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Abstract: To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to
prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants
can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which
forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concen-
tration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased
aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essen-
tially depends on a complex interaction between protectants and bilayer composition. Furthermore,
different types of CPAs have distinct effective mechanisms of action; therefore, the combination
of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the
CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA
interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for
preventing leakage of drugs from liposomes.

Keywords: freeze drying; freeze-thaw; liposome(s); cryoprotectants; drug delivery; phospholipid–
CPA interactions

1. Introduction

Liposomes undergo freezing during formulation and post-formulation in the form
of freeze-drying and freeze-thawing respectively. These techniques commonly employ
the use of cryoprotective agents (CPAs) or cryoprotectants to warrant the stability of
liposomes during the freezing process [1]. The major obstacles when it comes to freezing
lipid membranes are intracellular formation of ice, cryoinjuries and osmotic injuries during
the freeze-thaw cycle [2,3]. CPAs prevent damage by regulating the rates of water transport,
nucleation and ice formation [2,4]. Examples of CPAs frequently used when freezing
liposomes are dimethyl sulfoxide (DMSO), glycerol, polymers (polyampholytes), ethylene
glycol, propylene glycol, sugars such as trehalose and sucrose, amongst others.

The inception of liposomes as drug carriers have been a big game changer in the
pharmaceutical space due to their numerous drug delivery abilities. Due to their structural
resemblance to biologic membranes and their utility as drug delivery systems, liposomes
have been the subject of research since the 1960s [5]. Unlike some drug carriers, liposomal
drug delivery systems (DDS) are non-cytotoxic with enhanced stability and high encapsu-
lation efficiency [6,7]. Liposomes also increase the therapeutic index of drugs by increasing
the half-life of drugs, enabling active targeting via site specific ligands and improving the
transport of drugs across membranes [8,9]. Furthermore, the great biocompatibility [10]
and the potential of liposomes to entrap hydrophobic drugs in their bilayer membrane and
hydrophilic drugs in their aqueous core makes them more desirable in the pharmaceutical
industry [11].

In spite of all the tremendous characteristics of liposomes, there are still some con-
cerns about their prolonged storage stability and preservation. Additionally, freezing of
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liposomes for lengthy liposomal clinical trials destabilizes the liposomes without the use
of cryoprotectants [12] or the use of ineffective CPAs (Figure 1). The majority of studies
conducted on the preservation of liposomes is mainly focused on lyophilization (freeze
drying) [13–15]. Lyophilization is typically used as an essential method to increase the
stability of liposomal drugs, make storage, transportation, and product shelf-life easier,
and all of these goals. Moreso, even though the use of non-permeating CPAs (carbohy-
drates and sugars) have been largely employed in the lyophilization of liposomes [16–18],
little information is available on the use of other permeating CPAs besides DMSO in the
lyophilization of liposomes [19,20]. Therefore, in this paper, we seek to review the applica-
tion of liposomes as drug delivery systems and lipid–CPA interactions of phospholipids
as well as their thermotropic behavior. Then, we further discuss the various types and
examples of CPAs that can be used during liposome freezing and how lipid interactions
with CPAs prevent leakage of drugs from liposomes.
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Figure 1. Freezing/lyophilization of drug-loaded liposomes with and without the addition of
cryoprotective agents (CPAs).

2. Application of Liposomes in Drug Delivery

Among other drug carriers, liposomes exhibit limitless capacities for effective deliv-
ery of drugs to the targeted area [6]. In addition to boosting stability by encapsulation,
liposomes have also been seen to increase pharmacological efficacy and therapeutic index,
improve pharmacokinetic effects (i.e., decrease clearance and lengthen circulation lifetime)
and reduce the toxicity of encapsulated substances [6,8,21]. Liposomes were first described
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as swollen phospholipid bodies with absolute size and shape variability that completely
encloses an aqueous mass inside of it to form little sphere-shaped vesicles (Figure 2) [22].
The key components used in the preparation of liposomes are cholesterol, glycolipids, sph-
ingolipids, non-toxic surfactants, long-chain fatty acids and membrane-bound proteins [23].
Liposomes can be synthesized in a variety of ways for drug delivery. Nevertheless, there
are four fundamental steps in each of the procedures used to fabricate liposomes. These
include drying lipids from organic solvents, dispersing them in an aqueous media, pu-
rifying the resulting liposomes and evaluating the finished product. Both passive and
active loading methods are applied when loading a drug into a liposome. The passive
loading methodology is known to include three different methods: solvent dispersion
method, mechanical dispersion method, and detergent removal method (i.e., to remove
free drug) [24,25].
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sensitive, and magnetic-response liposomes.

Liposomes can differ in their design based on their preparation method (extrusion
techniques, reverse phase evaporation method, sonication, dehydration method, and more
recently, microfluidics) [26,27] and their structural parameters in terms of size, charge
and lamellarity (unilamellar, multilamellar and oligolamellar vesicles) [6]. They can also
differ based on their function, application and composition. Some examples and types of
liposomes based on their composition are conventional liposomes, long-circulating lipo-
somes, temperature-sensitive liposomes, pH-sensitive liposomes, light-sensitive liposomes,
immunoliposomes (ILs), enzyme-sensitive liposomes and magnetic-response liposomes
(Figure 2) [6,28]. A liposome can range from nano to micro-sized vesicles having one or
two membrane layers.

A key factor influencing the circulatory half-life of a liposome is the size of its vesicle.
The ability of a liposome to encapsulate active agents is influenced by both the number and
size of bilayers. Liposomes are divided into three types based on the quantity and size of
their bilayers: unilamellar vesicles (ULV), multilamellar vesicles (MLV) and multivesicular
vesicles (MVV) (Figure 3) [29,30]. Unilamellar vesicles can also be divided into giant
unilamellar vesicles (GULV), large unilamellar vesicles (LUV) and small unilamellar vesicles
(SUV), all of which have a size range between 100 and 1000 nm. While the vesicles in
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multilamellar liposomes have an onion structure, the aqueous solution is entrapped by a
single spherical phospholipid bilayer in a unilamellar liposome.
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2.1. Liposome-Cell Interaction

Liposomes interact with cells in different ways to exert their effects inside the human
body. There are two basic forms of liposome interactions with cells: pH-sensitive and
cationic interactions [31]. Negatively charged liposomes entrap DNA within their aque-
ous compartment in a pH-sensitive interaction, as opposed to forming stable complexes
(lipoplexes). Whereas, in a cationic reaction, liposomes made up of positively charged lipids
(lipofectin) and co-lipids, interact with negatively charged DNA molecules to produce a
stable complex [32]. pH-sensitive interaction with cells is usually applied during DNA
delivery in vivo, while gene therapy makes use of cationic interactions. Moreover, when
cells and liposomes interact, the following occur, as exhibited in Figure 4 [33]: (1) Liposomes
adhere to cellular membranes and appear to fuse with them, releasing their contents into
the cell; (2) Liposomes are engulfed by cells, incorporating their phospholipids into the cell
membrane and releasing the constituents; (3) Liposomes are taken up by phagocytic cells,
where the lysosomes break down their phospholipid walls and release their constituents.

Another way liposomes are internalized by cells is through the endocytic pathway. For
entrapped molecules to be delivered intracellularly, liposomes interact with endosomes and
lysosomes and require membrane fusion or lipid mixing with these membranes. The most
common endocytotic mechanisms for the intracellular delivery of liposomes in normal
cells are caveolae-mediated endocytosis (CavME), clathrin-mediated endocytosis (CME)
and micropinocytosis [34,35]. CavME tends to internalize relatively small lipoplexes, while
CME and macropinocytosis prefer to take up the larger ones by dendritic cells (DCs)
originating from bone marrow [36]. However, Bae et al. discovered that in COS-7 cells,
1,2-dioleoyl-3-trimethylammonium propane (DOTAP) liposomes of various diameters and
cholesterol ester liposomes were internalized mostly by the CME pathway [37].
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Furthermore, to achieve the desired efficacy of nucleic acid-loaded liposomal ther-
apy, endosomal escape, which is dependent on membrane fusion, is an essential step
for lipoplexes to be trapped in endosomes. According to numerous studies, liposomes
can transport drugs that are entrapped into the cytosol directly by membrane fusion as
opposed to through the endocytic pathway [38–42]. The intracellular pharmacokinetics of
liposomal compositions and their absorption processes have been shown to be correlated.
There are special combinations of liposomes that have various absorption mechanisms
but the same lipid makeup. For instance, cationic liposomes (K3C14) with lysine heads
and ditetradecyl tail chains demonstrated notable cellular uptake and lysosome disruption
while maintaining the activity of the compounds they contained [43,44]. Cationic liposomes
constructed of K3C16, however, demonstrated cellular internalization through a membrane
fusion mechanism [45].

2.2. Applications of Liposome

Most drugs, irrespective of their solubility, can be encapsulated in a liposome, and
such drugs are protected from the action of external media, particularly enzymes [46,47]
and inhibitors. However, for a liposome to be considered an effective drug delivery system,
understanding the lipid–drug interaction and the liposome disposition mechanism is very
necessary. Usually, drugs with widely ranging lipophilicities are encapsulated in a liposome
either in the aqueous core or at the bilayer interface [46]. Drugs encapsulated in liposomes
are expected to be transported without rapid degradation and minimum side effects to
the recipients, as liposomes possess properties of weak immunogenicity, limited intrinsic
toxicity, produce no antigenic or pyrogenic reactions and are biologically inert [46].

The success of liposomes as drug carriers has been reflected in a number of liposome-
mediated formulations that are currently available commercially and approved for use in
clinical studies [48]. A sizable number of other anti-cancer medicines, including DaunoXome®,
Depocyt®, Myocet and OnivydeTM [48,49], have been successfully produced since the first
liposome formulation (Doxil®) was developed [50]. Furthermore, the use of liposomes
is not only limited to the administration of anti-cancer therapies but also anti-bacterial,
nucleic acids, anti-viral (Epaxal®, Inflexal®), pain relief agents (DepoDurTM, Exparel®) and
anti-fungal (Abelcet®, Ambisome®, Amphotec®) [40–42,51–53], as exhibited in Table 1.
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Table 1. A table indicating typical FDA approved and marketed liposomal products [6].

Active Product Trade Name Lipid Composition Formulation Type Targeted Disease Company

Amphotericin B Ambisome HSPC:DSPG, chol 2:0.8:1 M Freeze dried Fungal and protozoal infection Gilead Sciences

Amphotericin B Amphotec Cholesteryl sulphate:Amphotericin B
1:1 M Freeze dried Severe fungal infections Ben Venue

Amphotericin B Abelcet DMPC:DMPG 7:3 M Aqueous dispersion Invasive severe fungal infections Enzon
Amykacin Arikayce DPPC:chol Aqueous dispersion Mycobacterium avium lung disease Insmed
Cytarabine Depocyte DOPC:DPPG Aqueous dispersion Malignant lymphomatous meningitis Pacira (formerly Skye Pharma)

Daunorubicin DaunoXome DSPC:chol 2:1 M Aqueous dispersion HIV-related Kaposi’s sarcoma Gilead Sciences

Daunorubicin/Cytarabine Vyxeos DSPC:DSPG:chol 7:2:1 Freeze dried
Therapy-related acute myeloid leukemia

(t-AML) or AML with myelodysplasia-related
changes (AML-MRC)

Jazz

Doxorubicin Myocet EPC:chol 55:45 M Freeze dried Combination therapy with cyclophosphamide
in metastatic breast cancer Zeneus

Glycoprotein E based vaccine Shingrix AS01b:MPL-L; QS-21 (n), DOPC, chol Aqueous dispersion Vaccine for the prevention of shingles
(herpes zoster) GSK

Inactivated hepatitis A virus Epaxal DOPC:DOPE 75:25 M Aqueous dispersion Hepatitis A Berna Biotech
Inactivated hemagglutinin of

Influenza virus strains A and B Inflexal V DOPC:DOPE 75:25 M Aqueous dispersion Influenza Berna Biotech

Irinotecan Onivyde DSPC:MPEG-2000:DSPE 3:2:0.015 M
Combination therapy with fluorouracil and
leucovorin in metastatic adenocarcinoma of

the pancreas
Merrimack Pharmaceuticals

Morphine Sulphate DepoDur DOPC, DPPG, Cholesterol
and Triolein Pain management SkyPharma

Paclitaxel Abraxane Freeze dried Non-small-cell lung cancer (NSCLC),
metastatic breast cancer and pancreatic cancer Abraxis BioScience

PEG-doxorubicin Doxil/Caelyx HSPC:chol:DSPE-PEG 56:39:5 M Aqueous dispersion Metastatic ovarian cancer, AIDS-related
Kaposi’s Sarcoma, multiple myeloma Ortho Biotech, Schering-Plough

Verteporfin Visudyne EPG:DMPC 3:5 M Freeze dried Ocular histoplasmosis, age-related macular
degeneration, pathologic myopia QLT, Novartis
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Liposomes have been applied in a number of purposes due to the many advantages
they possess. As per their applications, liposomes have been useful both generally and
clinically [42]. A general application of a liposome can be ascribed to its use in brain target-
ing. This is evidenced by the fact that, due to the biodegradable and biocompatible nature
of liposomes, liposomal amitriptyline when administered was found to be able to cross the
blood brain barrier rather than when administered systemically, proving its application
in brain targeting [44]. As seen in Table 1, liposomes have generally been applied also
in respiratory disorders, vaccine adjuvants and anti-infective agents, accounting for their
pleiotropic potential [54] and eye disorders, i.e., recently approved liposomal verteporfin
was found to be effective against eye disorders [55].

The application of liposomes in the delivery of NA therapeutics has helped overcome
the challenge of clearance by enzymatic degradation nucleuses and the reticuloendothelial
system (RES). As such, liposomes are now employed as carriers for the delivery of either
siRNAs, antisense ODNs/ON, ribozymes, or used as plasmid vectors for gene therapy with
the goal of downregulating certain genes [56,57]. Genetic modification and low molecular
therapy can be combined in order to boost the efficacy of gene therapy. To increase the
anti-cancer efficacy of doxorubicin (DXR) in lung cancer cells, Saad et al. [58] developed
cationic liposomes for the simultaneous delivery of DXR and siRNA, targeting the multi-
drug resistance (MDR) protein. Later, Peng et al. [59] evaluated the efficiency of a novel
thermosensitive magnetic liposome for the simultaneous delivery of SATB1 and DXR short
hairpin RNA (shRNA) to gastric cancer cells. In comparison to individual delivery, it was
demonstrated that DXR and SATB1 shRNA were delivered into MKN-28 cells, a human
gastric adenocarcinoma, with increased drug delivery efficacy and high gene transfections.
This resulted in growth inhibition in gastric cancer cells in both cell and animal models.

Due to the rapid development of nanomedicine, liposome-mediated protein delivery
nano-formulations have recently been developed for clinical usage. Protein-repellent
polymers, such as polyethylene glycol (PEG), can be used to modify liposome surfaces in
order to get around the problems with protein transport that have been addressed [60,61].
Entrapping proteins into liposomes can increase the durability of protein therapies because
the lipid bilayer shields them from deterioration. Additionally, active ligands can alter
PEGylated liposomes to increase active targeting and to prolong in vivo circulation [62]. For
example, for effective insulin delivery, protein corona liposomes (PcCLs) were designed in
which insulin was encapsulated within the CLs. According to this study, PcCLs’ hydrophilic
and neutral-charge protein corona can effectively penetrate mucus and progressively
dissolve through the action of enzymes. To enhance insulin delivery over the transepithelial
membrane, these PcCLs may break down. The evidence was convincing about the enhanced
transepithelial permeability and cellular absorption of PcCLs. In type I diabetic rats treated
with PcCLs, lower blood glucose levels and greater oral bioavailability of up to 11.9%
were seen [63]. Therefore, PcCLs are a newly developed technique for administering
peptide/protein medications to lessen GI-related problems.

Furthermore, liposomes have become an appealing delivery method for antibodies
and enzymes due to their biocompatibility, biodegradability and controlled release qualities.
Considerable work has gone into creating liposomes that can be specifically targeted by
different ligands and antibodies [64]. The idea of ILs was created to combine the effects of
antibodies with liposomes. Gregoriadis et al. [65] looked at the use of IgGs made against
various cells and discovered that they could specifically swallow liposomes. According
to Leserman et al. [66], liposomes with antibodies attached to their surfaces made specific
contact with target cells.

In addition, the use of liposome as a vaccine carrier has lately gained attention after
years of use as a medication carrier. Due to liposomes’ physicochemical characteristics,
tolerance by the human body, low cytotoxicity and chemical and structural flexibility, they
have been chosen as vaccine delivery vehicles over other types. A liposome’s ability to
contain a hydrophilic antigen, adjuvant or lipophilic component that can move between
bilayer lipids is referred to as chemical flexibility. It is possible to conjugate hydrophilic
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antigens on their surface, which increases antigen accessibility and encourages phagocytic
absorption. The ability to alter liposomal characteristics by varying lipid concentration is
associated to structural flexibility. For instance, various cationic lipid compositions have
frequently been utilized in optimized liposome formulations to increase cytosolic antigen
release [67]. The first report of liposome-mediated vaccine adjuvants or related antigens
was made by Allison and Gregoriadis [68]. Clinically approved liposomal vaccines include
Epaxal, Inflexal and Mosquirix. These vaccines are referred to as virosomes because PC
membrane vesicles contain proteins obtained from viruses. Antigens could be shielded
from enzymatic destruction by PC membrane vesicles.

Clinically, liposomes are found useful in the treatment of cancer. Evidence reports
that liposomes are largely accumulated in tumors in high amounts as compared to normal
cells [58,69]. A typical example is the increase in antineoplastic activity of doxorubicin
when administered as a liposome-formulated agent, accounting for their anticancer poten-
tial. More so, an increase in antitumor properties and decrease in drug toxicity properties,
when plasma concentrations of vincristine were found to have increased after being admin-
istered as a liposome-based formulation, is further evidence accounting for their anticancer
potential [11,70]. In antimicrobial therapy, it can be proved that the growth of micro-
organisms such as bacteria is inhibited by liposomal neomycin and penicillin [54]. Another
example is the significant reduction in renal and hematological toxicity of conventional
Amphotericin B when engulfed in a liposome [54]. For gene therapy, it has been well re-
ported that positively charged liposomes act as amazing human gene delivery systems [71].
Furthermore, a gene transfer liposomal product, allovectin-7tm, has proven to be efficient
against metastatic melanoma, colorectal carcinoma and renal cell carcinoma, evidencing its
potential in gene therapy [54].

In view of all the numerous merits and applications of liposomes, there are major
challenges when it comes their long-term preservation and storage before use. Circum-
stances, such as the fusion of vesicles or aggregate formation, leakage of drugs, hydrolysis
and/or oxidation of lipids, are some inherent challenges related to the freezing, storage and
preservation of liposomal formulations [72–74]. Other challenges such as decreased half-life
and circulation time of drugs occur upon parenteral administration of liposomes. These
limitations subsequently affect the efficacy, biodistribution and safety of liposomal formu-
lation; hence, it is imperative to devise techniques geared at optimizing liposome stability.
Therefore, we examine the interactions of CPAs with the major liposomal components, such
as phospholipids and cholesterol, and their thermotropic behaviors.

3. Phospholipid Bilayer Interactions with CPAs and Their Thermotropic Behavior

Preferential exclusion theory, which was initially put forth for proteins [75–77] and
later for membranes [78,79], explains one of the mechanisms by which CPAs provide
protection to biomolecules in cells. This theory postulates that interactions between proteins
or membranes and co-solvents are thermodynamically less advantageous than interactions
between proteins or membranes and water, which results in the exclusion of the co-solvent
from the hydration shell enclosing these biomolecules. This increases the energy barrier
required for protein denaturation in the case of proteins and stabilizes the native state [80].
The behavior of the membrane phase is modified by the preferential exclusion of co-solutes
from the membrane surface. Co-solutes that are preferentially excluded cause an osmotic
stress at the membrane interface, which tends to stabilize low surface area lipid phases
and draw water out of multilamellar membrane stacks. Phospholipid bilayers’ interactions
with various CPAs have been thoroughly investigated using both experimental methods
and molecular dynamics simulation [81–85]. According to reports, the addition of CPAs
causes the membrane to expand laterally, which reduces the thickness of the bilayer. The
extent of this effect is dependent on the kind and concentration of the cryoprotectant [86].
Additionally, CPAs have an impact on the liposomes’ membrane phase transition [87,88].

Liposomes must be developed to ensure stable storage at elevated subzero tempera-
tures while maintaining storage sufficiently below the glass transition point (Tg). A glass is
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termed as the metastable supercooled liquid state with constrained molecular mobility [88].
Ordinary CPAs such as DMSO can be mixed with molecular compounds with high glass
transition temperatures to improve the Tg of formulations for use at 80 ◦C. Disaccharides
(sucrose, lactose, trehalose) and polymers, such as Ficoll, poly-ethylene glycol (PEG), hy-
droxyethyl starch (HES), polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), are
examples of such substances [89–91].

Distinct phases of hydrated phospholipid membranes are distinguished by different
locations (i.e., lateral order) and orientations (i.e., rotational order) [92], with the gel and
fluid phases of bilayer phospholipids being the two extreme phases. Because hydrocarbon
chains have an all-trans orientation that favors maximum elongation, the gel phase, also
known as the solid-ordered phase, is characterized by the creation of an extremely compact
bilayer with minimal mobility, as seen in Figure 5 [15]. The lipid bilayer undergoes a gel–
liquid transition above a particular temperature, known as phase transition temperature
(Tm), in which the lipid chains change configuration (from all-trans to all-gauche) and
acquire a less stretched and compact shape. As seen in Table 2, Tm can vary substantially
between lipids depending on their chemical structure (i.e., acyl chain length and saturation
degree, polar head nature and dispersion medium type and ionic force).
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Figure 5. An illustration of the thermotropic behavior of hydrated phospholipids in both phase
transition temperature (Tm) and pre-transition temperature (Tp).

Moreover, the degree of unsaturation and length of acyl chains in particular have
the greatest influence [93,94]. The Tm of the phospholipid increases with increasing acyl
chain length (or decreasing unsaturation level) (Table 2). Sometimes, the gradual change in
the separation between the polar heads (pre-transition, Tp), which occurs a few degrees
before Tm (5–7 ◦C), occurs before the transition from the gel to the liquid phase. The bilayer
surface is characterized by periodic one-dimensional undulations, known as the ripple
phase, above the Tp value, due to simultaneous variations in the phospholipid structure
and membrane curvature. Since various domains have distinct geometrical properties,
lipids are compelled to arrange on the surface. It is hypothesized that ripples are created
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by the alternating of gel and liquid lipid domains in a single monolayer [95]. According to
reports, saturated acyl chains between C10 and C13 travel directly from gel to liquid, rather
than passing through the ripple phase (Table 2) [96].

Furthermore, hydrocarbon chains can be tilted or not tilted depending on the hydration
level; the angle of tilt increases as the water content increases, resulting in a thin bilayer [97].
Other factors that influence chain tilt include the type of phospholipid polar head and
the presence of cholesterol [98]. Cholesterol, along with phospholipids, is one of the
most important components of liposomal formulation because it maintains the fluidity
of the bilayer and helps to stabilize the membrane. The hydrophobic steroidal moiety of
cholesterol (and other similar substances) actually promotes the all-trans configuration of
acyl chains in the gel phase, lowering the tilt angle. Moreso, the addition of cholesterol
in the bilayers produces a broadening, or elimination, of the Tm by exerting an ordering
impact on the liquid phase, which takes on physical properties similar to the solid-ordered
gel phase. In reality, the liquid-ordered phase describes the bilayer configuration in the
presence of cholesterol [15,99].

Table 2. A table showing the increasing acyl chains with increasing phase transition temperature (Tm).

Phospholipids Pre-Transition
Temperature (Tp/◦C)

Transition
Temperature (Tm/◦C) Acyl Chains Ref.

DPPC 35.5 40.5 16:0/16:0 [100]
DOPC 9.0 −18.0 18:1 [96]
DSPC 54.5 49.1 18:0 [96]
DMPC 22.0 24.0 14:0/14:0 [96]
DLPC - −1.0 12:0/12:0 [96,101]
EPC - −15.0 to −20.0 Mixed chains [96]

HSPC 47.8 53.6 16:0/18:0 [102]
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC); 1,2-distearoyl-
sn-glycero-3-phosphocholine (DSPC); 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-dilauroyl-sn-glycero-3-
phosphocholine (DLPC); egg phosphocholine (EPC); hydrogenated soy phosphocholine (HSEP).

4. Liposomal Response to Freezing and Lyophilization

There are three basic stages to a conventional freeze-drying process, that is: freezing,
primary drying and secondary drying. The freezing phase is a cooling process where the
majority of the solvent is separated from the excipients and liposomes, causing ice crystals
to form. Another method for reducing sample heterogeneity and drying rate, which is
mostly caused by the growth of ice crystal size, is to anneal a frozen sample [15].

4.1. Effect of Frezzing

Since Tm is related to the hydration state of phospholipids, and liposomal dispersions
can account for various types of water pools, the freezing step can result in a number of
destabilizing stress factors. Bulk water and intraliposomal solution freeze at approximately
−20 ◦C (heterogeneous ice nucleation) and −45 ◦C (homogeneous ice nucleation), respec-
tively [103]. When lipid–water suspensions are highly hydrated and above freezing, they
split into two distinct phases: a lamellar phase with roughly 30 water molecules per lipid
and a bulk phase with practically pure water [104]. As the temperature drops, the water in
the bulk begins to freeze and the liposomes move in close proximity to one another. The
distance between the phospholipid head groups becomes smaller when the lamellar phase
dehydrates. These occurrences cause the bilayer to expand laterally, creating a compressive
stress in their plane. Depending on the bilayer composition, the outcomes could be the
demixing of several components in vesicles, the creation of micelles or agglomeration [104].

Furthermore, freezing results in a cryoconcentration of the solutes in the bulk solution,
which creates an osmotic gradient and results in a loss of the internal solution and a
subsequent leakage of dissolved hydrophilic drugs [105]. For instance, 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC)/cholesterol liposomes with 10% lactose added resulted
in reduced internal volume, synchronous bilayer invagination and self-fusion events that
produced liposomes with the shape of peanuts [106]. According to one account, the



Int. J. Mol. Sci. 2022, 23, 12487 11 of 23

osmotic shock is unrelated to liposome size [107]. The preservation of liposome structure is
significantly impacted by freezing rate. Additionally, the formation of thin ice crystals and
a uniform distribution of the protectant during ultrafast cooling may lessen the breakdown
of the liposomal bilayer structure.

On the contrary, because water molecules can diffuse slowly across the bilayer when
the solution becomes freeze-concentrated [108], a slow freezing rate lowers both the super-
cooling [103] and the osmotic pressure. In order to reduce the production of ice crystals
in the inner aqueous compartment and prevent leakage, a slow freezing rate (lower than
0.5 K/min) may be used [108]. Additionally, it was proposed that slow freezing would:
(1) give more time for recovery from deformations caused by mechanical and osmotic pres-
sure; (2) reduce the recovery of vesicles at the glass-ice boundary, favoring their distribution
in the glass matrix; and (3) alleviate the stress vectors affecting rigid bilayers. Moreso, the
bilayer’s rigidity, or the composition of the lipids and the presence of cholesterol, substan-
tially influences the effect of the freezing rate. In addition, liposomes with cholesterol in
the bilayer are less likely to be harmed by an abrupt increase in the fluid phase’s order [13].

4.2. Effect of Drying

The potential drawbacks of drying processes primarily manifest themselves when
the product is rehydrated [108]. In reality, the water molecules bonded to the polar heads
of lipids exert their force on the spatial separation of phospholipids. The hydrophobic
interactions between the acyl chains are stimulated by the dehydration of phospholipids,
which increases the packing density of the bilayer [109]. As a result, the bilayer transitions
from the hexagonal phase, where the lipid head groups surround the water channels, to
the ribbon phase, where the lipid bilayers are tightly packed to create a two-dimensional
lattice [110]. The hydrocarbon backbone’s tilt decreases after dehydration, another indicator
of the bilayer’s greater order, which results in a sharp rise in the Tm (up to 60 ◦C) [109]. This
increase appears to be solely reliant on the characteristics of lipid polar heads or on the kind
and nature of interactions that take place between polar heads and water molecules and/or
between neighboring polar heads. For example, the intense intermolecular interactions
between the phosphate and ammonium groups in phosphatidylethanolamines result in a
sharp rise in Tm upon dehydration (from 63 to 100 ◦C) [111].

Since the rehydration of phospholipids is linked to drug leakage, the stabilization of
the liposomal structure depends on maintaining the Tm at the values of the completely
hydrated bilayers to prevent a gel–liquid transition during reconstitution [112]. It should
be highlighted that cholesterol itself might prevent liposomes from drying out. The in-
teractions between the acyl chains are actually reduced by cholesterol since it lowers the
Tm. Due to the presence of the OH group in the interfacial region, it may also interact
with the polar heads of lipids by forming H-bonds. In fact, several researchers postulated
that cholesterol and protective excipients may compete during their interaction with lipid
polar heads [113]. In fact, it has been found that the presence of cholesterol reduces the
medication leakage upon rehydration [107].

5. Applicable Cryoprotectants in Liposomal Freezing

Cryoprotectants have been used in liposomal formulations to enhance their functional
properties and stability following freezing [114]. Cryoprotectants or CPAs are chemical
substances known to cause water to melt at lower temperatures. In contexts other than
cryobiology, such substances are usually referred to as “antifreeze”. Most of the time, a
cryoprotectant concentration of between 5% and 15% is sufficient to allow a significant
portion of isolated cells to survive freezing and thawing from liquid nitrogen temperature.
As the temperature is dropped, growing ice squeezes cells into progressively smaller
pockets of liquid that have not frozen. At any given temperature, these pockets become
bigger with cryoprotectants present than they would be without them. Increased unfrozen
cell pockets lessen damage from both mechanical freezing injury from ice and high salt
concentration [115].
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The same phenomenon is witnessed in liposomes since they are also membranous
structures similar to most cells. There are common examples of CPAs being used, such
as dimethyl sulfoxide, glycerol, ethylene glycol, propylene glycol, trehalose and sucrose,
amongst others. Most of these cryoprotectants permeate lipid membranes and replace
portions of their water contents [4]; whereas, polymers and carbohydrates, such as sucrose,
glucose, trehalose and mannitol, do not permeate the membrane, but rather provide
stability for the membrane by interacting with the polar heads [116,117]. Thus, CPAs can
be categorized into two main groups: membrane permeating CPAs and nonmembrane-
permeating CPAs. A literature review on the effects of CPAs on the melting point of lipids
is shown in Table 3, which reveals that the effects of CPAs vary both on the type of lipid
and the CPA concentration.

Table 3. Effects of CPA concentrations on membrane phase transition temperatures of lipids [20].

Phospholipids CPAs CPA Ratio Transition Temperature (Tm/◦C)

DPPC

DMSO 0.05 molar 42.5–44.5
DMSO 0.9 molar 57.8, 58.3

GLY 5% wt 41.7
EG 20% w/v 40.7
EG 55% w/v 42

acetone 50% v/v 37.3

DSPC
DMSO 14% w/v 55.5

PG 70% w/v,
anhydrous 48.5

DMPC
DMSO 35% wt 29.9

GLY 40% wt 24.6

DMPE
DMSO 0.15 molar 56.5

GLY 0.17 molar 60

DOPA EG 50% v/v −11
DOPC EG 50% v/v −14

Dimethyl sulfoxide (DMSO); glycerol (GLY); ethylene glycol (EG); propylene glycol (PG); 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC); 1,2-distearoyl-sn-glycero-
3-phosphocholine (DSPC); 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-dimyristoyl-sn-glycero-3-
phosphoethanolamine (DMPE); 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA).

Permeating cryoprotectants are small compounds that can pass through lipid mem-
branes with the purpose of attaining vitrification of the inner aqueous phase to minimize
membrane dehydration and inhibit ice growth [118]. For instance, when a membrane that is
at a fixed hydration temperature a little bit higher than its Tm starts to have its temperature
decreased to Tm, transition occurs, followed by a decrease in area per lipid. However, this
transition cannot occur if the intermembrane aqueous solution is vitrified in the presence
of permeating CPA. Since the vitrified layer is a solid, it can withstand high mechanical
stress. Glass will prevent the temperature drop required for the gel phase to form if the
temperature is dropped past Tm. Glass will be able to withstand an increasing compressive
stress in the membrane when the temperature drops below Tm [119]. In brief, if the solution
is vitrified while the lipids are in the liquid crystal phase, the transition temperature will
be significantly reduced, and the membranes will stay in the fluid state. There are also
two more significant impacts of glass formation. Firstly, solute crystallization will not
occur upon vitrification of the sample, and secondly, further dehydration will be severely
restricted if the solution vitrifies.

Non-membranepermeating cryoprotectants are large molecules, typically saccharides
and polymers that do not enter the inner hydrophilic core of the lipid membrane, but
rather stay on the outer membrane or the polar phospholipid heads. Even though they
do not enter cells, they limit the development of ice via the same processes as penetrating
cryoprotectants. At any given sub-zero temperature, a vesicle will contract less in equilib-
rium with ice if its internal concentration is larger at temperatures above freezing. Moreso,
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the concentration of any existing solutes must be lowered in order to accommodate the
addition of any new solute. A high quantity of non-membrane-permeating CPAs such
as sugars lowers the concentration of ions needed to create a specific osmotic pressure.
Thus, the existence of sugars lowers the excessive, dangerous ion concentrations [120].
The presence of non-permeable CPAs lowers the chemical potential of water via osmosis.
The suction decreases with increasing osmotic term, which lowers the stress placed on the
membrane [121]. Furthermore, high concentrations of non-membrane-permeating CPAs
present in lipid membranes decrease the occurrence of two dehydration damaging effects;
that is, they decrease the occurrence of non-lamellar phases, and they lower the transition
temperature [18].

Both the permeating and non-permeating CPAs inhibit the formation of ice crystals
to avoid piercing the lipid membrane, either from within or outside, respectively. More-
over, both CPAs are utilized in either freezing or the lyophilization process; however,
nonmembrane-permeating CPAs are often used in lyophilization processes since they have
the ability to prevent osmotic shock during the whole freeze-drying processes and rehy-
dration of products. At the same dose, non-penetrating cryoprotectants are typically less
harmful than penetrating cryoprotectants.

5.1. Dimethyl Sulfoxide (DMSO)

DMSO is a well-known permeable CPA that is commonly employed in cell cryop-
reservation [16]. DMSO was shown to have good permeability to living cells and could
protect frozen red blood cells and bull sperm cells after its discovery in 1959 [122]. Quite a
number of studies have shown the role of DMSO as an important CPA. A study conducted
by Sydykov et al. [20] showed that DMSO was able to prevent the CF-leakage in the freeze-
thaw process of liposomes. Additionally, in order to avoid the high cost involved in the
use of liquid nitrogen, a group of researchers decided to store liposomes in a mechanical
freezer at −80 ◦C and allow its shipment on dry ice. They looked into the idea of utilizing
a combination of DMSO and sucrose to raise the storage temperature of cryopreserved
liposomes to −80 ◦C and determined the preservation efficacy by measuring the stability
of liposomes loaded with carboxyfluorescein (CF) for 3 months at various storage tem-
peratures (−25 ◦C, −80 ◦C, and −150 ◦C). It was discovered that the CF-leakage rate of
liposome samples stored at −80 ◦C was very minimal and negligible, despite the fact it was
above or near to the Tg for the DMSO/sucrose formulations. In contrast, it was discovered
that 10% DMSO is favored over 5% DMSO in terms of liposome leakage at −25 ◦C, where
the rates of liposome leakage were higher in the presence of 1 M sucrose than those in the
presence of 0.5 M sucrose [88].

Another study investigated the membrane phase behavior of liposomal dispersions
with DMSO with liposomes made of dimyristoylphosphatidylcholine. The effects of
DMSO were examined both within and around the liposome, and the differential scanning
calorimetry (DSC) was also used to examine the phase transition temperatures. According
to their findings, DMSO significantly affected the phase behavior of liposomal dispersions,
particularly by lowering the freezing point of the intraliposomal medium, raising the lipid’s
main phase transition temperature and improving the structural integrity of freeze-thawed
liposomes as concentrations of DMSO in the dispersion’s increase [123].

Furthermore, lipid suspensions in DMSO/water solutions between −60 to 30 ◦C were
examined using Fourier transform infrared spectroscopy. The effect of the solvents on the
thermotropic ad structural behavior of cholesterol-loaded liposomes (POPC/chol) was
investigated. Upon examination of the characteristics of liposomes suspended in water
and a DMSO/water solution with a 0.10 DMSO mole fraction, it was found that DMSO
addition increases the thermal stability of the membrane’s gel phase. It was then predicted
that the inclusion of DMSO, both in the gel and liquid-ordered phases of the membrane,
significantly reduced the amount of unfrozen water at −60 ◦C [124]. Intriguingly, this study
also exhibited that DMSO reduced the hydration of the lipid heads when the lipid vesicles
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were dispersed in a water solvent, but it had no effect on the hydration of the phosphate
and carbonyl groups when the membrane was frozen.

So, it is evident that DMSO lowers the electrolytic concentration in the remaining
cooled fluids surrounding and within liposomes at any given temperature. Nonethe-
less, DMSO has some disadvantages that limit its therapeutic use such as its inherent
toxicity [125,126] and the time-consuming washing processes required to reduce its nega-
tive effects [127].

5.2. Glycerol

Glycerol is a clear, odorless liquid that is a simple polyol or sugar alcohol molecule,
which forms hydrogen bonds with water molecules thanks to its favorable kosmotropic
characteristics [128]. Due to this circumstance, it is challenging for a mixture of 70% glycerol
and 30% water to form ice crystals. Glycerol is less harmful at high concentrations as com-
pared to other cryoprotectants [115] and can protect lipid membranes upon dehydration.

For instance, a study was conducted to comprehend the ability of glycerol to pro-
tect dehydration of lipid membrane as a result of osmotic stress. In order to examine
the molecular mechanism underlying the protective function that regulate the solid to
liquid phase transition in the phospholipid bilayers, two models of liposome samples
(dimyristoylphosphatidylcholine (DMPC)–glycerol–water and DMPC–urea–water) were
employed. It was shown that glycerol and urea both stabilize liquid crystalline bilayers at
relatively low humidities (down to 75% RH at 27 ◦C), but a solid gel phase is induced in
the pure DMPC–water system at 93% RH. This indicated how glycerol and urea can help
to defend against osmotic stress. Furthermore, it was found that the solvent volume, not
the composition, determined the phase behavior for lipid systems with restricted access to
solvent [83].

Additionally, glycerol is used in the preparation of cosmetic liposomes to replace water
to enhance the penetration of active cosmetic agents into the epidermis. Upon numerous
critical examinations of the glycerol-based liposomes, it was observed that they possessed
microbiological and physical stability [129].

In another study conducted by Marín-Peñalver et al., in both the presence and absence
of glycerol, a collagen hydrolysate (HC) extracted from the tunics of a giant squid (Dosidicus
gigas) was encapsulated in soy phosphatidylcholine liposomes. In order to compare the
effects of adding glycerol, they were either directly added to the film-forming dispersion or
into already formed liposomes. From transmission electronic microscopy, it was observed
that the liposomes in the films were intact at cryonic temperatures due to reduced water
solubility. In addition, the outcomes showed that glycerol-containing liposomes were
less impacted by the drying of the film and the subsequent simulating of gastrointestinal
digestion, with greater preservation of vesicle size and morphology, than if glycerol was
introduced straight to the film-forming fluid. [130].

To test the ability glycerol and other carbohydrates to affect the stability of liposomes,
the particle size, the lipid bilayer thickness and lamellarity were examined with the aid
of photon correlation spectroscopy and small angle X-ray scattering [14]. Additionally,
differential scanning calorimetry was used to assess the effect of cryoprotectants on the
thermal lipid phase behavior of either lyophilized/rehydrated PEGylated or frozen/thawed
liposome formulations. It was found that, regardless of the type of carbohydrate utilized,
a mixture of glycerol and carbohydrate concentrations of about 1% (w/v) produced the
best results for maintaining the average size of the extruded unilamellar liposomes after
freezing. The bilayer organization showed no appreciable modifications, and the effects of
freezing on lipid transition behavior were minimal. Similar carbohydrate amounts to those
used for freezing were sufficient in the case of freeze-drying to retain the size of PEGylated
liposomes upon reconstitution of the dried lyophilized cakes.
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5.3. Sugars and Disaccharides

Despite the fact that disaccharides or sugars are the most commonly used CPAs next
to DMSO, their mechanisms of action are not yet fully unraveled. It is postulated to have
a combination to two mechanisms, which are the water replacement and vitrification
mechanisms. The water replacement mechanism, which was proposed by Crowe et al. in
1973 [131], is based on the potential of carbohydrates to form hydrogen bonds between
three phospholipids and replace the bonds with water molecules to maintain the structure
of liposomes [132]. More precisely, these sugars can form H-bonds with both the carbonyl
and phosphate groups of the polar heads, as well as the methyl group of the hydrophobic
moiety. Despite this, the phosphate group is preferred for interactions [107,131]. Sugars
reduce van del Waals interactions between hydrocarbon chains by increasing the distance
between phospholipid polar heads (Figure 6). This, as a result, does not only reduce Tm
during dehydration, but also lower Tm in fully hydrated bilayers [107,108].
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The other model used to better explain the protective effect of carbohydrates is the
vitrification model. In this model, it is suggested that sugars produce an amorphous phase
with high viscosity and mobility upon freezing, which functions as a barrier between bilay-
ers. This glassy matrix prevents vesicle fusion and shields the bilayer from ice formation
damage [133]. Additionally, sugars help lipids with their Tm and prevent hydrophilic
compounds’ leakage caused by extra-liposomal ice. To further support the vitrification
theory’s implications in the protection of liposomes by sugars, it was postulated that the
surface tension of vesicles reduces as a result of interactions between the liposome surface
and the glassy matrix [112,134]. For instance, paclitaxel retention was assured in paclitaxel-
loaded pegylated liposomes upon addition of sucrose at a sucrose concentration of 150 mM
(sugar:lipid ratio 3:1 w/w), with the maximum protectant effect observed at a 5:1 sugar:lipid
ratio in preventing aggregation and assuring the presence of a mono disperse population.

Furthermore, the investigation of an appropriate freeze-drying formulation for lipo-
somes was investigated by Susa et al. After the freeze-thaw cycles were carried out, it
was seen than the disaccharides (cellobiose, glucose, lactose, sucrose and trehalose), either
alone or in combination, reduced the osmotic stress, stabilized the liposome and eventually
protected the integrity of the liposomes [107].

When liposomes are frozen, the excipient keeps the size of the liposomes constant,
while also reducing the osmotic gradient caused by cryo-concentration [135]. On the
contrary, the excipient stabilizes the lipid bilayers in the liposomes’ outer compartment,
limiting changes in their physical characteristics and eventual drug leakage [15].

Recently, novel ciprofloxacin nanocrystals inside liposomes (CNL) powder formu-
lations for controlled release and inhalation were created. The storage stability of CNL
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powders containing ciprofloxacin (CIP), lipids, lyoprotectant (such as sucrose or lactose),
magnesium stearate or isoleucine was examined in the study [136]. These powders were
made by spray drying, collected in a dry box with a relative humidity (RH) of around 15%,
and then kept at room temperature with either a 4 or 20%RH. Over a six-month period, the
stability of liposomes, CIP encapsulation efficiency (EE), aerosol performance, in vitro drug
release (IVR) and solid-state properties were assessed. Over six months of storage at 4%RH,
sucrose CNL powder maintained continuous aerosol performance, liposomal integrity and
regulated release of CIP. However, after being stored at 20%RH for the same amount of time,
sucrose crystallized, which significantly reduced EE and aerosol performance (p-values
0.05) and led the IVR of CIP to converge with that of the non-crystalline CIP liposomal
dispersions (f2 > 50). Regardless of the storage RH, lactose CNL maintained exceptional
aerosol performance over the course of six months. However, within the first month of
storage, both RHs experienced liposomal instability with a significant decrease in EE and an
increase in liposome size (p-values 0.05). In addition, regardless of the storage RHs, the IVR
assay of CIP from lactose CNL revealed a less regulated release and a significant difference
(f2 < 50) from its initial value after six months [136]. From the study we can see that dry
powder inhalers of CNL containing sucrose when kept below 4%RH at room temperature
for six months, possess more physiochemical stability compared to those containing lactose.
Additionally, we observed that both protectants cannot stabilize liposomes at high RHs
(>20%). Therefore, it is best for them to be stored at low RHs to gain optimal stability.

Water replacement and vitrification theories are widely acknowledged to work together
to maintain liposomes during freeze-drying rather than being mutually exclusive [137]. They
are unable to fully explain the findings reported in the literature, though. In the presence of
highly concentrated solutes, it should also be taken into account that the Tm of dispersions
rises as the water activity falls [18]. For instance, Strauss et al. discovered that the Tm was
raised by several degrees when up to 10% sucrose was added to hydrated multilamellar
vesicles of DPPC [138]. Additionally, the kind of vesicles and the degree of protectant
affect the system’s thermal behavior. When mono and disaccharides were added, the Tm
was elevated and widened in the case of large DPPC multilamellar liposomes. Multiple
metaphases were produced when large concentrations of trehalose and sucrose were
added to unilamellar vesicles formed of the same phospholipid [139]. Furthermore, it is
widely accepted that high sugar concentrations, which are necessary to ensure a repeatable
protective effect, may affect the viscosity and, thus, the rehydration of the vesicles [140]. To
prevent having an adverse impact on the safety of the drug product supplied by ophthalmic
and parenteral route, its impact on the tonicity of the reconstituted solution must be
carefully considered when the amount of protectant is defined.

In other cases, a method for integrating protectants into a single formulation is neces-
sary to allow lyoprotectants to increase a formulation Tg while also offering direct inter-
actions with lipid bilayers. With egg phosphatidylcholine liposomes after freeze drying,
mixtures of phosphate anion and sucrose were demonstrated to improve liposomal solute
retention to 85%, compared with full leakage using phosphate alone and 75% retention
with sucrose alone. By forming hydrogen bonding networks between phosphate and sugar
molecules, the excipient mixture significantly raised the formulation Tg [141]. Combining
glucose with hydroxyethyl starch has been shown to stabilize liposomes; however, when
used independently, glucose is unable to prevent liposome fusion and hydroxyethyl starch
is unable to prevent solute leakage during drying [142]. It has also been demonstrated
that mannitol and trehalose work well to preserve liposome dispersions. A lyoprotectant
composition for lyophilized liposomes that combines cyclodextrin and a saccharide is also
disclosed in various patents [143]. Mannitol by itself does not offer much protection due
to its tendency to crystallize during freeze drying, but when combined with glucose, the
resulting liposome drug retention increased to 86.5%.

Even though the individual of saccharides and sugars are efficient in preserving and
stabilizing liposomes, it is evident that a combination of their use is more effective and
provides a much more stable liposomal formulation. Additionally, because the bulk of
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liposomes are preserved by freeze-drying, carbohydrates and sugars have been observed
to be the most commonly employed CPA in liposome preservation.

5.4. Polyampholytes

A new crop of polymeric cryoprotectants have evolved which are the poly-ampholytes.
These poly-ampholytes have charged polymers with both positively and negatively charged
groups [144], for example, carboxylated polylysine. They interact with membranes and
have potential as a cryoprotectant in cryovial vitrification, monolayer slow-vitrification and
cryovial slow-freezing. Currently, finding innovative polyampholytes to use as CPAs is also
a prominent area of research. For instance, a new polyampholyte has been made by poly-
merizing poly(methyl vinyl ether-alt-maleic anhydride) with dimethylaminoethanol [145].

In a study to determine the ability of polyampholytes to avoid drug leakage, Rajan et al.
developed a polyampholyte CPA from copolymer of 2-(dimethylamino) ethyl methacrylate
(DMAEMA) and methacrylic acid (MAA) (poly(MAA-DMAEMA)) [146]. The leakage of
soluble marker, CF, decreased upon addition of poly (MAA-DMAEMA) to the liposomal
formulation. The polymer proved to protect the membrane during the freeze-thaw process,
and that cryoprotection increased as the concentration of polymer increased.

Another study employed the use of reversible addition-fragmentation chain transfer
polymerization to develop a completely synthetic polyampholyte. This polyampholyte
showed to be non-cytotoxic and also protected liposomal membrane against leakage during
freezing and stabilized them [147]. Just like other polymers and cryoprotectants, polyam-
pholytes prove to be promising and competent in stabilizing liposomal formulations.
However, unlike sugar and carbohydrates, there seems to be not much information on
their application in the preservation and stabilization of liposomes. Therefore, we propose
that some research attention be dedicated in that direction in order to thoroughly examine
and comprehend their usage to add to and expand the pool of CPAs suited for liposomal
preservation and stabilization.

6. Conclusions and Prospects

Liposomes undergo freezing during lyophilization and freeze-thawing, which are
done to prevent the leakage of constituents and instability of liposomes, thereby enhancing
their application as drug delivery systems. In the presence of cryoprotectants, while
excluding solutes and particles into a cryo-concentrated liquid phase, water freezes into
ice crystals. When in equilibrium, the liquid phase concentration might adhere to the
equilibrium phase boundary (equilibrium freezing curve). Subsequently, the liquid phase
reaches the maximal cryo-concentrated solution’s glass transition temperature [148].

When a cryoprotectant reaches a certain temperature, it vitrifies, creating a glassy
matrix that can shield nanoparticles from the ice’s mechanical stress. The majority of
research on cryoprotectants show their inclusion improves liposome stability [149]. In
essence, the efficacy of freeze-drying to maintain liposome stability in an aqueous state
depends on a complex relationship between protectants and bilayer composition, not merely
the kind and position (the inner core or bulk water) of the protectant or the determination
of process parameters.

Nonetheless, several types of CPAs exhibit varying efficient mechanisms of action in
freezing of liposomes; therefore, the combination of different types of cryoprotectants might
be worthwhile and innovative due to the synergistic effects of the CPAs. Furthermore, the
adequate use of permeating and noncytotoxic cryoprotectants such as osmoprotectants in
place of DMSO will be a more prospective and forward-looking approach to obtain a safe
freezing process. Unlike DMSO, osmoprotectants have no toxicity, and lipid membranes
may rapidly import osmoprotectants to reverse water outflow and prevent osmotic damage
without disrupting vital activities in a hypertonic environment [150]. Osmoprotectants
should be able to protect liposomes from osmotic damage during freezing, and due to their
hydrophilic molecular nature, they should have the ability to inhibit ice formation and hence
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protect lipid membranes from ice injury [151]. Some examples of natural biocompatible
osmoprotectants are mostly amino acids such as proline, glycine and taurine.

The mechanical stresses that liposomes frequently experience during the freezing
process can have an impact on the end product’s quality and safety. By incorporating the
right concentration of CPAs under the right conditions, these problems can be avoided.
In summary, finding the right CPAs for effective and successful freezing of liposomes can
help reduce the lengthy process of lyophilization process, which later would require the
resuspension of liposomes again in an aqueous form before administering. Our review
reveals that DMSO, sugars and carbohydrates are the most commonly utilized cryoprotec-
tants in liposome freezing. Nonetheless, recent cryopreservation research has led to the
discovery of a wide range of substances with potent cryoprotection properties including
antifreeze proteins and metallic frameworks such as nanoparticles. It is therefore impera-
tive that researchers explore these novel materials in liposomal formulation, preservation
and stabilization.
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