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SM1. Morphology of the cell nucleus 

The mean radius of the spherical cell nucleus used in the MCF MKM calculations (Rn) was derived from the 
morphologic information of Table SM1.  

R = radius of the spherical cell nucleus as reported in literature (𝑅௡   =  𝑅). 

D = diameter of the spherical cell nucleus as reported in literature (𝑅௡   =  𝐷/2). 

A = cross section area of the cell nucleus for fixed cells (𝑅௡ =
ට

ಲ

ഏ

√ଷ
య ). 

V = volume of the cell nucleus (𝑅௡ = ට
ଷ

ସ గ 
𝑉

య
). 
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Table S1. Morphology of the cell nucleus as reported in literature. 

Cell line abbreviation Reported quantity Reference Radius of the 
cell nucleus, Rn 
[µm] 

Mean value of 
Rn,

[µm] 

Cell lines included in this article 
C3H10T1/2 D = 6-10 µm Lammerdig, 2011 3.0-5.0 4.0 

CHO, CHO-K1 A = 108 µm2 

A = 127 µm2 

V = 265 µm3 

Weyrather et al., 1999 
Konishi et al., 2005 
Gacsi et al., 2005 

4.06 
4.41 
3.98 

4.16 

HeLa V = 690 µm3 

A = 219 µm2 
Monier et al., 2000 
Konishi et al., 2005 

5.48 
5.79 

5.63 

NB1RGB A = 172.3 µm2 Suzuki et al., 2000 5.13 

Additional cell lines used for the phenomenological correlation between mean DNA content and Rn (Equation 8 of the article) 
A-172 A = 209.1 µm2 Suzuki et al., 2000 5.66 

A-549 A = 182.3 µm2 Suzuki et al., 2000 5.28 

AG01522 A = 140 µm2 

A = 133 µm2 
Azzam et al., 1998 
Chaudhary et al., 2016 

4.63 
4.51 

4.57 

Becker A = 203.9 µm2 Suzuki et al., 2000 5.58 

C32TG A = 166.6 µm2 Suzuki et al., 2000 5.05 

HFL-III A = 142.9 µm2 Suzuki et al., 2000 4.68 

HSG R(G1) = 4.1 µm 
R(G2) = 5.2 µm 

Kase et al., 2006 
Kase et al., 2006 

4.47* 

KNS-60 A = 263.8 µm2 Suzuki et al., 2000 6.35 

KNS-89 A = 187.3 µm2 Suzuki et al., 2000 5.35 

KS-1 A = 221.4 µm2 Suzuki et al., 2000 5.82 

LC-1 sq A = 230.3 µm2 Suzuki et al., 2000 5.93 

Marcus A = 187.9 µm2 Suzuki et al., 2000 5.36 

ONS-76 A = 176.9 µm2 Suzuki et al., 2000 5.20 

SF126 A = 150.9 µm2 Suzuki et al., 2000 4.80 

SK-MG-1 A = 218.1 µm2 Suzuki et al., 2000 5.78 

T98G A = 282.5 µm2 Suzuki et al., 2000 6.57 

U-251MG(KO) A = 219.9 µm2 Suzuki et al., 2000 5.80 

V79 R = 4.0 µm 
D = 8.0 µm 
A = 87.8 µm2 

A = 113 µm2 

Kassis et al., 1989 
Howell et al., 1991 
Weyrather et al., 1999 
Tracy et al., 2005 

4.0 
4.0 
3.67 
4.12 

3.96 

* = the average Rn for the HSG cell line was calculated assuming that asynchronized cell lines can be approximated by a
cell population with a 2:1 distribution of cells in G1 and G2 phase (see Parisi et al., 2022).
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SM2. RBE for surviving fractions other than 10% 

For better clarity, the comparison between in vitro data and in silico calculations (MCF MKM and published LEM 
IV results) was limited to α, ß and RBE10% in Figures 2-12 of the article. Nonetheless, as shown in a previous 
work with the MCF MKM (Parisi et al., 2022), the model can compute RBE values for other surviving fractions. 
For each cell line, Figures SM1-14 shows examples of RBE values calculated with the MCF MKM for surviving 
fractions of 50% and 1%. Corresponding in vitro data from the Particle Irradiation Data Ensemble (PIDE, 
Friedrich et al., 2013) are included for comparison.  

Figure S1. RBE50% and RBE1% for the C3H10T1/2 cell line: MCF MKM predictions compared with published in vitro data from 
PIDE 3.2 (Friedrich et al., 2021).  

Figure S2. RBE50% and RBE1% for the CHO and CHO-K1 cell lines: MCF MKM predictions compared with published in vitro data 
from PIDE 3.2 (Friedrich et al., 2021).  
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Figure S3. RBE50% and RBE1% for the PDV cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  

Figure S4. RBE50% and RBE1% for the RAT-1 cell line: MCF MKM predictions compared with published in vitro data from PIDE 
3.2 (Friedrich et al., 2021).  

Figure S5. RBE50% and RBE1% for the HeLa cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  
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Figure S6. RBE50% and RBE1% for the HF-19 cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  

Figure S7. RBE50% and RBE1% for the HeLa cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  

Figure S8. RBE50% and RBE1% for the M/10 cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  
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Figure S9. RBE50% and RBE1% for the NB1RGB cell line: MCF MKM predictions compared with published in vitro data from PIDE 
3.2 (Friedrich et al., 2021).  

Figure S10. RBE50% and RBE1% for the SQ20B cell line: MCF MKM predictions compared with published in vitro data from PIDE 
3.2 (Friedrich et al., 2021).  

Figure S11. RBE50% and RBE1% for the T1 cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  
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Figure S12. RBE50% and RBE1% for the TK1 cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  

Figure S13. RBE50% and RBE1% for the U-87 cell line: MCF MKM predictions compared with published in vitro data from PIDE 3.2 
(Friedrich et al., 2021).  

Figure S14. RBE50% and RBE1% for the U-251MG cell line: MCF MKM predictions compared with published in vitro data from PIDE 
3.2 (Friedrich et al., 2021).  
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SM3. RBEα for the U-251MG cell line 

As discussed at the end of the Discussion section of the article, the in vitro data from PIDE (Friedrich et al., 
2013) for the human astrocytoma cells (U-251MG cell line) are characterized by a relatively low value of αref, 
but relatively large values of α after exposures to 12C ions. Therefore, large values of RBEα (RBEα = α/αref) 
were obtained, as shown in Figure SM15. 

Figure S15. RBEα for the U-251MG cell line: comparison between MKM MCF predictions and in vitro data. 
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