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Abstract: The conformational heterogeneity of the p53 tumor suppressor, the wild-type (p53wt)
and mutated forms, was investigated by a computational approach, including the modeling and all
atoms of the molecular dynamics (MD) simulations. Four different punctual mutations (p53R175H,
p53R248Q, p53R273H, and p53R282W) which are known to affect the DNA binding and belong to
the most frequent hot-spot mutations in human cancers, were taken into consideration. The MD
trajectories of the wild-type and mutated p53 forms were analyzed by essential dynamics to extract
the relevant collective motions and by the frustration method to evaluate the degeneracy of the
energy landscape. We found that p53 is characterized by wide collective motions and its energy
landscape exhibits a rather high frustration level, especially in the regions involved in the binding to
physiological ligands. Punctual mutations give rise to a modulation of both the collective motions
and the frustration of p53, with different effects depending on the mutation. The regions of p53wt
and of the mutated forms characterized by a high frustration level are also largely involved in the
collective motions. Such a correlation is discussed also in connection with the intrinsic disordered
character of p53 and with its central functional role.

Keywords: p53; mutated p53; molecular dynamics simulations; collective modes; energy land-
scape; frustration

1. Introduction

p53, often called the tumor suppressor protein, plays a crucial role in several biological
functions, such as cell cycle progression, apoptosis induction, and DNA repair [1]. p53 is a
homo-tetrameric protein, with each monomer consisting of an N-terminal transactivation
domain (NTD), a C-terminal domain (CTD), and a large-structured region core domain
(DBD) which binds the DNA response elements [2–5]. The p53 activity is finely tuned by
different processes, such as the interaction with some molecules, such as MDM2, S100,
COP1, and, interestingly, miRNA [6,7]. When p53 does not work properly, for example as a
consequence of a mutation, a drastic increase in diseases, such as cancers, may occur [8].
In more than half of human cancers, mutations are located in the DBD portion [9–11];
this can strongly alter the capability of p53 to perform its tumor suppressive functions
and sometimes leads p53 to acquire new functions (gain-of-function, GOF), including
transcriptional activation of different genes [12]. P53 is characterized by the presence
of some structurally disordered regions which prevent the biomolecule from a full 3D
characterization [13]. Accordingly, p53 belongs to the class of intrinsically disordered
proteins (IDPs) whose partial structural disorder gives rise to the co-existence in the solution
of slightly different conformations [14]. Such a heterogeneity confers to IDP systems the
capability of performing different functions, often through the binding to various biological
molecules [15,16].

From a physical point of view, IDPs can be described within the Frauenfelder’s frame-
work which represents the protein energy landscape as being characterized by several
nearly isoenergetic local minima; with such a picture being reminiscent of that describing
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other complex systems, such as glasses, spin glasses, etc. [17,18]. Briefly, competing interac-
tions among components do not allow these systems to reach a global minimum, instead
a plethora of local minima emerge and are explored during the functional dynamics [19].
Additionally, it is assumed that protein molecules have evolved following the principle
of minimal degeneracy, or frustration, for which the energy of a protein progressively de-
creases as far as it approaches its native state [19]; some residual frustration are still present
to facilitate the fundamental biological functions [20]. In this framework, IDPs constitute
a particular class of proteins whose partial disorder introduces a further contribution to
the frustration of the energy landscape [21]. For its prominent biological role, p53 is an
extremely intriguing example of IDPs whose understanding deserves a large interest from
both the biological and physical point of view.

Very recently, we have put into evidence, by time resolved fluorescence combined
with MD simulations, a conformational heterogeneity of the DBD portion of p53 in the
nanosecond temporal window [22], with such a heterogeneity undergoing a significant
modulation upon varying the external conditions. Here, we are interested to closely address
such a conformational heterogeneity in the same temporal window and in the whole p53
molecule. On the other hand, motions within the time interval of hundreds of nanoseconds
are relevant for many biological processes [23].

With such an aim, we have applied a computational approach to wild-type p53 (p53wt)
and four mutated p53 forms, with each one bearing a punctual mutation. At this stage, the
analysis has been restricted to a p53 monomer. Preliminarily, a model for the whole struc-
ture of the p53wt and of the four mutants have been derived by combining the available
information from the Protein Data Bank (PDB), with previously developed approaches [24].
All these p53 systems have been submitted to molecular dynamics (MD) simulations for a
relaxation, followed by 100 ns long runs for data analysis. The obtained data have been an-
alyzed by two methods: essential dynamics (ED) and frustration analysis. The ED method,
based on principal component analysis (PCA), allows us to extract collective modes from
the conformational space explored by a biomolecule during the MD runs [25]; the collective
mode can be described as the occurrence of simultaneous large amplitude motions involv-
ing different parts of a biomolecule. Upon the assumption that the major collective modes
dominate the functional dynamics, ED has been widely used to extract motions which
could be relevant for the protein functionality. Furthermore, frustration analysis, based on
an energy landscape-inspired theory, allows us to investigate the energetic degeneracy of
protein molecules. Accordingly, protein sites with a high local frustration are expected to
correlate with functional regions related to both binding sites and the regions involved in
allosteric transitions [26].

We have analyzed wild-type p53 (p53wt), and four punctual mutations (p53R175H,
p53R248Q, p53R273H, and p53R282W) which are part of mutations that affect DNA binding
and belong to the most frequent hot-spot mutations in human cancers [27–30]. P53R175H,
in which Arg175 is replaced by His, is one of the most common p53 mutants found at
progressively higher quantities in several tumors, such as lung, colon, and rectal tumors,
and with a particularly high incidence in breast tumors [31–33]. This mutation abolishes
the p53wt ability to recognize its target genes which are involved in tumor suppression,
yet promotes new GOF functions, through direct or indirect associations with DNA [31,34].
P53R248Q, in which Arg248 is replaced by Gln, is one of the most common mutants found
in breast cancers and its presence is also largely used as a patient death predictor [35].
This punctual mutation yields a weakness of the binding to DNA with a concomitant
increase in aggregation propensity [36]. The p53R273H mutant, in which Arg273 is replaced
by His, is characterized by a reduction in the DNA binding capability and it is associated
with an inhibition of the autophagy machinery, promoting cancer cell survival [37]. Finally,
the p53R282W, in which Arg282 is replaced by Trp, is associated with a shorter survival time.
This mutant still retains a partial transcriptional ability, however it exhibits a significant
aggregation propensity [36,38]. All the results have been discussed in connection with the
available information about the effects as induced by the punctual mutations.
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2. Results and Discussion
2.1. Analysis of General Properties

Figure 1 shows the best model for the structure of the p53wt monomer (see Section 3.1)
with the four amino acids submitted to a mutation, represented as colored spheres. All
these residues are located in the northern part of the molecules and they are clustering
around the Zn ion, which is involved at the DNA binding region.
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Figure 1. (A) Graphical representation of the best model for p53wt monomer. The residues submitted
to a punctual mutation are represented as colored spheres: p53R175H (red), p53R248Q (cyan),
p53R273H (yellow), and p53R282W (magenta). The Zn ion is represented as a light grey sphere.
The various p53 domains are marked in different colors. (B) Temporal evolution of the RMSDs for all
the p53 systems.

As described in Section 3.2, each system has been submitted to a preliminary run to
allow for a relaxation of the structures. Successively, 150 ns long runs have been carried out.
Figure 1B shows the representative temporal evolution curves of all the atoms of RMSD,
during the last 150 ns long MD trajectories. In all the cases, we note a rather rapid increase
within the first 5 ns, followed by a slower increase which is practically completed within the
first 50 ns. Then, the RMSDs oscillate around a plateau, consistently with the establishment
of a stable state. The observed trend is qualitatively similar to that usually detected in the
RMSD of other proteins, although the time required to reach a plateau is generally longer.

Such an effect together with the rather high RMSD values reached at the end of the run
(ranging from 0.4 to 0.8 nm) find a correspondence with the presence of some disordered
regions which confer to the protein molecule a higher flexibility. The last 100 ns of the runs
have been used for the data collection.

Table 1 reports the average and the corresponding standard deviation, as derived from
all the 100 ns long runs, for a collection of properties (the root mean square displacement
(RMSD), surface accessible surface area (SASA), and gyration ratio (Rg)) of the five p53
systems. The rather high RMSD values (ranging from 0.4 to 0.8 nm) are consistent with the
presence of some disordered regions which confer to the protein molecule some flexibility.
P53R248H shows a higher RMSD value with respect to that of p53wt, while the other
mutants are characterized by similar values to that of p53wt. Additionally, both the
gyration radius, Rg, and the SASA values of all the mutated forms are almost the same
as those of p53wt, with this indicating that the global dimension of p53 is not affected by
the punctual mutations. Furthermore, the fraction of the amino acid residues involved
into the secondary structure, averaged from the last 10 ns of the runs and reported in the
last column of Table 1, does not exhibit significant changes in comparison to that of p53,
indicating that, in the analyzed temporal window, mutations do not induce drastic changes
in the p53 structure.
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Table 1. General properties of p53wt and the four p53 mutants. RMSD, SASA, and Rg were evaluated
from the 50–150 ns interval of the runs, while the percentage of the secondary structure was evaluated
from the average structure from the last 10 ns (141–150 ns) of the runs.

System RMSD
(nm)

SASA
(nm2)

Rg
(nm)

Secondary Structure
(%)

p53wt 0.50 ± 0.06 216 ± 6 2.22 ± 0.05 64 ± 6

p53R175H 0.53 ± 0.06 215 ± 6 2.26 ± 0.04 63 ± 8

p53R248Q 0.71 ± 0.05 220 ± 3 2.26 ± 0.04 67 ± 9

p53R273H 0.46 ± 0.04 214 ± 4 2.24 ± 0.05 64 ± 8

p53R282W 0.54 ± 0.05 217 ± 5 2.25 ± 0.05 65 ± 7

Figure 2 shows the representative RMSD and RMSF as a function of the residue number,
for all the systems; the position along the chain corresponding to the mutated residues is marked
by black stars, while the grey squares indicate the positions of the main amino acids directly
involved in the DNA binding. The largest part of the peaks in both the RMSD and RMSF
is located at almost the same position in the various systems, although they exhibit a large
variability in the peak intensity, similarly to what was observed in ref. [24]. In some cases,
the deviation of the RMSD and RMSF of mutants with respect to those of p53wt, exceeds the
run-to-run variability. In particular, the RMSDs of p53R248Q show high deviations around
the 32, 320, and 379 residues, while for 53R175H, higher deviations occur at the 186, 289, and
302 residues. Notably, no significant changes are detected around the mutations. However,
we remark that structural information about these mutants and their changes, with respect to
p53wt, is rather poor (see, e.g., refs. [39,40]); the use of techniques such as small-angle X-ray
scattering and kinetic hydrogen-deuterium exchange mass spectroscopy could help to improve
the knowledge of the structural properties of p53 mutants [41,42].
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Figure 2. (A) RMSD and (B) RMSF as a function of the residue number. Positions of the residues
submitted to mutations are marked by black stars, while those of residues involved in the DNA
binding are marked by grey squares.

Concerning RMSF, higher values than those of p53wt appear around 312–316 residues
for both p53R273H and p53R248Q, while lower values are observed at the residue 85 for
p53R282W. In summary, in the analyzed temporal window, the general properties of p53
mutated forms do not significantly deviate from those of p53wt.

2.2. Analysis of p53 Collective Modes

To find out the relevant collective modes of wild-type and mutated p53 molecules, the
MD trajectories have been investigated by the ED method. Indeed, ED allows us to extract
concerted fluctuations with large amplitudes from MD simulations, through PCA. In particular,
collective modes can be described by the eigenvectors derived from the covariance matrix of
atomic fluctuations, with the most relevant modes corresponding to the highest eigenvalues.
The first 30 eigenvalues, ranked in a decremental order, are shown in Figure 3A. In all the cases,
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the eigenvalues rapidly decrease down to a very low value (less than 5% of the maximum)
within the first ten eigenvalues. Similar results have been obtained for other runs. Such
a trend, commonly observed in the eigenvalues of protein modes, indicates that the most
relevant motions are concentrated in a few modes whose dimensionality is represented by the
number of eigenvalues accounting for the first ranked values.
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Table 2 reports the average percentages of the ratio between the sum of the first ten
eigenvalues over the sum of all the ones (column 2). The first ten eigenvalues capture more
than 60% of the total in all the cases, confirming that the dynamics of p53 are dominated by
a few principal modes. No significant changes among the various systems are observed.
This indicates that the investigated mutations do not drastically affect the global dynamics
of p53 consistently with the capability of these mutants to perform, at least in part, their
physiological role.

Table 2. ED and frustration properties of p53wt and of p53 mutants. ED parameters were derived
from the 50–150 ns interval. Frustration index was evaluated from the average structure from the las
10 ns (141–150 ns).

System
Sum of First

Ten/Sum of All
(%)

Width PC1
(nm)

Width PC2
(nm)

Frustration Index
%

p53wt 67 ± 8 35 ± 2 22 ± 4 7.3 ± 0.6

p53R175H 62 ± 3 31 ± 2 24 ± 1 8.6 ± 0.7

p53R248Q 71 ± 7 49 ± 7 32 ± 4 8.9 ± 0.9

p53R273H 66 ± 8 38 ± 3 26 ± 3 8.2 ± 0.6

p53R282W 62 ± 9 31 ± 2 24 ± 2 7.8 ± 0.9

Based on these results, global information about the configurational space sampled by
the p53 systems, can be derived from the first ranked eigenvectors. Representative 2D-plots
of the projection on the first eigenvector (PC1) vs. The second one (PC2) are collectively
shown in Figure 3B, using colored spots. In all the cases, the spots cover a wide region,
indicating the establishment of wide collective modes in both wild-type and mutated p53
molecules. The covered width of PC1 and PC2, averaged over all the runs, are also reported
in Table 2. Notably, for p53wt, the width values are higher than those previously found for
the DBD portion of p53 (of about 15 nm) [43]. Accordingly, wider collective motions are
established in p53wt with respect to those detected for its DBD portion in the same temporal
window. This can be put into a relationship to the presence in the whole p53 molecule of
the CTD and NTD regions (missing in the DBD), which confer to the molecule a higher
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flexibility. Indeed, these regions, being devoted to interacting with several different ligands,
are expected to require some heterogeneity for performing this “hub-like” function [1,13].

PC1 and PC2 of p53R248H and p53R273H cover a wider region in comparison with
p53wt, while they have almost the same extensions for p53R175H and p53R282W, indicating
that punctual mutations can modulate collective modes of p53. Under the assumption that
collective motions play some role in the functionality, these changes are expected to have
some impact on biological response, e.g., on the capability of p53 to interact with ligands.

To closely address the effects of punctual mutations on collective motions in the various
part of the p53 molecule, we have analyzed the extreme projections on the eigenvectors.
The representative snapshots of the extreme projections on the first two eigenvectors of
p53wt are shown in Figure 4. In both the cases, we note the presence of collective modes
throughout the whole protein structure, whose extension, however, varies from region
to region. Regions of p53wt characterized by displacements between the two extreme
projections higher than 0.6 nm are marked by orange sticks. As expected, more diffused
and wider displacements are detected for the first eigenvector with respect to the second
one. The largest displacements appear within both the random coils and α-helices located
at the CTD and NCT portions. Since these parts of p53 are largely involved in the binding to
different partners, such a result is consistent with a functional role of the collective motions.
Additionally, the rather restricted collective modes in the regions involved in β-sheets can
be ascribed to the fact that β-sheets provide the skeleton of the molecule, whose structure
should be preserved for a higher stability of the molecule.
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vector for p53wt. The Zn ion is represented as a sphere. Regions characterized by displacements
between the two extreme projections higher than 0.6 nm are marked by orange sticks.

The region close to the Zn ion, which is involved in the DNA binding, is also charac-
terized by small collective motions. It could be speculated that the presence of restricted
modes in this part could be related to an optimized interaction of p53 with the DNA.

Figure 5 shows the representative snapshots of the extreme projections on the first
eigenvector for the four mutated p53 molecules; again, the differences between the two
extreme projections of the eigenvectors higher than 0.6 nm are marked by red sticks.
These results find a correspondence with the global properties, as reported in Table 2.
Similarly to what was observed for p53wt, rather wide collective modes are detected at
both the random coils and α-helices, while the β-sheets are practically not involved. At
visual inspection, the amplitude of the collective modes appears wider for p53R248Q
(Figure 5B) than those of the other mutants, consistently with what was observed in the
2D-plot. In particular, this mutant exhibits wide collective motions at both the CTD and
the NTD regions, with such a result finding a correspondence with the high propensity of
these regions to form amyloid fibrils, as recently demonstrated [36]. Indeed, wide collective
motions could enlarge the available configurational states, and then it could increase the
interaction capability with additional molecular species. In this respect, it has been recently
observed that changes in the mutation may allosterically propagate to the CTD and NTD
regions, from which fibril nucleation is believed to start [36].
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and Zn ion are represented as spheres. Regions characterized by displacements between the two
extreme projections higher than 0.6 nm are marked by orange sticks.

Both the p53R175H and p53R282W mutants (Figure 5A,D) show reduced collective
modes which, however, involve the whole structure, which is consistent with the data
reported in Table 2. Such a behavior is in agreement with the observed global effects on the
p53 molecule as a consequence of these two punctual mutations. Indeed, the two mutations
in p53R175H and p53R282W have been found to cause global conformational distortions
which, in turn, affect the binding of the DNA. On the other hand, the other two mutants
(p53R248Q and p53R273H) are classified as contact mutants since their mutations mainly
affect the contact with the DNA [28–30]. Interestingly, the H2-helix, which directly interacts
with DNA, is involved in collective motions in all the mutants. Such a behavior is consistent
with a modulation of the capability of these mutants to interact with DNA as experimentally
observed [44]. Finally, we note that the region around the punctual mutations shows some
wider collective modes for both the p53R248Q and p53R273H mutants. Generally, the
establishment of new collective motions, or their enhancement in mutants, with respect to
p53wt, may engender new binding capabilities and then new functionalities, in connection
with the GOF hypothesis.

Therefore, the ED analysis on wild-type and mutant p53 molecules indicates the
presence of wide collective modes through the molecule, with a large involvement of
both random coils and α-helices in regions where the binding of ligands is expected; this
may have some effect on the p53 response. These results support the conformational
heterogeneity in the analyzed temporal window, that punctual mutations can induce some
change in the collective modes with possible consequences on the p53 functionality.

2.3. Analysis Frustration

The degeneracy of the energy landscape, called also frustration, in wild-type and
mutated p53 molecules has been investigated by applying the frustration analysis, as
described in Section 3.3. We have first evaluated the total frustration index, which is a
parameter developed within the network theory to quantify the degeneracy of a local
minima in the energy landscape and widely used in different fields, such as physical,
chemistry, biological, and social systems [45]. In proteins, the frustration index is related to
the contacts between amino acids and it quantifies how much a residue pair contributes to
the energy of a given structure compared to what it would contribute in a typical molten
globule configuration [26]. The total frustration index, obtained by averaging over all the
residues and all the runs from the last 10 ns of the run, is reported in Table 2. For p53wt,
we found a frustration index of 7.3, while a higher value is detected for the p53R248Q.
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The other mutants are characterized by a total frustration index, which is almost the same
of that of p53wt. Since the local properties of the structural and dynamical properties of
a protein molecule are crucial for its functional response, we have investigated the local
frustration around each residue of the p53 molecules. In particular, we have analyzed the
snapshots and the related frustration maps of the average structures as derived from the
last 10 ns of the run. A representative snapshot and the related map of p53wt are shown in
Figures 6 and 7, respectively. In the map, red and green spots indicate residues with a high
and low frustration, respectively, with spots along the diagonal providing a connection
between residues which are close along the chain, while spots out of the diagonal indicate
spatially close residues, but they belong to different parts of the molecule. In snapshots,
connections between residues characterized by a high frustration are marked by red dashed
lines, while those with a low frustration are marked by green dashed lines. In the following,
we have focused our attention to the clusters of spots, by labeling with C the main clusters
along the diagonal and with O those out of the diagonal.

In the map shown in Figure 6, several spots can be visualized. Red spots, correspond-
ing to a high frustration, are observed along and out of the diagonal. Three main clusters of
red spots, labeled as C1, C2, and C3 and marked by blue circles, appear along the diagonal.
Some red spots can be also observed out of the diagonal, with two small clusters, labeled
as O1 and O2. The regions corresponding to a high frustration can be better visualized in
the related snapshot, shown in Figure 7. Clusters C1 and C3 involve the random coils of
the NTD and CTD, respectively, while C2 is at the H1-helix. The two small clusters, O1
and O2 connect the NTD and CTD of the molecule. Furthermore, the region close to the
Zn ion is also characterized by the presence of some frustration. We are also interested to
discuss the results from the frustration with those obtained by ED analysis. A comparison
between Figures 4A and 7 suggests some correlation between the frustration level and the
collective motions. In particular, regions characterized by wide collective motions are also
characterized by a high frustration level.
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Figure 6. Frustration map of p53wt showing colored spots to indicate the level of frustration: green
represents minimal frustration and red high frustration. The main clusters along the diagonal,
corresponding to connections between residues close along the chain, are indicated by blue circles.
The main clusters out of the diagonal, corresponding to connections between residues spatially close
but belonging to different part of the molecule, are indicated by red circles.
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Figure 7. Frustration snapshot of p53wt.The level of frustration is represented by the colored scale:
green represents minimal frustration and red high frustration. The residues submitted to punctual
mutations and the Zn ion are represented as spheres.

Figure 8 shows a representative snapshot of the p53R175H mutant. Regions of the
molecule where the main clusters have been detected in the map are again marked by C and
O letters. At the H1-helix, the cluster C2, shared with the p53wt, is detected. New clusters
(labeled as C4-C6 and O3) appear at different positions. The C4 cluster, partially involving
residues located in the back part, also involves a random coil of the NTD. Additionally,
C5 occurs at the DBD and C6 at the CTD; the O3 cluster involves residues belonging to a
different portion of the random coil in the NTD. Notably, at the CTD region, where the C3
cluster has been detected in p53wt, no frustration appears. Since this portion is involved in
the binding of several ligands, the loss of frustration could be related to a decrease in the
p53R175H functionality, with respect to p53wt. Again, a comparison of the results obtained
for the frustration and collective motion of p53R175H (see Figure 5A) puts into evidence
that there is some correlation between the frustration and collective motions; this can be
seen, e.g., for residues around C2 and C4.
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Figure 8. Frustration analysis of p53R175H. The level of frustration is represented by the colored
scale: green represents minimal frustration and red high frustration. The mutated residue (175H, red)
and the Zn ion (grey) are represented as spheres.

The snapshot of p53R248Q, shown in Figure 9, exhibits a rather high level of frustration
throughout the molecule, consistent with the high value for its total frustration index. Three
main clusters (labeled as C2, C3, and C4), involve residues close along the chain. C2 and C3
are shared with p53wt, while C4 is shared with p53R175H. The cluster O4, involving residues
out of the diagonal, connects different portions in the CTD part. The high frustration level
detected at the CTD could be put into relationship to the high propensity of this regions to
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form fibrils, as recently put into evidence by [36]. Indeed, a high frustration can give rise
to several slightly different conformations which, in turn, could increase the possibility of
interacting with surrounding molecules. A comparison between Figures 5B and 9 shows that
C1 and C2 are characterized by both a high frustration and wide collective motions.
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Figure 9. Frustration analysis of p53R248H. The level of frustration is represented by the colored
scale: green represents minimal frustration and red high frustration. The mutated residue (248H,
cyan) and the Zn ion (grey) are represented as spheres.

The snapshot of p53R273H, shown in Figure 10, is characterized by a close similarity
to that of p53wt. Indeed, we note the presence of the C1, C2, and C3 clusters along the
diagonal shared with p53wt, and a further cluster, C4, shared with p53R175H, involving
the NTD. Additionally, we note that the O2 cluster connecting the NTD and CTD portions
is also shared with p53wt. From a comparison between Figures 5C and 10, it emerges that
the regions around C1, C2, and C3 are also characterized by a high frustration and wide
collective motions.
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yellow) and the Zn ion are represented as spheres.

Finally, the snapshot of p53R282W, shown in Figure 11, again exhibits the C1, C2, and C3
clusters, shared with p53wt, and a further rather dense cluster C5, shared with p53R175H.
Additionally, we note the cluster O5, involving different portions of the DBD and even regions
around Zn, exhibits a high frustration; such results deserve some interest in connection with
the DNA binding properties. Furthermore, by comparing Figures 5D and 11, again we note
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some correlation between the regions’ high frustration and the wide collective motions, such
as those around C1, C3, and O5.
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Globally, these results show that the p53 monomer is characterized by a high level
of frustration, mainly in regions forming random coils, with these regions being also
involved in binding with ligands. As already mentioned, IDP molecules, to which p53
belongs, are often required to bind several different ligands to perform their functional
role. Accordingly, it can be speculated that the high frustration in these biomolecules
could be the result of an evolution to fulfil their functional role. Along this direction, the
evidence that punctual mutations can locally alter frustration could provide an explanation
for the effects of mutations on the functionality. Furthermore, it is interesting to note that a
punctual mutation can modify frustration, even at regions far from the mutations, with this
supporting the complex character of this protein, for which even a tiny change in a part of
the system could alter its global behavior.

Finally, it deserves some interest to discuss the results about frustration in connection
with those of the collective modes. The qualitative comparison between the frustration
level and the presence of collective motions in the p53 molecule indicates that collective
motions mainly appear in regions characterized by a high frustration, with this suggesting
a close interplay between these two aspects. Indeed, a high frustration is related to the
presence in the energy landscape of many nearly isoenergetic minima, which are expected
to correspond to slightly different local arrangements of protein atoms (i.e., conforma-
tional states). On the other hand, a collective mode, which involves various parts of the
biomolecule, could be described as a collection of different local conformational states of
the biomolecule; with this being likely finalized to perform a specific role. In this picture, a
high frustration index of a molecular portion could be a required condition to give rise to
collective motions. In other words, the energy landscape of a protein could be evolved to
assure the presence of several minima (a high frustration) in order to assure a variety of
different conformational states, eventually leading to the establishment of collective modes,
which could be essential to perform a given functional role.

3. Computational Methods
3.1. Modeling of p53 Molecules

The model of the full-length wild-type p53 monomer (393 amino acid residues) was
built from the amino acid sequence using the I-TASSER suite [46,47], including the B chain
of the DBD portion (94–289 amino acid residues), in complex with a consensus DNA
(1TUP entry from the protein data bank) [5]. The available information about the missing
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portion which includes the N- and C-term was taken into consideration in I-TASSER.
The predicted protein structure was characterized by a medium confidence with a C-score
of 2.37 and a TM score of 0.44–0.14, for Model 1. According to ref. [24], we assumed that
Model 1 provides a realistic starting point for the MD simulation to investigate the intrinsic
flexibility of p53. The Zn ion, which is tetrahedrically coordinated to the side chains of
Cys176, His179, Cys238, and Cys242, forms a Zn-finger motif connected to the L2 and L3
loops [48]. The interaction of the Zn ion with its ligands was treated through a bonded
approach in which the Zn-N and Zn-S bonds and the S-Zn-S angles were set according to
the parameters provided in refs. [49–52]. Punctual mutations were inserted by the Swiss
PDB Viewer software starting from the p53wt model [53]. In particular, in p53R175H,
Arg175 was replaced by His; in P53R248Q, Arg248 was replaced by Gln; in p53R273H,
Arg273 was replaced by His; and finally in p53R282W, Arg282 was replaced by Trp.

3.2. Molecular Dynamics (MD) Simulations and Analysis

MD simulations of wild-type and mutated p53 molecules in water were carried out
by the GROMACS 2018 package [54], using AMBER03 and SPC/E Force Fields for the
protein [55] and for water [56], respectively. Each p53 molecule was centered in a cubic
box, with dimension 9.0 × 9.0 × 9.0 nm3, filled with water molecules to assure a minimum
hydration level of 8 g water/g protein. A number of water molecules, ranging from
21,973 to 22,035, were added to the various protein systems. The ionization states of the
protein residues were fixed at pH 7, and 36 water molecules were randomly substituted
with an equal number of Na+ ions to keep the systems electrically neutral. The final
systems had a total number of atoms ranging from 71,941 to 72,151. Simulations were
performed by following the same procedures used in refs. [52,57]. Briefly, the Linear
Constraint Solver (LINCS) algorithm was utilized to constrain the H bonds [58], while the
electrostatic interactions were computed using the particle mesh Ewald (PME) method with
a lattice constant of 0.12 nm [59,60]. Each system was submitted to an energy minimization
procedure by using the steepest descent method. After minimization, the system was
heated to 300 K with steps at 50, 100, 150, and 250 K and submitted to a 50 ns long MD
trajectory for equilibration at 300 K, followed by further a 150 ns for the data collection.
Periodic boundary conditions in the NPT ensemble with T = 300 K and p = 1 bar, with
a time steps of 2 fs. The temperature was controlled by the Nosé-Hoover thermostat
with a coupling time constant τT = 0.1 ps [61], while the Parrinello–Rahman extended
ensemble, with a time constant τP = 2.0 ps, was used to control the pressure [62]. For each
system (wild-type protein and mutated forms), five independent runs were performed,
and the MD trajectories were analyzed by the GROMACS package tools [54]. The temporal
evolution of the resulting trajectories was monitored by following the Root Mean Square
Displacement (RMSD), the Root Mean Square Fluctuation (RMSF), the Surface Accessible
Surface Area (SASA), and the gyration ratio (Rg) according to the methods described in
ref. [63]. The figures were created with Pymol and VMD [53,64].

3.3. Essential Dynamics (ED) Analysis

The MD trajectories were analyzed by PCA and, in particular, by the ED method
implemented in GROMACS [65,66]. Such an approach identifies a new reference frame to
describe the overall dynamics of the system, allowing us to extract the protein motions
which are mostly contributing to the overall dynamics [67]. ED was carried out by the
Covar and Anaeig subroutines of GROMACS [65,66]. After a least square fit to remove the
roto-translations, the covariance matrix Cij was calculated by:

Cij = 〈(xi − 〈xi〉)
(
xj − 〈xj〉

)
〉 (1)

where xi are the x, y, and z Cartesian coordinates of the Cα atoms of the DBD and the <>
brackets indicate an average over the trajectories. Cij was diagonalized by finding out a set
of eigenvalues and eigenvectors; with the eigenvectors corresponding to directions in an N



Int. J. Mol. Sci. 2022, 23, 12636 13 of 16

dimensional space and are called principal coordinates (PCs), while the eigenvalues represent
the total mean square fluctuations along the corresponding eigenvectors.

3.4. Frustration Analysis Method

The energy landscape of the p53 molecules was investigated by applying the algorithm
implemented in the Protein Frustatometer 2 Server http://frustratometer.qb.fcen.uba.ar/
(accessed on 19 October 2022). The frustration index (Fm

i,j ), or Z-score, for the contact
between the amino acids i and j was calculated through the following expression [68,69]:

Fm
i,j =

EN
i,j − 〈EU

i,j〉√
1/N ∑n

k=1

(
EN

i,j − 〈EU
i,j〉
)2

(2)

where EN
i,j and EU

i,j are the pairwise interaction energies of the molecule in the reference

(U) and in the decoy configuration (N), respectively; <EU
i,j> being the average energy of

the decoys. For the analysis, a region of 5 Å from the Cα-atom for each residue was used.
The energy distribution of the decoy was calculated using the configurational frustration,
in which the native interaction between the two residues was measured by randomly
selecting amino acids from the protein composition and even by changing the location.
The energy includes the electrostatics with the k constant fixed at 4.15, which corresponds to
a relative electric constant of 80. The frustration index of the p53 structures was calculated
by averaging 100 snapshots sampled in the last 10 ns of the 150 ns long runs.

4. Conclusions

Our computational analysis allowed us to investigate the collective modes and the
degeneracy of the energy landscape of p53wt and the four mutated forms, in the tempo-
ral window of 100 ns. The ED method revealed the establishment of collective modes
in p53, with a large involvement of the regions containing the binding sites of physio-
logical ligands; this supports a strong connection between the collective modes and the
functionality. The amplitude of the collective motions undergoes some changes varying
with the specific mutation and differently affecting the various regions of the molecule.
The effects, as due to the punctual mutations on the global dynamical behavior of p53,
could be related to the acquisition of a new functionality for mutated p53, consistent with
the GOF picture. The frustration analysis indicated: (i) regions with a high frustration
are the same and largely involved in collective motions and (ii) punctual mutations can
significantly modulate frustration, even of regions far from the mutations. These results
confirm the intricate relationship between the structure and dynamic of p53, suggesting
some impact on its functionality. Although the capability to affect the functionality by
acting on the p53 structure (e.g., by introducing punctual mutations) is still far from being
reached, these results provide some clues on how a punctual mutation can modulate the
energy landscape, and then the functionality.
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