done with caution.

4.2. AP-1 Members

AP-1 members are well known for their ability to regulate cell proliferation. In-
deed, JUN and FOS regulate the expression of cyclin D1, an important activator of cyclin-
dependent kinases that promote cell cycle progression [115]. JUNB and JUND, in contrast
to JUN, negatively regulate cell proliferation. In fact, JUNB inhibits JUN-mediated cyclin
D1 expression [116], whereas JUND activation results in decreased fibroblasts’ prolifera-
tion [117]. The p21-activated protein kinase (PAK)2-dependent phosphorylation of JUN
also contributes to EGF-mediated cell proliferation and transformation [118]. Since AP-1
members can regulate the expression of genes important for cell proliferation and differen-
tiation [37,119–121], these transcription factors may influence Leydig cells’ development
and maturation. Interestingly, Jun and Fos are highly expressed in PLC, and like Junb, Jund
and Fosl2 show a decreased expression upon maturation of PLC to ALC [122]. In addition,
Jun and Fos are highly expressed in rat mesenchymal cells involved in the regeneration
of ALC [123].

Being highly expressed in PLC and ILC [124], the androgen receptor (AR) is critical
for proliferation and differentiation of these cells into adult Leydig cells. Indeed, testicular
feminized (Tfm) male mice, having a non-functional mutated androgen receptor, contain
Leydig cells with reduced levels of LHCGR, are non-responsive to hCG and have decreased
testosterone production due to reduced cytochrome P450 family 17 subfamily A member
1 (CYP17A1) levels [110,125]. In addition, mice with Leydig cell-specific inactivation of
Ar by Cre expression under the control of the Amhr2 promoter [126,127] produced less
testosterone and were infertile due to disrupted spermatogenesis [128]. Proliferation and
differentiation of PLC and ILC may require AP-1 members, since JUN can interact with
AR [129,130] and can influence its transcriptional activity. However, such modulation of
AR activity by AP-1 members remains to be confirmed in Leydig cells.

As suggested previously, increased ATF2 activity under pathophysiological conditions
such as diabetes may increase caspase-3 activity and promote Leydig cells’ apoptosis,
leading to male hypogonadism [131]. ATF2, a transcription factor downstream of p38
MAPK, is a key mediator of extracellular stimulus-induced testicular injury. In addition,
ATF2 can interact with AR [132,133], potentially modulating its transcriptional activity and
influencing Leydig cells’ proliferation.

4.3. CEBP-Related Members

During differentiation of SLC into ALC, the expression of Alkbh5, coding for an RNA
demethylase, is increased, leading to reduced levels of N6-methyladenosine methylation
and increased autophagy in Leydig cells [134]. Interestingly, Alkbh5 expression is increased
in response to hCG by recruitment of CEBPB to its promoter region [134]. In SLCs, CEBPB
also regulates the expression of Ptgs2, encoding the cyclooxygenase 2 enzyme which can
modulate cell proliferation and apoptosis [135]. Thus, this bZIP transcription factor in-
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directly contributes to Leydig cell maturation by influencing mRNA methylation levels
and the production of prostaglandins. DDIT3 can act as a dominant-negative inhibitor
by forming a heterodimer with other CEBP members and preventing their DNA binding
activity [136]. DDIT3 is activated by ER stress and promotes apoptosis [102,137]. Interest-
ingly, decreased expression of DDIT3 is required for CEBPB to upregulate Ptgs2 expression
during SLC maturation [136].

As with other proline and acidic amino acid-rich (PAR) subfamily members, the
bZIP transcription factor D site albumin promoter binding protein (DBP) is involved in
the regulation of cell circadian rhythm, as reported with β-cells and the production of
insulin [138]. Interestingly, the expression of DBP is inhibited by the mycotoxin zearelenone
in Leydig cells [139]. However, further investigation will be required to better define its
implication in regulation of proliferation and steroidogenic genes in Leydig cells.

4.4. Transmembrane bZIP Transcription Factors

In response to ER stress, cells initiate the UPR to restore protein homeostasis. The UPR
is distinguished by three signaling proteins named protein kinase R (PKR)-like endoplasmic
reticulum kinase (PERK), ATF6, and inositol-requiring enzyme 1 alpha (IRE1α). Activation
of PERK leads to phosphorylation of eukaryotic initiation factor 2α, and then induces the
bZIP transcription factor ATF4, causing increased expression of the pro-apoptotic bZIP
protein DDIT3 and cell death [140]. On the other hand, the bZIP transcription factor
ATF6 transits to the Golgi where it is cleaved into an activated form [140]. In addition,
activated IRE1 catalyzes the splicing of a small intron from XBP1 mRNA to produce an
active transcription factor. ATF6 and IRE1 pathways may also induce DDIT3 expression
to trigger apoptosis [141]. Thus, ER stress can activate different bZIP transcription factors,
leading Leydig cells to undergo apoptosis [89].

Overall, several transcription factors of the bZIP class influence the proliferation,
maturation, and apoptosis of adult Leydig cells. However, their involvement in the differ-
entiation of fetal Leydig cells remains to be demonstrated.

5. bZIP Transcription Factors and Steroidogenesis

Regulation of steroidogenesis in ALC is primarily mediated by the hypothalamic-
pituitary-gonadal axis through LH secretion and binding to its LHCGR, resulting in de
novo protein synthesis [142]. Following activation of its receptor, LH mainly stimulates
cAMP production by adenylate cyclase, which leads to activation of PKA enzyme and
upregulation of several genes contributing to increased androgen synthesis by Leydig cells.
Members of the bZIP class being phosphorylated by PKA include CREB1, CREM, ATF1 and
FOS. Hence, these transcription factors may participate in the regulation of steroidogenesis
from Leydig cells.

5.1. CREB-Related Members

Different transcription factors, including bZIP members such as CREB1 [143] and AP-1
members [71,144], are involved in the regulation of Star expression in Leydig cells. The
STAR protein participates in the import of cholesterol inside mitochondria, an essential
step for the initiation of steroidogenesis. Three CRE half sites (−96/−67 bp) have been
characterized and shown to recruit CREB1 to the cAMP-responsive region (−151/−1 bp)
of the mouse Star promoter (Figure 4) [143]. CREB1 can also recruit the CREB regulated
transcription coactivator 2 (CRTC2) to regulate Star expression in response to hormone
and metabolic signals in Leydig cells [145,146]. PKA phosphorylates CREB1 on Ser133,
resulting in increased recruitment to DNA and target genes expression. Activation of the
cAMP/PKA pathway may not be the sole inducer of CREB1 recruitment to its DNA regu-
latory elements. Indeed, PMA (phorbol-12-myristate-13-acetate), an activator of the PKC
pathway, increases the phosphorylation of CREB1 and induces STAR expression in MA-10
Leydig cells [12,16]. Furthermore, activations of PKA and PKC signaling pathways result
in an increased association of phosphorylated CREB1 to the proximal region of the Star
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promoter [147]. However, phosphorylation of the STAR protein by PKC cannot lead to its
activation, unlike PKA. Thus, the contribution of PKC to the regulation of steroidogenesis
in Leydig cells requires activation of PKA for the STAR protein to be phosphorylated and
functional [12]. Hormone-induced recruitment of phosphorylated CREB1 and coactivator
p300 to the Nr4a1 promoter also requires activation of the Ca2+/CAMKI pathway [148].
NR4A1 is an important mediator of hormone-stimulated Star expression [149,150]. Further-
more, silencing Creb1 impaired NR4A1 expression and steroidogenesis in MA-10 Leydig
cells [148]. NR4A1 is an orphan nuclear receptor involved in cAMP/PKA-dependent
activation of steroidogenic promoters for Star, HSD3B2 and Cyp17a1 [149,151–153]. The
initial substrate of steroidogenesis, cholesterol, is metabolised into pregnenolone by the
cholesterol side chain cleavage enzyme CYP11A1 (cytochrome P450, family 11, subfam-
ily a, polypeptide 1). Then, the enzyme hydroxy-delta-5-steroid dehydrogenase, 3 beta-
and steroid delta-isomerase (HSD3B2 in human and HSD3B1 in rodents) catalyzes the
conversion of pregnenolone into progesterone, whereas CYP17A1 converts progesterone
into androstenedione. Testosterone is then synthesized from androstenedione by the
enzyme HSD17B3.
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CEBPB is recruited to its regulatory element between −117 and −108 bp (5′-ATGAGGCAAT-3′),
whereas CREB1, JUN and FOS form homo- or heterodimer competing for binding to the −96 to
−67 bp region.

In addition to regulating steroidogenic genes, the CREB1 transcription factor also
modulates the expression of other genes encoding enzymes in response to activation of the
cAMP/PKA pathway in Leydig cells. For example, the expression of acyl-CoA synthetase
4 (Acsl4) is up-regulated by the recruitment of CREB1 to a DNA regulatory element at
−200 bp of its promoter in MA-10 Leydig cells [154]. ACSL4 catalyzes the synthesis of acyl-
CoA from arachidonic acid (AA), contributing to the regulation of AA at the cellular level.
AA has been widely documented as an essential regulator of LH-dependent testosterone
synthesis in rat Leydig cells [155–158].

Others have reported that CREB1 plays a critical role in activating kisspeptin (Kiss1)
expression in mouse Leydig cells leading to autocrine regulation of steroidogenesis [159]. In-
deed, CREB1-deficient Leydig cells fail to induce Kiss1 expression in response to
hCG treatment.

The expression of CREB3 is increased in mouse Leydig cells from prepubertal to adult
stages [160]. The siRNA-mediated knockdown of CREB3 in Leydig cells results in the up-
regulations of Star, Cyp11a1, Hsd3b1 and Cyp17a1 genes’ expressions, leading to increased
testosterone production [160]. Such CREB3-dependent regulation may involve inhibition
of the nuclear receptors NR4A1 and NR5A1 [160], two nuclear receptors important for
steroidogenic genes expressions. Hence, CREB3 may contribute, in part, to the decrease
in testosterone production from Leydig cells according to aging by decreasing levels and
activity of nuclear receptors.

The detection of CREBZF in mouse and human testis Leydig cells is debatable
in vivo [26,161,162] and may be attributed to the characterization of different isoforms.
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However, this transcription factor is involved in hCG-stimulated testosterone produc-
tion [163]. CREBZF does not bind DNA by itself as a homodimer but rather regulates
transcription by heterodimerizing with other transcription factors. In response to MAPK
signaling, CREBZF can interact with ATF4 to enhance its transactivation potential [164].
CREBZF can also heterodimerize with XBP1 or CREB3 to participate in the regulation of the
UPR response [165]. Silencing of Crebzf in primary and MLTC-1 Leydig cells decreased the
expression of Cyp17a1, Hsd3b1 and Hsd17b3, resulting in the inhibition of hCG-stimulated
testosterone production [163]. Interestingly, CBEBZF activates the expression of Nr4a1
and Nr5a1 [163].

5.2. AP-1 Members

In addition to PKA, other signaling pathways such as PKC and MAPK may partici-
pate in the regulation of steroidogenesis in Leydig cells by phosphorylating specific AP-1
transcription factors [15,166]. Indeed, JUN can activate the Nr4a1 promoter following its
recruitment to three AP-1-like DNA regulatory elements in MA-10 Leydig cells [6,167].
In addition, JUN has additive effects with NR4A1 to activate the Star promoter by be-
ing recruited to the AP-1 regulatory element at −78 bp [71]. However, the binding of
JUN to this regulatory element is not altered by treatment with cAMP for up to 2 h [5].
Other nuclear receptors such as NR5A1 and NR5A2 can also cooperate with JUN to ac-
tivate Star gene expression [71]. In addition, NR5A1 cooperates with JUN to activate
the human CYP11A1 promoter in steroidogenic cells [168]. Notably, such cooperation
between JUN and nuclear receptors involves protein–protein interactions. However, oth-
ers have shown that JUN rather inhibits the capacity of NR4A1 to activate the Cyp17a1
promoter in K28 Leydig cells [169]. In this regulatory process, the JNK signaling path-
way is activated by reactive oxygen species, JUN and NR4A1 physically interact, and
DNA binding of NR4A1 is inhibited. JUN may also interact with other nuclear recep-
tors, such as the glucocorticoid receptor [170], the progesterone receptor [129], the estrogen
receptor [129,171], the AR [129,130], the thyroid receptor [161] and the retinoic acid/retinoid
X receptors [162,172], to influence the expression of steroidogenic genes. However, the
implications of these protein interactions on steroidogenesis will need further investigation.

JUN also cooperates with GATA4 to activate Star expression [173]. This regulation is
mostly dependent on the proximal GATA DNA-regulatory element in the Star promoter,
suggesting that these transcription factors physically interact. Although a cooperation
between JUN and FOS activates the Star promoter, JUN homodimers are rather responsible
for the cooperation with GATA4 [173]. However, FOS can still be recruited to the mouse Star
proximal promoter region [174], suggesting that JUN/FOS heterodimers may participate in
the regulation of Star gene expression. Interestingly, Fosl2 overexpression rather inhibits
JUN-dependent activation of the Star promoter [174]. Thus, the combination of AP-1
factors may finely regulate Star expression according to the levels of androgen synthesis by
Leydig cells.

Members of the AP-1 family may regulate steroidogenesis with precision through post-
translational modifications. In response to PKA activation in MA-10 Leydig cells, the levels
of FOS protein are increased and phosphorylated at Thr325, whereas JUN is only phospho-
rylated at Ser73 after 15–30 min of dibutyryl-cAMP treatment [144]. Such post-translational
modifications increase recruitment of these AP-1 members to the AP-1/CRE element lo-
cated at−81 to−75 bp of the Star proximal promoter in mice [144]. AP-1 members JUN and
FOS also promote CREB1 and CBP recruitments to the Star promoter. However, because
AP-1 members can interact with a common DNA-regulatory element for CREB1, activation
of Star expression by CREB1 is inhibited by FOS and JUN [144]. In addition to JUN, other
AP-1 members such as FOS and JUND can also activate the Star promoter [71]. However,
FOS rather inhibits steroidogenic gene expression in adrenal [175] and Leydig cells [144].
Precisely, AMP-activated protein kinase (AMPK)/PKC signaling pathway activation within
Leydig cells represses JUN and NR4A1 but activates FOS and NR0B1 (DAX1), resulting
in decreased Star expression and steroidogenesis [176]. Overall, JUN cooperates with
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several transcription factors to regulate the expression of steroidogenic genes, including
specificity protein 1 (SP1) [177] and NR5A1 to regulate Fdx1 (ferredoxin-1) [72], as well as
GATA4, NR5A1 and NR4A1 to regulate Star [71,173], in Leydig cells. Indeed, JUN and FOS
can physically interact with NR5A1, GATA4 and CEBPB as reported using the mammalian
two-hybrid system [174]. Thus, AP-1 members can form major complexes contributing to
the regulation of steroidogenic genes’ expressions.

Several extracellular signals participate in the activation of members of the PKC family
of serine/threonine kinases. In MA-10 Leydig cells, different PKC isoforms are induced by
PMA and may contribute to Star activation and increased progesterone synthesis [15]. In
addition, PMA increases JUN and FOS protein levels and their phosphorylation [15], sug-
gesting that the activation of Star expression by PMA relies on activation of AP-1 members.
Indeed, PKCµ inactivation decreases the expression and phosphorylation of JUN/FOS, as
well as their association with the Star proximal promoter region, resulting in decreased Star
expression and progesterone synthesis in MA-10 Leydig cells [15]. Interestingly, binding
of JUN/FOS to the Star promoter in response to PMA promotes recruitment of the CBP
cofactor [15], resulting in histone acetylation and increased accessibility to the promoter for
the transcriptional machinery.

Once inside the mitochondria, cholesterol is converted to pregnenolone by the rate-
limiting steroidogenic side chain cleavage enzyme, CYP11A1. In mouse trophoblast and
granulosa cells, the Cyp11a1 promoter activity may be regulated by AP-1 members and
GATA4 [178]. Although AP-1 regulatory elements have been characterized in the Cyp11a1
promoter [179], their implication in transcriptional regulation in Leydig cells remains to
be confirmed.

After being reduced by the flavoprotein ferredoxin reductase, ferredoxin 1 (FDX1)
supports steroid biosynthesis in steroidogenic cells by transferring electrons to CYP11A1.
We have reported that JUN interacts with NR5A1 and these transcription factors cooperate
to activate the Fdx1 promoter in different Leydig cell lines [72]. Such activation involve
regulatory elements located within the Fdx1 proximal promoter region. Thus, AP-1 mem-
bers may contribute to the activation of the CYP11A1 enzyme by increasing Fdx1 gene
expression in Leydig cells.

The gene Tspo encodes the translocator protein, a cholesterol-binding protein pro-
moting the entry of cholesterol inside mitochondria [180–182]. The expression of Tspo in
Leydig cells depends on PKCε-dependent phosphorylation of JUN through the MAPK
pathway [166]. Moreover, PMA, an activator of PKCε, also promotes the binding of JUN to
its AP-1 DNA regulatory element in the Tspo promoter [183]. Such regulatory mechanism
may involve the interaction between JUN and STAT3, resulting in synergistic activation of
the Tspo promoter [166]. However, the consequences of the regulation of Tspo by members
of the AP-1 family on steroidogenesis by Leydig cells will require further investigations.

Different growth factors produced by Sertoli cells have paracrine actions influencing
Leydig cells’ functions. Among them, FGF, IGF1 and TGFα increase, whereas TGFβ
decreases, androgen production from Leydig cells [184–187]. Precisely, IGF1 increases the
availability of cholesterol, as well as the activities of steroidogenic enzymes, promoting
the conversion of pregnenolone to testosterone [188]. Increased Star expression leading
to progesterone synthesis has also been observed in response to stimulations of MLTC-1
cells with IGF1, FGF and TGFα [13]. Importantly, IGF1 and the cAMP/PKA pathway
cooperate to activate CREB1 and JUN, leading to increased Star expression [189]. The
expressions of the receptors for these growth factors can be regulated by AP-1 factors in
Leydig cells, as shown with the upregulation of FGFR1 by FOS in osteosarcoma cells [190].
Although several growth factors are produced by Sertoli cells, only kit ligand (KITL) and
glial cell derived neurotrophic factor (GDNF) are required for male fertility. Interestingly,
the transcription factors JUN and FOS may increase the expression of receptors for KITL
and GDNF in Leydig cells, as indicated with the cKIT promoter [191].

In addition to LH, Leydig cells can also be stimulated by other hormones such as the
growth hormone (GH). Indeed, GH increases Star gene expression and steroidogenesis by
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promoting cooperation between JUN and STAT5B [192]. However, it would be interesting
to determine if such cooperation is also involved in the regulation of other STAT target
genes such as HSD3B2 [193] in Leydig cells.

Being part of the FOS-related family of transcription factors, the Jun dimerization
protein 2 (JDP2) is highly expressed in MA-10 Leydig cells. In addition, its expression can be
modulated by activation of the cAMP/PKA pathway (our unpublished observations). JDP2
binds DNA as a homodimer or as a heterodimer with ATF2 and JUN proteins, but not with
FOS proteins [194]. JDP2 represses transcription either as a homo- or heterodimer [195].
However, its physiological role in regulation of steroidogenesis in testicular Leydig cells
remains to be investigated further.

Overall, AP-1 members are critical regulators of the expression of genes related to
steroidogenesis in Leydig cells. Precisely, the combination of expressed AP-1 factors, the
post-translational modulation of their activities, and the interactions with other partners
can all determine how these transcription factors influence androgen synthesis in the testis.

NFE2 Subfamily Members

The member of the nuclear factor, erythroid 2 (NFE2) subfamily of bZIP transcription
factors NFE2L2 (NRF2) is a master regulator of phase 2 antioxidant genes and seems
to play an important role in preventing the reduction in testosterone production from
aging Leydig cells. Indeed, the knockout of Nfe2l2 in mice results in a greater reduction
in testosterone production by Leydig cells during aging compared to normal mice [196].
Although largely correlated, there is evidence that the redox imbalance occurring with
aging may result in reduced steroid formation by Leydig cells [197]. Under oxidative stress,
NFE2L2 dissociates from kelch-like ECH-associated protein 1 (KEAP1), translocates to the
nucleus, and then activates NFE2L2-responsive genes involved in antioxidant activity and
oxidant inactivation [198]. However, the target genes for NFE2L2 have not been clearly
characterized in Leydig cells.

5.3. CEBP Members

CEBPB is expressed in steroidogenic cells, such as Leydig and granulosa cells [199],
and plays an essential role in LH-regulated differentiation and function of Leydig cells [77].
Indeed, activations of PKA and PKC signaling pathways increase CEBPB protein levels in
MA-10 Leydig cells [147]. CEBPB activates the expression of the Star gene, an important
regulator of cholesterol import inside mitochondria [200,201]. Indeed, CEBPB can bind
to the −117 to −108 bp Star promoter region [202–205], and can positively regulate Star
gene basal expression [147,206]. Like other bZIP members, its transcriptional regulatory
activity is enhanced by activation of the cAMP/PKA pathway [202]. In addition, CEBPB
cooperates with different transcription factors, such as NR5A1 [200] and GATA4 [201], for
cAMP/PKA-dependent regulation of Star promoter activity in MA-10 Leydig cells. It can
also cooperate with nuclear factor kappa B subunit 1 (NFKB1) to regulate the expression of
Nr4a1 in Leydig cells [207].

The prostaglandin endoperoxide synthase 2 (PTGS2, COX2) enzyme, involved in
the synthesis of PGF2α and PGE2, is highly expressed by Leydig cells from infertile pa-
tients [208] as well as during aging [209]. In MA-10 Leydig cells, CEBPB is recruited to a
regulatory element in the proximal region of the Ptgs2 promoter resulting in activation of
gene expression in response to cAMP [135]. DDIT3, an inhibitor of CEBP family members
by heterodimer formation [136], is also expressed in MA-10 cells [135]. In contrast to CEBPB,
DDIT3 expression is rather reduced in response to hCG or cAMP [135]. Thus, induction of
Ptgs2 expression correlates with increased Cebpb and reduced Ddit3 expressions in response
to activation of the LH/cAMP/PKA pathway. Such activation of Ptgs2 by CEBPB may
contribute to decreased steroid production by aging Leydig cells.
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5.4. Transmembrane bZIP Transcription Factors

In addition to the bZIP domain, several transcription factors also contain a transmem-
brane domain and participate in ER unfolded protein stress transduction. These bZIP
transcription factors include ATF6 and the CREB3-like subfamily [210]. Since a major part
of steroidogenesis is taking place in the ER, the UPR may have an indirect influence on gene
regulation through activation of ER transmembrane bZIP transcription factors, leading to
their migration in the nucleus. However, such gene regulation will require further investi-
gation. Prolonged exposure to a high dose of hCG induces ER stress and downregulation of
steroidogenic enzyme gene expression in Leydig cells [89]. Such effect may be attributed to
the triggering of UPR and nuclear translocation of ATF6 in Leydig cells [89]. Interestingly,
other bZIP transcription factors, such as CREB3L4, are involved in ER stress response and
are crucial for proper spermatogenesis and spermiogenesis [211,212].

6. bZIP Transcription Factors and INSL3

Apart from producing steroid hormones, testicular Leydig cells are also the main
source of the peptide hormone insulin-like 3 (INSL3). This hormone regulates the transab-
dominal phase of the descent of testes in the scrotum during fetal development as well as
germ cell survival [213]. However, INSL3 is not required for spermatogenesis and germ
cells’ survival in adult mice [214]. The production of INSL3 is dependent on the differ-
entiation state of Leydig cells and is correlated with the circulating levels of LH [215–218].
Intrestingly, differentiated Leydig cells produce and secrete INSL3 constitutively. The Insl3
gene promoter contains several DNA regulatory elements for ATF3, CREB1 and MAF, sug-
gesting a possible regulation by bZIP members. However, the regulation of Insl3 expression
by these transcription factors may be indirect and involve activation of Nr4a1 expression,
as reported for JUN [157,174,219].

7. bZIP Transcription Factors and Leydig Cell Communication

The regulation of steroidogenesis in Leydig cells depends not only on the activation of
receptors associated with various signaling pathways but may also rely on the exchange of
signaling molecules via gap junctions between adjacent cells. Gap junctions are formed
by connexin proteins that assemble into homomeric or heteromeric connexons to create a
channel for exchange of cytosolic molecules between neighboring cells. Different types of
connexins are encoded by a class of genes including five groups (Gja, Gjb, Gjc, Gjd and Gje),
each composed of several members and isoforms. Leydig cells express mainly Gja1 (CX43),
and to a lesser extent Gja4 (CX37), Gja6 (CX33), Gjc1 (CX45), Gjc2 (CX47), Gjd2 (CX36),
and Gjd3 (CX31.9/30.2) [220–223]. Only the inactivation of GJA1 has been characterized
for its effects on steroidogenesis and does not appear to be critical for Leydig cell devel-
opment, differentiation and function [224,225]. This may be attributed to the functional
redundancy between different types of connexins in Leydig cells [222]. However, GJA1
inactivation in Sertoli cells results in Leydig cell hyperplasia [226,227], suggesting that this
connexin is involved in paracrine communication between these cell types. Interestingly,
this phenotype is also associated with a decrease in Gja1 and Gjc1 expressions in Leydig
cells, without any effect on steroidogenesis [228]. As reported in prostaglandin E2 treated
cells [219], GJA1-dependent potentiation of cAMP/PKA signaling in Leydig cells is not
associated with an increase in cAMP levels, but rather with an increased exchange of this
second messenger between interconnected cells.

7.1. CREB Members

The expression of Gja1 has been reported to be regulated by CREB1 in other cell types.
Indeed, β-adrenoceptor stimulation upregulates cardiac Gja1 expression via PKA and
MAPK signaling pathways, possibly through activation of AP1 and CREB1 factors [229].
In addition, a complex composed of NFKB, CREB1 and CBP is formed following oxytocin
stimulation and participates in the activation of Gja1 expression in mouse embryonic stem
cells [230]. It has been reported that hCG and 8-bromo-cAMP treatments, known to increase
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Cyp11a1 and Star expression, inhibit Gja1 expression in rat Leydig cells [231]. However,
others have shown that these treatments rather increase GJA1 levels in cultured Leydig
cells [232], suggesting that junctional coupling between Leydig cells is hormonally regu-
lated. Indeed, Gja1 expression and cell-to-cell communication are modulated by long-term
(36 h) stimulation with LH or hCG [232]. Furthermore, GJA1 expression in postnatal Ley-
dig cells has been correlated with testosterone production at different stages of postnatal
development [233]. Indeed, Gja1 expression peaks at P40 and remains elevated through-
out adulthood in rat Leydig cells [231]. Thus, gap junctions may enhance testosterone
production by facilitating the exchange of cAMP between neighboring cells to increase
steroidogenic gene expression. However, the implication of CREB1 in the regulation of
Gja1 expression in Leydig cells remains to be confirmed.

7.2. AP-1 Members

AP-1 members JUN and FOS are major regulators of Gja1 expression in mouse TM3
Leydig cell line [234]. Such synergy involves the recruitment of FOS to an AP-1 DNA-
regulatory element located in the proximal region of the Gja1 promoter (Figure 5). This
element is highly conserved among species, suggesting that the ability of AP-1 members
to regulate Gja1 expression has been conserved throughout evolution. In addition, AP-1
members may be functionally redundant as JUN, JUNB and FOSL2 also efficiently increased
Gja1 promoter activity in TM3 Leydig cells [234]. With significant endogenous levels in
Leydig cells [223,235], FOS or FOSL2 can interact with JUN, JUNB or JUND to regulate
Gja1 expression. Thus, AP-1 dimers binding to the Gja1 promoter may consist of FOS/JUN,
FOS/JUNB, FOS/JUND, FOSL2/JUN, FOSL2/JUNB or FOSL2/JUND in mouse Leydig
cells. AP-1 members are therefore important for optimal Gja1 expression in testicular
Leydig cells. In addition to variations in the abundance of FOS and JUN proteins in Leydig
cells, activation of the Gja1 promoter may also involve their post-translational modifications
by protein kinases and their interactions with other partners or coactivators [121].
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Figure 5. Overview of bZIP transcription factors recruited to the proximal region of the Gja1 promoter.
JUN, JUNB, JUND, FOS and FOSL2 can participate in the formation of homo- or heterodimers to be
recruited to the −45 bp AP-1 DNA regulatory element.

7.2.1. NFE2 Subfamily Members

In response to treatments with the polyphenolic compound luteolin, the transcription
factor NFE2L2 translocates into the nucleus of TM4 Sertoli cells and is associated with
an increased expression of Gja1 [236]. However, even though the Gja1 promoter contains
several NFE2L2 DNA regulatory elements in its proximal region, the recruitment of NFE2L2
to this region remains to be confirmed. In addition, such regulation of Gja1 expression by
NFE2L2 in Leydig cells should be characterized further.

7.2.2. ATF3-like Subfamily Members

As reported previously, JDP2 is highly expressed in MA-10 Leydig cells and is
inducible following activation of the cAMP/PKA pathway (our unpublished observa-
tions). Interestingly, JDP2 overexpression in myocardial cells results in loss of Gja1 ex-
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pression [237], suggesting that such regulatory mechanism may be present in Leydig cells.
Moreover, several JDP2 DNA regulatory elements can be found in the proximal region of the
Gja1 promoter.

7.3. MAF-Related Members

In chicken embryos, overexpression of Maf and Mafa induced ectopic expression of
Gja1 [238]. In human testis, MAF is highly expressed in Leydig cells and cells from the
seminiferous tubules [26]. In addition, the Gja1 promoter contains several MAF regulatory
elements in its proximal region. However, the molecular implication of MAF transcription
factors in the regulation of Gja1 expression in Leydig cells remains to be investigated.

7.4. CEBP Members

In breast cancer cells, CEBPA regulates GJA1 expression by binding to the DNA
regulatory element 5′-AATTGTC-3′ at −456 bp of the promoter region [239]. However,
CEBPA expression in Leydig cells appears to be very low [26]. Thus, its role in the regulation
of Gja1 expression may be replaced by CEBPB but remains to be confirmed.

8. Conclusions

Significant progress has been made over the past 40 years in our knowledge of the
signaling pathways and the underlying processes that control the activity of bZIP transcrip-
tion factors in different cell types. As highlighted in this review, CREB, CEBP and AP-1
members of the bZIP family play important roles in regulating gene expression critical for
adequate Leydig cell function in the testis. Their specificity of action in Leydig cells relies on
bZIP-dependent homo- and heterodimer formation, as well as interactions with other types
of transcription factors or cofactors. Hence, major questions remain regarding the mecha-
nisms of action of bZIP members in Leydig cells and include: What are the contributions
of signaling pathways in the activation of bZIP members and in the formation of dimers
leading to the regulation of Leydig cell-specific target genes? What is the importance of
redundancy between bZIP members in the formation of heterodimers? Can heterodimers
between bZIP members vary depending on the target gene, cellular context, or signaling
pathways activated? How is the binding of bZIP factors to their DNA regulatory elements
coordinated with the recruitment of other transcription factors nearby, and what are the
consequences of these recruitments to DNA on transcriptional regulation? Answers to
these questions are essential to a better understanding of how transcription factors of the
bZIP class influence gene expression in Leydig cells.
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