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Abstract: The nucleolus is a non-membranous structure in the nucleus and forms around ribosomal
DNA repeats. It plays a major role in ribosomal biogenesis through the transcription of ribosomal
DNA and regulates mRNA translation in response to cellular stress including DNA damage. Rad17
is one of the proteins that initiate and maintain the activation of the ATR pathway, one of the
major DNA damage checkpoints. We have recently reported that the central basic domain of Rad17
contains a nuclear localization signal and that the nuclear translocation of Rad17 promotes its
proteasomal degradation. Here, we show that the central basic domain contains the nucleolar
localization signal as well as the nuclear localization signal. The nucleolar localization signal overlaps
with the nuclear localization signal and is capable of transporting an exogenous protein into the
nucleolus. Phosphomimetic mutations of the central basic domain inhibit nucleolar accumulation,
suggesting that the post-translational modification sites regulate the nucleolar localization. Nucleolar
accumulation of Rad17 is promoted by proteasome inhibition and UV irradiation. Our data show
the nucleolar localization of Rad17 and suggest a possible role of Rad17 in the nucleolus upon
UV irradiation.
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1. Introduction

The nucleolus is a non-membranous structure in the nucleus and forms around ri-
bosomal DNA (rDNA) repeats. It plays a major role in ribosomal biogenesis through the
transcription of rDNA by RNA polymerase I and regulates mRNA translation in response
to cellular stress including DNA damage [1]. DNA damage response inhibits RNA poly-
merase I transcription, and the inhibition requires the ATM pathway, one of the major DNA
damage checkpoints [2]. Another major DNA damage checkpoint is the ATR pathway,
which responds to various chemical forms of DNA damage [3]. The canonical ATR pathway
is one of the major checkpoint reactions outside the nucleoli; however, a previous report
has disclosed that the ATR pathway is activated in the nucleolus upon inhibition of RNA
polymerase I transcription [4], indicating that the ATR pathway also monitors genomic
DNA in the nucleolus.

Rad17 is one of the proteins that initiate and maintain the activation of the ATR
pathway. Rad17 loads the Rad9–Hus1–Rad1 complex (9–1–1 complex) onto damaged
chromatin to activate ATR kinase activity. Rad17 also interacts with the Mre11-Rad50-NBS1
complex to activate ATM kinase [5]. The nuclear localization of endogenous Rad17 in
non-irradiated [5–7] and irradiated [5,8] cells has been reported, and Rad17-S645 phos-
phorylation signal has been observed in the nucleus [9,10]. By contrast, the nucleolar
localization of Rad17 has been poorly characterized. There is one report of the nucleolar
staining of endogenous Rad17 [11]; however, the staining was accomplished with only one
monoclonal antibody clone, and the possibility of nonspecific staining was not excluded.
Other reports have indicated that Rad17 is primarily localized in the nucleoplasm but not
in the nucleolus [12,13].
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Human Rad17 has a cluster of basic residues, N339–D380, which we named the central
basic domain, and this domain is located between N-terminal ATPase and C-terminal
α-helical domains (Figure 1A). We have recently reported that the central basic domain
contains a nuclear localization signal and that the nuclear translocation of Rad17 promotes
its proteasomal degradation. We have also identified tandem destruction boxes of Rad17
on its N-terminus as a set of canonical and noncanonical sequences [14]. The proteasomal
degradation of Rad17 is mediated by an anaphase-promoting complex associated with
Cdh1 [8], and the N-terminal destruction boxes of Rad17 interact with Cdh1 in vitro [14].
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signal was localized in the following manners: cyan, in the nucleus and predominantly accumulated 
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results of two independent experiments are shown. The ratios of cells with the magenta arrowhead 

to all EGFP-positive cells were 34% and 22% in each experiment. Approximately 100 cells were ob-
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Figure 1. The central basic domain of Rad17 encodes a nucleolar localization signal. (A) The central
basic domain resides between the N-terminal ATPase domain and the C-terminal α-helical domain.
The domain structure of human Rad17 is shown (isoform 1. NCBI NP_579921.1. 670 amino acids).
(B) EGFP fused with Rad17 E295–D380 and E295–E426 peptides was localized in the nucleus and
predominantly accumulated in the nucleolus. COS-7 cells were transfected with plasmid vectors
expressing EGFP fused with Rad17 E295–D380 or E295–E426 peptide. The cells were fixed and stained
with anti-UBF antibody and Hoechst 33342. Arrowheads indicate cells in which the EGFP signal
was localized in the following manners: cyan, in the nucleus and predominantly accumulated in the
nucleolus; magenta, in the nucleolus; yellow, in both nucleus and nucleolus. Representative results
of two independent experiments are shown. The ratios of cells with the magenta arrowhead to all
EGFP-positive cells were 34% and 22% in each experiment. Approximately 100 cells were observed
in each experiment. Scale bars are 40 µm.
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Here, we show that a central basic domain contains the nucleolar localization signal
as well as the nuclear localization signal. The nucleolar localization signal overlaps with
the nuclear localization signal and is capable of transporting an exogenous protein into
the nucleolus. The basic K/R-rich motifs are the key determinants of protein localization
in nuclear sub-compartments [15]. On the other hand, the positively charged K/R-rich
arrays are nuclear PI(4,5)P2 recognition motifs that are essential for protein localization in
nucleoli and nuclear speckles [16]. Indeed, the nucleolar PI(4,5)P2 is in the close proximity
to crucial nucleolar constituent fibrillarin [17]. The K/R-rich motif containing proteins
were identified in proteins, which are linked proteasomal degradation in an MS-based
quantitative approach [16]. Phosphomimetic mutations of the central basic domain inhibit
the nucleolar accumulation, suggesting that post-translational modifications regulate the
nucleolar localization. Furthermore, UV irradiation promotes the nucleolar accumulation
of Rad17, suggesting a nucleolar function of Rad17 in the DNA damage response. Our data
show the nucleolar localization and the nucleolar localization signal of Rad17 and suggest
a possible role of Rad17 in the nucleolus upon UV irradiation.

2. Results and Discussion
2.1. The Central Basic Domain of Rad17 Encodes a Nucleolar Localization Signal

In our recent study, we found that EGFP fused with Rad17 E295–D380 peptide
showed exclusive nuclear localization [14]. In this study, we further characterized the
central basic domain of Rad17 spanning N339–D380 (Figure 1A). Rad17 E295–D380 and
E295–E426 peptides were fused with EGFP, and their localization was examined. EGFP-
Rad17 E295–D380 was exclusively localized in the nucleus and predominantly accumulated
in the nucleolus (Figure 1B, cyan arrowheads). Almost all of the EGFP-positive cells showed
the same localization pattern. The nucleolus is made up of three components: the granular
component, the dense fibrillar component, and the fibrillar center [18]. In the nucleolus,
EGFP-Rad17 E295–D380 surrounds the UBF signal, a marker of the nucleolus fibrillar center.
EGFP-Rad17 E295–E426 was also exclusively localized in the nucleus where it was localized
solely in the nucleolus (Figure 1B, magenta arrowheads) or distributed in the nucleolus
and the nucleoplasm (Figure 1B, yellow arrowheads). The ratios of cells with exclusive
nucleolar localization, indicated by the magenta arrowheads, to EGFP-positive cells were
34% and 22% in each experiment. These data indicate that the central basic domain of
Rad17 encodes a nucleolar localization signal as well as a nuclear localization signal.

2.2. Rad17 K359–K363 Residues Encode the Nucleolar Localization Signal

In our previous work, we showed that Rad17 K359–K363 encoded a part of the nuclear
localization signal and that K359A/R360A/R361A/K362A/K363A (K/R359–363A or 5KR)
mutation abolished the nuclear localization of Rad17 [14]. Here, we examined the effect
of K/R359–363A mutation on the nucleolar localization. EGFP-Rad17 E295–D380 having
the wild-type sequence (WT) showed 149% accumulation in the nucleolus (referred to as
No) relative to the nucleoplasm (Figures 2A,B and S1A). The K/R359–363A mutant of this
construct was deficient in the accumulation in the nucleolus and equally distributed in the
nucleolus and the nucleoplasm. This mutation also increased the cytoplasmic localization
(42%, Figures 2A,B and S1A,B) relative to WT, as was shown recently [14]. EGFP alone was
equally distributed in the nucleolus and the nucleoplasm, and no specific localization in the
nucleoplasm or the cytoplasm was observed (Figures 2A,B and S1A). The K359A/R360A
mutant showed a slight accumulation in the nucleolus (110%) and a significant increase
in cytoplasmic localization (33%, Figures 2A,C and S1C,D). The K362A/K363A mutation
had a milder effect; it decreased the nucleolar localization (120%) and slightly increased
the cytoplasmic localization (13%, Figures 2A,C and S1C,D). These findings indicate that
K359 and R360 are central to the nuclear and nucleolar localization signals. We noted that
in some cases, a nucleolar localization signal seemed to overlap with a nuclear localization
signal [18]; however, we could not differentiate them. Our finding suggests that both
signals overlapped in the central basic domain of Rad17. Together, the data indicate that
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Rad17 K359–K363 residues encode the nucleolar localization signal as well as the nuclear
localization signal.
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Figure 2. Rad17 K359–K363 residues encode the nucleolar localization signal. (A–C) Nucleolar
accumulation of EGFP-Rad17 E295–D380 was abolished by K/R359–363A (A, B, S1A, S1B) and
K359A/R360A (A, C, S1D, S1E) mutations. COS-1 cells were transfected with EGFP-Rad17 E295–D380
and fixed 48 h after transfection. DNA was stained with propidium iodide (PI). EGFP signal in-
tensity was quantitated in the nucleolus, the nucleoplasm, and the cytoplasm, and the ratio to the
nucleoplasm was calculated. (D,E) S348D/S351D/S356D (3SD) mutation abolished the nucleolar
accumulation of EGFP-Rad17 E295–D380. The graph shows representative results of more than three
independent experiments. Details of p-value calculation are shown in Figure S1. No, nucleolus.
C, cytoplasm. DIC, differential inference contrast. ***, p < 0.001. **, p < 0.01. Scale bars are 10 µm.

2.3. Putative Phosphorylation Sites in the Central Basic Domain Regulate the Nucleolar
Localization Signal of Rad17

The phosphorylation of Rad17-S348, S351, and S356 residues was confirmed by mass
spectrometric analyses and registered in PhosphoSitePlus (https://www.phosphosite.org).
In our recent work, we noted that S348D/S351D/S356D mutation decreased the nuclear
localization of flag-Rad17 full-length protein [14]. In the EGFP-Rad17 E295–D380 protein,
the S348D/S351D/S356D mutation resulted in a decrease in nucleolar accumulation (121%,

https://www.phosphosite.org
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Figures 2D,E and S1E,F) but did not affect the cytosolic intensity of the EGFP signal
(Figures 2D,E and S1F). These results indicate that the phosphorylation sites in the central
basic domain regulate the nucleolar localization signal of Rad17.

2.4. Proteasomal Degradation Negatively Regulates the Nucleolar Localization of Rad17

In our recent work, we found that the nuclear translocation of Rad17 promotes the
proteasomal degradation of Rad17 and that the degradation is mediated by N-terminal
destruction boxes that interact with Cdh1 [14]. It was also shown that Cdh1 is localized
in the nucleus but not in the nucleolus [19]. Here, we examined the relationship between
proteasome and the nucleolar localization of Rad17. The Rad17 N-terminal destruction
boxes (H36–G66) were fused with EGFP-Rad17 E295–E426 peptide, and the localization
was examined. Again, E295–E426 peptide translocated the fused protein to the nucleo-
lus (Figure 3A,B). We examined the effect of mutations in the Rad17 destruction boxes,
K36A/P42A/R55A/L58A (KPRL); however, we obtained a marginal result in our pre-
liminary experiments. We also compared protein amount and stability between flag-D
box-EGFP-Rad17 E295–D380 and E295–E426; however, we observed small or no difference
(data not shown). Then, we examined the effect of proteasome inhibition on the nucleolar lo-
calization. Exposure to proteasome inhibitor MG132 promoted the nucleolar accumulation
of flag-D box-EGFP-Rad17 E295–E426 (Figure 3A,B). The MG132 exposure also promoted
the nucleolar accumulation of flag-EGFP-Rad17 full-length protein (Figure 3C,D). These
results suggest that proteasomal degradation negatively regulates the nucleolar localization
of Rad17. Our result is consistent with a previous observation that proteasome inhibition
induced the nucleolar accumulation of nuclear proteins including ATM [20].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 11 
 

 

 

Figure 3. Inhibition of proteasomal degradation promotes nucleolar translocation of Rad17. (A,C) 

COS-1 cells were transfected with flag-D box (Rad17 H36‒G66)-EGFP-Rad17 E295‒E426 (A) or flag-

EGFP-Rad17 full-length (C) and fixed 48 h after transfection. The cells were exposed to 20 μM 

MG132 for 7 h before fixation. Arrowheads indicate cells in which the EGFP signal was localized 

(magenta) or not localized (yellow) in the nucleolus. Scale bars are 20 μm (A) and 10 μm (C). (B) 

The signal intensity of flag-D box-EGFP-Rad17 E295‒E426 was quantitated in the nucleolus and the 

nucleoplasm. The ratio of nucleolus to nucleoplasm was calculated, and cells with ratio higher than 

three were counted as nucleolar localization. Table shows the number of cells with nucleolar and 

nucleoplasmic localization of flag-D box-EGFP-Rad17 E295‒E426 in two independent experiments. 

The p-value was calculated with the chi-square test. (D) The signal intensity of flag-EGFP-Rad17 

full-length in the nucleolus and the nucleoplasm was quantitated. The ratio of nucleolus to nucleo-

plasm was calculated. The graph shows representative results of two independent experiments. 

Rad17 mock- and MG132-exposed groups showed significant difference with p-values of less than 

0.001 in the Welch t-test. DIC, differential contrast. PI, propidium iodide. 

2.5. UV Irradiation Promotes the Nucleolar Localization of Rad17  

A previous report has demonstrated that Rad9B, a paralog of canonical Rad9 protein, 

translocates to the nucleolus upon UV irradiation [13]. Thus, we examined the effect of 

UV irradiation on the subnuclear localization of Rad17. The flag-EGFP-Rad17 full-length 

protein accumulated in the nucleolus of a subset of UV-irradiated cells (Figure 4A,B). 

Rad17 formed discrete foci in the nucleolus or distributed within the nucleolus. Because 

UV irradiation inhibits general transcription in the nucleus, one possible explanation may 

be that UV irradiation induces the nucleoplasmic depletion of Rad17 to result in the nu-

cleolar accumulation. However, the inhibition of proteasomal degradation promoted the 

nucleolar accumulation of Rad17 (Figure 3), suggesting that the degradation or repression 

of Rad17 does not promote the nucleolar accumulation. These results indicate that UV 

irradiation induces the nucleolar translocation of Rad17.  

Figure 3. Inhibition of proteasomal degradation promotes nucleolar translocation of Rad17.
(A,C) COS-1 cells were transfected with flag-D box (Rad17 H36–G66)-EGFP-Rad17 E295–E426 (A) or



Int. J. Mol. Sci. 2022, 23, 12300 6 of 9

flag-EGFP-Rad17 full-length (C) and fixed 48 h after transfection. The cells were exposed to 20 µM
MG132 for 7 h before fixation. Arrowheads indicate cells in which the EGFP signal was localized
(magenta) or not localized (yellow) in the nucleolus. Scale bars are 20 µm (A) and 10 µm (C). (B) The
signal intensity of flag-D box-EGFP-Rad17 E295–E426 was quantitated in the nucleolus and the
nucleoplasm. The ratio of nucleolus to nucleoplasm was calculated, and cells with ratio higher than
three were counted as nucleolar localization. Table shows the number of cells with nucleolar and
nucleoplasmic localization of flag-D box-EGFP-Rad17 E295–E426 in two independent experiments.
The p-value was calculated with the chi-square test. (D) The signal intensity of flag-EGFP-Rad17 full-
length in the nucleolus and the nucleoplasm was quantitated. The ratio of nucleolus to nucleoplasm
was calculated. The graph shows representative results of two independent experiments. Rad17
mock- and MG132-exposed groups showed significant difference with p-values of less than 0.001 in
the Welch t-test. DIC, differential contrast. PI, propidium iodide.

Our current observations suggest that at least two mechanisms regulate the nucleolar
localization of Rad17. The first mechanism is the negative regulation by phosphorylation of
the central basic domain (Figure 2D,E). The second mechanism is the negative regulation by
proteasomal degradation (Figure 3). We previously showed that the nuclear localization of
Rad17 is dependent on the nucleotide binding of the Rad17 ATPase domain [21]. Because
the nuclear and nucleolar localization signals overlapped in the central basic domain
(Figure 2A–C), the Rad17 ATPase domain may also regulate the nucleolar localization
signal as the third mechanism.

2.5. UV Irradiation Promotes the Nucleolar Localization of Rad17

A previous report has demonstrated that Rad9B, a paralog of canonical Rad9 protein,
translocates to the nucleolus upon UV irradiation [13]. Thus, we examined the effect of
UV irradiation on the subnuclear localization of Rad17. The flag-EGFP-Rad17 full-length
protein accumulated in the nucleolus of a subset of UV-irradiated cells (Figure 4A,B). Rad17
formed discrete foci in the nucleolus or distributed within the nucleolus. Because UV
irradiation inhibits general transcription in the nucleus, one possible explanation may be
that UV irradiation induces the nucleoplasmic depletion of Rad17 to result in the nucleolar
accumulation. However, the inhibition of proteasomal degradation promoted the nucleolar
accumulation of Rad17 (Figure 3), suggesting that the degradation or repression of Rad17
does not promote the nucleolar accumulation. These results indicate that UV irradiation
induces the nucleolar translocation of Rad17.

Rad9B interacts with Hus1, Rad1, and Rad17 but not with TopBP1, suggesting that it is
not involved in the activation of ATR and the ATR-dependent DNA damage checkpoint [13].
To our knowledge, Rad9B, Hus1, and Rad1 do not have nucleolar localization signals. In
Schizosaccharomyces pombe, Rad17 is required for the nuclear localization of Hus1 and
Rad9 [22]. Rad17 may play a role in the translocation of Rad9B to the nucleolus. Upon
DNA double-strand breaks, Rad17 directly interacts with NBS1 in the nucleoplasm [5],
and NBS1 translocates to the nucleolus to inhibit rDNA transcription [23,24]. Rad17 and
Rad9B may be involved in the nucleolar function of NBS1. The physiological function of
Rad17 and Rad9B in the nucleolus is still a conundrum; however, our findings suggest the
possibility that Rad17 and Rad9B cooperatively play a role upon UV irradiation. Further
work will reveal the regulation and the nucleolar function of the Rad17 and Rad9B–Hus1–
Rad1 complex.
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Figure 4. UV irradiation promotes nucleolar accumulation of flag-EGFP-Rad17 full-length protein.
(A) COS-1 cells were transfected with flag-EGFP-Rad17 full-length. Forty-eight hours after transfec-
tion, the cells were exposed to 30 J/m2 UV-C and recovered for 3 h. The cells were fixed, and DNA
was stained with propidium iodide (PI). Yellow arrows indicate nucleolar localization of the EGFP
signal. DIC, differential contrast. Scale bars are 5 µm. (B) The number of cells with nucleoplasmic
and nucleolar localization of flag-EGFP-Rad17 was counted in two independent experiments. The
p-value was calculated with the chi-square test.

3. Materials and Methods
3.1. Antibodies

The following antibodies were used: anti-UBF, F-9, Santa Cruz Biotechnology, sc-13125;
rabbit anti-FLAG antibody, Medical & Biological Laboratories, PM020; anti-Hsc70, Santa
Cruz Biotechnology, sc-7298; and anti-NPT2, Abcam, ab33595.

3.2. Plasmids

The amino acid residues of Rad17 were denoted according to isoform 1 (NCBI
NP_579921.1). The pcDNA4 vectors encoding EGFP fused with Rad17 E295–D380 peptide
(EGFP-Rad17 E295–D380) were described previously [14]. An EGFP fused with Rad17
E295–E426 peptide (EGFP-Rad17 E295–E426) was constructed in the same manner. The
pcDNA3 vectors encoding flag-EGFP Rad17 full-length protein and flag-EGFP were de-
scribed previously [14]. The pTwist CMV BetaGlobin WPRE Neo vectors encoding flag-D
box-EGFP-Rad17 E295–D380 or E295–E426 peptide were synthesized by Twist Biosciences
Inc. (San Francisco, CA, USA). The Rad17 H36–G66 sequence that contains tandem destruc-
tion boxes (D-box) was inserted between the flag tag and EGFP.

3.3. Fluorescence Microscopy

We examined the co-localization of UBF and EGFP fused with the central basic do-
main of Rad17 as described previously [14,25]. COS-7 cells were transfected with 0.5 µg of
pcDNA4/EGFP-Rad17 E295–D380 or E295–E426 peptide using Lipofectamine 2000 (Thermo
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Fisher Scientific, Waltham, MA, USA). The cells were fixed with 2% paraformaldehyde 24 h
after transfection. The cells were stained with anti-UBF antibody and Alexa Fluor 555 Donkey
anti-mouse IgG antibody (Thermo Fisher Scientific) in PBS (−)/3% BSA/0.1% saponin. DNA
was stained with 1 µM Hoechst 33342. Fluorescence microscopic images were captured with
an IX83 inverted fluorescence microscope (Olympus, Tokyo, Japan).

We examined the subcellular and subnuclear localization of EGFP-Rad17 E295–D380,
flag-EGFP Rad17 full-length protein, and flag-D box-EGFP-Rad17 E295–E426, as follows.
COS-1 cells were transfected with 1.0 µg of plasmids using the acidified polyethylen-
imine [26]. The cells were fixed with 2% paraformaldehyde 48 h after transfection. To
inhibit proteasomal degradation, the cells were exposed to 40 µM MG132 for 7 h before
fixation. To examine the effect of UV irradiation, the cells were irradiated with 30 J/m2 of
UV-C and allowed to recover for 3 h before fixation. The cells were treated with 200 µg/mL
RNase A for 1 h and stained with 5 µg/mL propidium iodide for 30 min. The data were
obtained with an LSM 700 or an LSM 5 Pa deconvolution microscope (Carl Zeiss, Jena,
Germany). The average intensity of EGFP in the nucleolus, nucleoplasm, and cytoplasm
was quantitated with ZEN 3.4 (blue edition) or Image J, and the average intensity ratio was
calculated. The intensity of the nucleoplasm was used as 100% standard. The position of
the nucleolus was determined on differential inference contrast or phase contrast. The dot
and box–whisker plots were written with matplotlib v3.4.3 and seaborn v0.11.2. Whiskers
represent the highest and lowest data, excluding outliers, and boxes represent 25%, 50%,
and 75% percentiles. Student’s, Welch’s, or one-sample t-test was performed with the stat
module of NumPy v.1.21.5 to calculate p-values. Extreme outliers that were larger than 75%
quartile + 3 × (75% quartile − 25% quartile) were removed before plotting.

Supplementary Materials: The following supporting information can be downloaded at: https://
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