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Abstract: We describe genetic and molecular-level functional alterations in the α4β2 neuronal nico-
tinic acetylcholine receptor (nAChR) from a patient with sleep-related hyperkinetic epilepsy and
a family history of epilepsy. Genetic sequencing revealed a heterozygous variant c.851C>G in the
CHRNA4 gene encoding the α4 subunit, resulting in the missense mutation p.Ser284Trp. Patch clamp
recordings from genetically engineered nAChRs incorporating the α4-Ser284Trp subunit revealed
aberrant channel openings in the absence of agonist and markedly prolonged openings in its presence.
Measurements of single channel current amplitude distinguished two pentameric stoichiometries of
the variant nAChR containing either two or three copies of the α4-Ser284Trp subunit, each exhibiting
aberrant spontaneous and prolonged agonist-elicited channel openings. The α4-Ser284 residue is
highly conserved and located within the M2 transmembrane α-helix that lines the ion channel. When
mapped onto the receptor’s three-dimensional structure, the larger Trp substitution sterically clashes
with the M2 α-helix from the neighboring subunit, promoting expansion of the pore and stabilizing
the open relative to the closed conformation of the channel. Together, the clinical, genetic, functional,
and structural observations demonstrate that α4-Ser284Trp enhances channel opening, predicting
increased membrane excitability and a pathogenic seizure phenotype.

Keywords: sleep-related hyperkinetic epilepsy; neuronal nicotinic acetylcholine receptor;
gain-of-function variant; patch-clamp; single ion-channel; ion-channel gating; spontaneous channel
gating; ion-channel conductance

1. Introduction

Inherited forms of hyperkinetic epilepsy occurring during sleep have been associ-
ated with alterations in multiple genes, including CHRNA4 and CHRNB2 that encode
subunits of the α4β2 nAChR [1–3]. Nocturnal seizures are very common clinically and
may be therapeutically refractory, but only a minority have been linked to Mendelian
causes. Pathogenic variants of the α4β2 nAChR described so far are heterozygous and
dominantly transmitted with high penetrance. Accordingly, such disorders are classified as
Sleep-related Hyperkinetic Epilepsy (SHE) [4], previously known as autosomal dominant
nocturnal frontal lobe epilepsy (ADNFLE). α4β2 nAChRs distribute widely throughout
the central nervous system where they localize at pre- and post-synaptic sites and enhance
neurotransmitter release or mediate excitation, respectively [5,6]. They exist in two ma-
jor pentameric assemblies that differ in subunit stoichiometry [7,8], agonist sensitivity [9],
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calcium modulation of channel gating [10], and sensitivity to allosteric modulators [11]. Pre-
vious work established that SHE variants in either the α4 or β2 subunits enhance sensitivity
to agonist as demonstrated by electrophysiological recordings of macroscopic currents
from genetically reconstituted nAChRs harboring the pathogenic variant subunit [12,13].
However, enhanced agonist sensitivity as assessed by macroscopic current recordings could
arise through either enhanced agonist binding or enhanced channel gating [14]. In addition,
recordings of macroscopic currents cannot distinguish changes in unitary current ampli-
tude or changes that differ among stoichiometric forms of the receptor. Thus, elucidating
pathogenic mechanisms at the molecular level requires functional measurements from
individual receptor channels.

Herein we describe a patient with SHE and a family history of epilepsy, identify a
heterozygous variant in the CHRNA4 gene, and genetically reconstitute receptors harboring
the altered α4 subunit. We then use patch clamp electrophysiology to observe the function
of individual receptors and demonstrate aberrant function of the two major stoichiometric
forms of the α4β2 nAChR. Our functional measurements, together with the location of the
altered residue within the three-dimensional structure of the α4β2 nAChR, show that the
variant in the CHRNA4 gene produces a pathogenic gain of function via enhanced gating
of the receptor channel.

2. Results
2.1. Clinical Evaluation

At the time of the initial clinical evaluation the patient was a 36-year-old right-handed
male non-smoker with a history of sleep-related hyperkinetic seizures starting at age 5.
The patient’s son and father’s cousin were reported to be diagnosed with childhood-onset
epilepsy of unknown etiology but were not examined. The patient’s seizure semiology was
described as arising from sleep with sudden onset multidirectional tongue movements,
intermittent eye closure, and gagging vocalizations, followed by bilateral symmetric up-
ward arm flexion and asynchronous leg movements. There was no loss of consciousness or
bowel or bladder incontinence. Postictally, the patient could recall details of the event but
was typically fatigued and drowsy and could resume sleep. These events typically occurred
every 20–30 min overnight without medication and rarely secondarily generalized. Multi-
ple medication trials including carbamazepine, clonazepam, lamotrigine, and zonisamide
were unsuccessful in achieving seizure freedom. After admission to an Epilepsy Moni-
toring Unit and medication tapering, 89 behavioral events with the previously described
seizure semiology were video recorded; however, the EEG in these events was obscured
by myogenic artifact. In two such events, the typical semiology progressed to right arm
extension, right-sided upper extremity clonic movement, and electroclinical evolution to a
bilateral tonic-clonic seizure. However, there were no electrographic lateralizing features.

The patient was evaluated for epilepsy surgery but was found to have normal brain
magnetic resonance imaging (MRI), normal brain positron emission tomography (PET)
scan, an inconclusive ictal single-photon emission computerized tomography (SPECT) scan,
and a magnetoencephalogram (MEG) showing left greater than right bi-frontal epilepti-
form discharges. After discussion in a multidisciplinary patient management conference,
a vagus nerve stimulator (VNS) was implanted. With medication changes and VNS im-
plantation (Figure 1), the frequency, intensity and duration of seizures improved, but he
continued to have 1–2 seizures/night despite maximal tolerable medication dosing and
VNS management. Subsequent next-generation genetic sequencing (Invitae Epilepsy Panel,
146 genes) revealed the heterozygous variant c.851C>G in the CHRNA4 gene resulting in
the missense mutation p.Ser284Trp within the α4 subunit α4β2 nAChR, classified by the
laboratory as a variant of uncertain significance. The α4-Ser284 residue is conserved among
CHRNA4 genes from vertebrate species, as well as human CHRNA1 through CHRNA7
genes (Figure 2). Located within the M2 transmembrane α-helix that lines the ion channel,
α4-Ser284Trp maps onto the cryo-electron microscopic structure of the α4β2 nAChR [8]
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such that the large Trp sidechain impinges upon the M2 transmembrane α-helix from the
neighboring subunit in a manner that would promote expansion of the pore (Figure 2).
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Figure 1. Patient Timeline. Seizure burden overall improved with increasing dose of lamotrigine
(LMT), addition of zonisamide (ZNS), and titration of vagus nerve stimulator (VNS) settings.
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Figure 2. Sequence alignment and location of the α4-Ser284Trp residue in the structure of the α4β2
nAChR. Upper panel, sequence alignment of the M2 transmembrane domain of the α4 subunit for
different vertebrate species and the indicated human α-subunit subtypes. The α4-Ser284 residue is
highlighted in red font. Lower panel, top and side views of the structure of the (α4)3(β2)2 stoichiometric
form of the receptor (PDB: 6CNK) with the α4 subunits in blue, the β2 subunits in orange, and the
substituted Trp sidechain at position 284 in space filling representation.
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2.2. Expression of nAChRs Harboring α4-Ser284Trp

To evaluate the ability of the α4-Ser284Trp subunit to incorporate into cell surface
receptors, we engineered the Ser284Trp variant into the cDNA encoding the human
α4 subunit that was subcloned into a mammalian expression vector, co-expressed the
α4 and β2 subunit cDNAs in Bosc-23 cells, a human fibroblast cell line derived from
293 HEK cells, and measured binding of radio-labeled epibatidine to intact cells. Given that
epibatidine is membrane permeable, to determine the fraction of labeled receptors on the
cell surface, parallel measurements were conducted in the presence of a high concentration
of ACh, which contains a quaternary ammonium moiety that renders it membrane im-
permeable. To bias expression toward the (α4)3(β2)2 stoichiometry, the chaperone 14-3-3η
was co-transfected along with α4 and β2 subunits, whereas to bias expression toward the
(α4)2(β2)3 stoichiometry the chaperone NACHO was co-transfected [15]. Non-specific
binding was determined by parallel measurements conducted on cells transfected with the
β2 subunit alone. Broadly, robust binding of radio-labeled epibatidine was observed over
the nanomolar range of concentrations tested, and a substantial portion of the total binding
was inhibited by ACh (Figure 3). For cells co-transfected with 14-3-3η, a majority of the total
epibatidine binding was inhibited by ACh for both wild type and α4-Ser284Trp receptors,
indicating efficient trafficking of the (α4)3(β2)2 stoichiometry to the cell surface. For cells
co-transfected with NACHO, a smaller yet substantial fraction of the total binding was
inhibited by ACh, indicating somewhat less efficient trafficking of the (α4)2(β2)3 stoichiom-
etry to the cell surface. Thus, receptors containing either wild type or variant Ser284Trp
α4 subunits exhibit robust amounts of radio-labeled epibatidine binding, showing that
the α4-Ser284Trp subunit is expression competent and providing a foundation for patch
clamp studies.
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Figure 3. Expression of wild type and α4-Ser284Trp nAChRs in Bosc 23 cells. Cells were transfected
with cDNAs encoding the wild type or mutant α4 subunit plus the β2 subunit and the indicated
chaperone, either 14-3-3η or NACHO. Suspensions of intact cells were prepared, incubated with the
indicated concentrations of 125I-epibatidine, and radio-ligand bound to the cells was determined as
described in Materials and Methods. Open bars represent duplicate measurements of specific binding
of 125I-epibatidine alone, whereas gray bars represent binding in the presence of 6 mM ACh. Each
determination represents binding to one tenth of the cells harvested from a 10 cm tissue culture dish.
Error bars larger than a line width indicating the SD are shown.
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2.3. Patch Clamp Studies of nAChRs Harboring α4-Ser284Trp

To assess the functional consequences of the α4-Ser284Trp variant, we monitored
activation of receptors at the single channel level using the patch clamp technique. Initially
we made patch clamp recordings before and after application of nicotine, a membrane
permeable agonist, to receptors within the same patch of cell membrane. For any new type
of nAChR, recordings before and after agonist application are necessary to demonstrate that
the observed channel openings represent the activity of authentic nicotinic receptors. An
exemplar experiment from three independent experiments that gave the same qualitative re-
sults is illustrated in Figure 4. For the wild type nAChR in the absence of nicotine no single
channel activity was observed, whereas addition of nicotine to the external bathing solution
elicited robust channel openings with either small or large current amplitude (Figure 4A);
previous work showed that channel openings with small current amplitude correspond
to the (α4)2(β2)3 stoichiometry and openings with large amplitude to the (α4)3(β2)2 stoi-
chiometry [7]. By contrast, nAChRs harboring the α4-Ser284Trp variant exhibited channel
openings with both small and large current amplitude in the absence of nicotine, while
addition of nicotine markedly increased the incidence and the durations of channel open-
ings with small and large current amplitude (Figure 4B). Thus, the α4-Ser284Trp variant
promotes spontaneous channel opening of the two major stoichiometric forms of the α4β2
nAChR, predicting enhanced excitability even in the absence of cholinergic transmission.
In addition, α4-Ser284Trp prolongs the durations of agonist-elicited channel openings,
predicting increased excitation during cholinergic transmission.

To quantify the functional consequences of the α4-Ser284Trp variant, we recorded
single channel currents through each stoichiometric form of the receptor in the presence
of the physiological neurotransmitter ACh. In these studies recordings were made with a
specified concentration of ACh in the solution within the patch clamp recording pipette.
To generate a receptor population enriched in one or the other stoichiometric form, we co-
expressed the α4 and β2 subunit cDNAs together with a cDNA encoding either NACHO or
14-3-3η (Materials and Methods). For the (α4)3(β2)2 stoichiometry, α4-Ser284Trp markedly
prolonged ACh-elicited channel openings, and the mean duration of channel openings was
3.3–4.8-fold greater than the wild-type counterpart (Figure 5A; Table 1). The α4-Ser284Trp
variant also promoted clustering of successive openings by the same nAChR channel. To
quantify the durations of clusters, we defined a cluster as a series of channel openings
flanked by closings briefer than a specified closed time; this closed time was determined
from the histogram of closed dwell times as the point of intersection between the closed time
component with longest mean duration and the succeeding briefer component (Materials
and Methods). The analysis revealed that the α4-Ser284Trp variant increased the mean
duration of clusters for the (α4)3(β2)2 stoichiometry by 20- to 28-fold compared to wild
type (Figure 5A; Table 1). Thus, the α4-Ser284Trp variant prolongs ACh-elicited channel
openings, and upon channel closing, it also promotes return to the open state rapidly and
with increased probability. Analysis of the unitary current amplitude revealed that the
α4-Ser284Trp variant reduced the mean amplitude from an average of 3.8 to 2.9 pA at a
reference membrane potential of −70 mV (Table 2), a reduction of ~24%.
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Figure 4. Single channel recordings from wild type and α4-Ser284Trp nAChRs before and after
addition of nicotine. (A) Recording from a Bosc-23 cell expressing wild type α4β2 nAChRs. Upper
trace shows current recorded from the same patch of membrane before and after addition of 1 µM
nicotine to the extracellular solution (1 kHz Gaussian filter). Noise artifact during addition of nicotine
is removed (gap). Lower traces show segments of the upper trace with increased time resolution
(3 kHz Gaussian filter). (B) Recording from a Bosc-23 cell expressing α4Ser284Trpβ2 nAChRs. Upper
trace shows current recorded from the same patch of membrane before and after addition of 100 nM
nicotine to the extracellular solution (1 kHz Gaussian filter). Lower traces show segments of the upper
trace with increased time resolution (3 kHz Gaussian filter). The recordings in A and B were obtained
in the cell-attached patch configuration at a membrane potential of −70 mV.
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Figure 5. Single channel recordings from wild type and α4Ser284Trpβ2 nAChRs activated by ACh.
(A) Recording from a Bosc−23 cell expressing the (α4)3(β2)2 stoichiometry of wild type (black trace)
or mutant (red trace) nAChRs in the presence of 10 µM ACh. Corresponding histograms of open and
cluster durations, fitted by the sum of exponentials, are shown below. Unitary current amplitude for
wild type and mutant nAChRs is compared for recordings in the presence of either 1 or 10 µM ACh.
Each symbol represents the open channel current from a continuous data segment containing multiple
channel openings. (B) Recording from a Bosc-23 cell expressing the (α4)2(β2)3 stoichiometry of wild
type (black trace) or α4-Ser284Trp (green trace) nAChRs in the presence of 1 µM ACh. Corresponding
histograms of open and cluster durations, fitted by the sum of exponentials, are shown below. Unitary
current amplitude for wild type and α4-Ser284Trp nAChRs is compared for recordings in the presence
of either 1 or 10 µM ACh, as in panel A. The recordings in A and B were obtained in the cell-attached
patch configuration at a membrane potential of −70 mV. The bandwidth for display is 5 kHz.
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Table 1. Effect of α4Ser284Trp on mean open time and mean cluster duration.

Receptor-Type
(Number of

Patches)
Agonist, µM

Mean Open
Time (ms)
95% CI)

Fold Change
Relative to
Wild Type

Mean Cluster
Duration (ms)

(95% CI)

Fold Change
Relative to
Wild Type

Statistical
Difference

between Wild
Type and

α4-Ser284Trp

(α4)3(β2)2
(n = 9) ACh, 1 0.66 (0.63–0.68)

4.8

1.31 (1.23–1.40)

20.3 Yes
(α4S284W)3(β2)2

(n = 7) ACh, 1 3.18 (3.01–3.35) 26.6 (22.8–33.3)

(α4)3(β2)2
(n = 14) ACh, 10 0.75 (0.72–0.78)

3.3

2.36 (2.18–2.54)

28.1 Yes
(α4S284W)3(β2)2

(n = 5) ACh, 10 2.48 (2.37–2.58) 66.4 (50.1–82.7)

(α4)2(β2)3
(n = 5) ACh, 1 0.80 (0.76–0.84)

2.2

1.35 (1.26–1.44)

14.2 Yes
(α4S284W)2(β2)3

(n = 7) ACh, 1 1.76 (1.68–1.83) 19.2 (17.4–21.0)

(α4)2(β2)3
(n = 5) ACh, 10 0.77 (0.74–0.79)

2.2

1.49 (1.40–1.59)

13.5 Yes
(α4S284W)2(β2)3

(n = 7) ACh, 10 1.66 (1.58–1.74) 20.1 (18.1–23.1)

(α4)3(β2)2
(n = 3) Nicotine, 1 0.90 (0.87–0.93)

4.9

1.65 (1.57–1.73)

20.7 Yes
(α4S284W)3(β2)2

(n = 3) Nicotine, 1 4.45 (4.21–4.68) 34.3 (28.9–39.7)

(α4)2(β2)3
(n = 3) Nicotine, 1 1.17 (1.11–1.23)

1.21

1.42 (1.34–1.50)

3.4 Yes
(α4S284W)2(β2)3

(n = 3) Nicotine, 1 1.41 (1.37–1.45) 4.79 (4.50–5.08)

Table 2. Effect of α4Ser284Trp on single channel current amplitude.

Receptor-Type
(Number of Patches) Agonist, µM

Current Amplitude (pA) at
−70 mV

Mean (95% CI); N = Number
of Openings

Statistical Difference
between Wild Type and

α4-Ser284Trp

(α4)3(β2)2 (n = 9) ACh, 1 3.9 (3.9–4); N = 120
Yes

(α4S284W)3(β2)2 (n = 8) ACh, 1 2.8 (2.8–2.9); N = 70

(α4)3(β2)2 (n = 11) ACh, 10 3.7 (3.7–3.8); N = 112
Yes

(α4S284W)3(β2)2 (n = 5) ACh, 10 3.0 (3.0–3.1); N = 54

(α4)2(β2)3 (n = 5) ACh, 1 2.4 (2.36–2.46); N = 60
Yes

(α4S284W)2(β2)3 (n = 7) ACh, 1 1.7 (1.66–1.72); N = 81

(α4)2(β2)3 (n = 5) ACh, 10 2.3 (2.24–2.37); N = 60
Yes

(α4S284W)2(β2)3 (n = 7) ACh, 10 1.9 (1.86–1.95); N = 74

(α4)3(β2)2 (n = 3) Nicotine, 1 3.9 (3.82–3.94); N = 74
Yes

(α4S284W)3(β2)2 (n = 3) Nicotine, 1 2.9 (2.94–3.02); N = 74

(α4)2(β2)3 (n = 3) Nicotine, 1 2.7 (2.63–2.7); N = 95
Yes

(α4S284W)2(β2)3(n = 3) Nicotine, 1 1.9 (1.84–1.88); N = 94
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For the (α4)2(β2)3 stoichiometry, the α4-Ser284Trp variant also prolonged ACh-elicited
channel openings and clusters of channel openings (Figure 5B), but the effects were smaller
than observed for the (α4)3(β2)2 stoichiometry; the mean channel open duration increased
by 2.2-fold and the mean cluster duration increased by 14-fold (Figure 5B; Table 1). The
α4-Ser284Trp variant also reduced the mean unitary current amplitude from an average of
2.35 to 1.8 pA at the reference membrane potential of−70 mV (Table 2), a reduction of ~23%.
In comparing the two stoichiometric forms, the α4-Ser284Trp variant increased the mean
open and cluster durations approximately in proportion to the number of α4-Ser284Trp
subunits, whereas the reduction in the unitary current amplitude did not depend on the
number of α4-Ser284Trp subunits. Thus, recordings of ACh-elicited channel openings by
nAChRs harboring the α4-Ser284Trp variant reveal a marked increase in the durations
of channel opening episodes of both stoichiometric forms and a smaller decrease in the
unitary current amplitude of each form.

To quantify the effects of the α4-Ser284Trp variant on channel openings elicited by a
chemically different type of agonist, we recorded channel openings elicited by nicotine,
which contains a tertiary rather than a quaternary amine group; for these studies’ nicotine
was added to the external solution using the method described in Figure 4. For the
(α4)3(β2)2 stoichiometry, the α4-Ser284Trp variant increased the mean duration of nicotine-
elicited channel openings by 4.9-fold and increased the mean cluster duration by 21-fold
(Table 1); both increases are very close to those observed with ACh as the agonist (Table 1).
However, for the (α4)2(β2)3 stoichiometry, the α4-Ser284Trp variant increased the mean
duration of nicotine-elicited channel openings by only 1.2-fold and increased the mean
cluster duration by 3.4-fold (Table 1); both increases are smaller than observed with ACh,
indicating the kinetic consequences of α4-Ser284Trp depend on the stoichiometric form
of the α4β2 nAChR as well as the type of agonist. Comparison of the unitary current
amplitudes of nicotine- versus ACh-elicited channel openings revealed virtually identical
amplitudes for either wild type or α4-Ser284Trp nAChRs at a reference membrane potential
of −70 mV (Table 2).

Recordings from the same patch of membrane, before and after nicotine application,
allowed comparison of the mean open durations and current amplitudes of spontaneous
and nicotine-elicited channel openings from nAChRs containing the α4-Ser284Trp variant.
For the (α4)3(β2)2 stoichiometry, nicotine-elicited channel openings were 3-fold longer than
spontaneous channel openings, while for the (α4)2(β2)3 stoichiometry, nicotine-elicited
channel openings were 2-fold longer than spontaneous openings (Table 3). Thus, compared
to channel openings in the absence of agonist, nicotine increased the mean open duration
in proportion to the number of α4-Ser284Trp subunits. Measurements of unitary current
amplitude showed that the α4-Ser284Trp variant reduced the amplitudes of both sponta-
neous and nicotine-elicited channel openings for each stoichiometric form, but that the
current amplitudes of the openings were indistinguishable in the absence or presence of
nicotine (Table 4).
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Table 3. Effect of α4Ser284Trp on mean open times of spontaneous and Nicotine activated
channel openings.

Receptor-Type
(Number of

Patches)

[Nicotine]
µM

Mean open
Time (ms)
(95% CI)

Statistical
Difference
between
Nicotine

Activated and
Spontaneous

Fold Change for
Nicotine
Activated
Relative to

Spontaneous

(α4S284W)3(β2)2
(n = 3) 0 1.54 (1.38–1.69)

Yes 2.9
(α4S284W)3(β2)2

(n = 3) 1 4.45 (4.21–4.68)

(α4S284W)2(β2)3
(n = 3) 0 0.78 (0.66–0.90)

Yes 1.8
(α4S284W)2(β2)3

(n = 3) 1 1.41 (1.37–1.45)

Table 4. Effect of α4Ser284Trp on amplitudes of spontaneous and Nicotine activated channel openings.

Receptor-Type
(Number of Patches) [Nicotine] µM

Current Amplitude
(pA) at −70 mV
Mean (95% CI);
N = Number of

Openings

Statistical Difference
between

Spontaneous and
Nicotine Activated

(α4S284W)3(β2)2
(n = 3) 1 2.9 (2.94–3.02); N = 74

No
(α4S284W)3(β2)2

(n = 4) 0 2.9 (2.87–3.02); N = 68

(α4S284W)2(β2)3
(n = 3) 1 1.9 (1.84–1.88); N = 94

No
(α4S284W)2(β2)3

(n = 5) 0 1.8 (1.75–1.89); N = 42

3. Discussion

We describe the clinical profile and the genetic and molecular-level functional alter-
ations in a neuronal nAChR from a patient with SHE since childhood and a family history of
epilepsy. Genetic sequencing revealed the heterozygous variant c.851C>G in the CHRNA4
gene, resulting in a change in the protein coding sequence of the α4 subunit, p.Ser284Trp.
Following genetic reconstitution of α4β2 nAChRs harboring the α4-Ser284Trp subunit,
we documented the functional consequences of the genetic variant at the single channel
level. The α4-Ser284Trp variant and a second variant α4-Ser284Leu were previously re-
ported as potentially pathogenic based on clinical seizure phenotype and detection of the
variants in affected relatives [16]. Although functional consequences of the α4-Ser284Leu
variant have been investigated using whole cell patch clamp techniques [17], the functional
consequences of the α4-Ser284Trp variant have not been investigated by either whole cell
or single channel patch clamp techniques. Studies of genetic variants causing congenital
myasthenic syndromes have benefitted greatly from analyses of muscle AChRs using
single channel patch clamp techniques, revealing aberrations in elementary functional
steps in the activation process [18,19], however single channel studies of genetic variants in
nAChRs from the CNS have been limited. Our functional studies at the single channel level
reveal multifaceted functional alterations in each of the two stoichiometric forms of the
pentameric α4β2 nAChR, including channel opening in the absence of agonist, prolonged
agonist-elicited channel openings, enhanced clustering of agonist-elicited channel open-
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ings, reduction of the single channel current amplitude, and changes in the mean channel
open time that depend on the stoichiometric form and type of agonist. The functional
consequences of the α4-Ser284Trp variant predict increased neuronal excitability in the
absence of cholinergic signaling and a further increase during signaling.

Fundamental processes in nAChR function include agonist binding, channel gating,
ion permeation, and desensitization. Previous work on SHE genetic variants demonstrated
enhanced agonist sensitivity in dose-response measurements of whole cell macroscopic cur-
rents from genetically reconstituted nAChRs [12,13,17,20,21]. However, enhanced agonist
sensitivity, as measured by whole cell macroscopic currents, could arise from either en-
hanced agonist binding or enhanced channel gating [14]. Our single channel measurements
demonstrate that the α4-Ser284Trp variant enhances channel gating, which arises through
increased stability of the open channel state and enhanced reopening of the channel after
closing. The net effect of α4-Ser284Trp is up to a 20-fold increase in the duration of channel
opening episodes in response to agonist. During synaptic transmission, the increased dura-
tions of channel opening episodes would produce a commensurate increase in the duration
of excitation. A more subtle effect of α4-Ser284Trp is the occurrence of channel opening
in the absence of agonist, a phenomenon not observed with the wild type α4β2 nAChR.
Opening of the channel in the absence of agonist would produce tonic depolarization and
consequently a reduction in the threshold for excitation by voltage-gated ion channels
linked to action potential firing and neurotransmitter release. The α4-Ser284Trp variant also
reduces the rate of ion permeation during channel openings, but the reduction is modest
at ~24%. Such a reduction could arise via steric occlusion of the pore owing to the bulky
Trp substitution, which could also alter the efficacy of channel blocking drugs considered
as possible therapeutics. A previous study of the α4-Ser284Leu variant demonstrated
enhanced desensitization [22], which would partially counter the gain of function during
prolonged exposure to ACh as occurs during paracrine signaling [23,24]. Overall, our
single channel analyses reveal pleotropic changes in nAChRs containing α4-Ser284Trp
that culminate in a pronounced gain of function that likely contributes to the patient’s
epilepsy phenotype.

The α4β2 nAChR is a pentamer that assembles in two major stoichiometric forms,
(α4)3(β2)2 and (α4)2(β2)3 [8], which are readily distinguished by their unitary current
amplitude [7,10]. Our results demonstrate that the α4-Ser284Trp subunit incorporates
into both stoichiometric forms, and that with ACh as the agonist, the mean duration
of channel opening episodes is prolonged in proportion to the number of α4-Ser284Trp
subunits. However, with nicotine as the agonist the increase in the mean duration of
channel opening episodes differs between the two stoichiometric forms, with the (α4)3(β2)2
stoichiometry exhibiting a much larger increase than the (α4)2(β2)3 stoichiometry. In
laboratory animals the two stoichiometric forms have been detected by photobleaching
of fluorescent α4β2 nAChRs, revealing roughly equal proportions of each stoichiometric
form in most brain regions, but that the proportions change upon nicotine treatment [25].
In patients with ADNFLE, PET imaging using a high affinity 18F-labeled agonist for α4β2
nAChRs showed increased labeling in mesencephalic regions and reduced labeling in the
prefrontal cortex compared to controls [26]. Thus, aberrant receptor function on the time
scale of synaptic transmission may promote longer term changes in the density, distribution,
and stoichiometric forms of the α4β2 nAChR that impact the pathophysiology. However,
on a longer time scale, as occurs with intake of nicotine, the effects of enhanced channel
gating may preferentially impact one stoichiometric form over the other.

An additional consideration follows from the heterozygous genotype coupled with
the presence of multiple α4 subunits in the pentameric α4β2 nAChR. With a heterozygous
genotype, and random incorporation of wild type and variant subunits, individual recep-
tors with different numbers of α4-Ser284Trp subunits would be expected- three for the
(α4)2(β2)3 form and seven for the (α4)3(β2)2 form. That wild type and variant subunits
incorporate randomly is plausible given our measurements of radio-labeled epibatidine
binding showing that both wild type and α4-Ser284Trp subunits enable robust expression of
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cell surface nAChRs. Among the multiple possible molecular forms of the variant nAChR,
our patch clamp studies document aberrant function of two of these forms, those with
either two or three copies of the α4-Ser284Trp subunit. The observation that the functional
aberration accrues in proportion to the number of α4-Ser284Trp subunits predicts that
molecular forms containing both variant and wild type subunits would exhibit smaller
enhancements of channel gating than observed herein; thus, molecular forms containing
solely the α4-Ser284Trp variant represent upper bounds in the degree of pathogenicity.

The five subunits of the nAChR align as staves of a barrel to form a central channel
through which ions flow. Each subunit is situated with one of its four transmembrane
α-helices, known as M2, contributing to the wall of the channel. By convention, the residues
of M2 are numbered beginning with the −1′ residue that forms the ion selectivity filter at
the intracellular end and the 20′ residue at the extracellular end. The altered α4-Ser284
residue from the patient occupies the 10′ position of M2 and thus is located three helical
turns above the ion selectivity filter. In the resting state the M2 α-helices from each subunit
pack against the central axis preventing ion flow, but in the open state the M2 α-helices
move away from the central axis such that the distances between neighboring M2 α-helices
increase [27]. For receptors containing the α4-Ser284Trp variant, the increased bulk of the
Trp sidechain may facilitate the increase in inter-helical distance and thus favor the open
over the closed state of the channel. By biasing toward the open state, the variant would
increase the probability of channel opening in the absence of agonist and increase the
durations of agonist-elicited channel openings. In addition, the bulky Trp side chain may
narrow the cross section of the channel in the open state and account for the decrease in
unitary current amplitude. Thus, the functional consequences of the α4-Ser284Trp variant
highlight the crucial role of the fine structure of M2 in tuning both the stability of the open
state as well as the rate of ion flow through the channel.

Elucidating the deleterious functional consequences of variants in genes encoding the
α4β2 nAChR has implications for developing targeted therapeutics. A non-competitive
channel blocker would be expected to counter the gain of function due to enhanced channel
opening. For the patient variant described herein the bulky Trp substitution, which reduces
the unitary current amplitude, may create a drug binding site selective for the variant over
the wild type nAChR. In addition, given that expression of the α4β2 nAChR can change
in the presence of nicotine or in patients with SHE, chronic drug treatment prior to the
onset of symptoms may be beneficial in preventing plastic changes in response to gain of
function genetic variants of the nAChR. Our overall findings provide a mechanistic context
in which to develop therapeutics to neutralize the effects of the α4-Ser284Trp variant and
offer a paradigm to delineate molecular level functional abnormalities in patients with
genetic epilepsy.

4. Materials and Methods
4.1. Expression of Human (α4)3(β2)2 and Human (α4)2(β2)3 AChRs

cDNAs encoding human α4 and β2 subunits, and the chaperone proteins 14-3-3η
and NACHO were individually sub-cloned into mammalian expression vectors, either
pCI (Promega, Madison, WI, USA) or pRBG4, as previously described [15]. The patient
variant α4-Ser284Trp was generated using the QuickChange site-directed mutagenesis kit
(Agilent Technologies, Palo Alto, CA, USA) and was confirmed by sequencing; residue
numbering of the α4 subunit begins with the first amino acid of the signal peptide that
is removed in the final protein. Co-transfection with either 14-3-3η or NACHO allowed
preferential expression of (α4)3(β2)2 or (α4)2(β2)3 AChRs, respectively. Bosc-23 cells [28],
a cell line derived from HEK 293 cells, were maintained in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum, and
transfected by calcium phosphate precipitation, as previously described [29]. To bias the
stoichiometry towards (α4)3(β2)2, cells were transfected with a 10:1:10 ratio of α4, β2,
and 14-3-3η cDNAs. The amounts of transfected α4 and β2 cDNAs were 6 and 0.6 µg for
each 35 mm culture dish of cells. To bias the stoichiometry towards (α4)2(β2)3, cells were
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transfected with a 1:1:0.3 ratio of α4, β2, and NACHO cDNAs. The amounts of transfected
α4 and β2 cDNAs were 3 and 3 µg for each 35 mm culture dish of cells. A cDNA encoding
green fluorescent protein was included in all transfections. Transfections were carried out
for 4 to 6 h, followed by medium exchange. Single channel recordings were made 48–72 h
post-transfection.

4.2. Drugs

Acetylcholine chloride and nicotine were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

4.3. Radio-Ligand Binding

To measure expression of the α4β2 nAChR, transfected cells from two 10 cm tissue
culture dishes were harvested by gentle agitation in phosphate buffered saline, centrifuged
at 2500 rpm for 1 min and resuspended in (in mM): 140 KCl, 5.4 NaCl, 1.8 CaCl2, 1.7 MgCl2
and 10 HEPES, with the pH adjusted to 7.4 with NaOH. Cell suspensions were divided
into equal aliquots, which were incubated with specified concentrations of 125I-epibatidine
(kindly provided by Dr. Vanda Lennon, Neuroimmunology Laboratory, Mayo Clinic)
for one hour at 21 ◦C with or without preincubation with 6 mM acetylcholine chloride.
Cell suspensions were filtered using a Brandel M-48T cell harvester (Gaithersburg, MD,
USA) and radio-ligand bound to the cells was measured using a γ-counter. To determine
non-specific binding, identical procedures were applied to cells transfected with cDNA
encoding the β2 subunit.

4.4. Single Channel Recordings

Patch clamp recordings were obtained from Bosc-23 cells expressing α4β2 nAChRs
using the cell-attached patch configuration at a temperature of 21 ◦C and membrane
potential of −70 mV. Patch pipettes were fabricated from glass capillary tubes (7052, King
Precision Glass, Claremont, CA, USA), coated with Sylgard (Dow Corning, Midland, MI,
USA) and heat polished to a resistance of 5–10 mega-ohms. The bath and pipette solutions
contained (in mM): 140 KCl, 5.4 NaCl, 1.8 CaCl2, 1.7 MgCl2 and 10 HEPES, with the
pH adjusted to 7.4 with KOH. Concentrated stock solutions of nicotine and ACh (Sigma-
Aldrich) were stored at−80 ◦C and diluted to the final concentrations in pipette solution on
the day of each experiment. Single-channel currents were recorded using an Axopatch 200B
patch-clamp amplifier (Molecular Devices, San Jose, CA, USA) with a gain of 100 mV/pA
and the internal Bessel filter at 100 kHz. Upon formation of a giga-ohm seal a constant
command voltage was applied to the interior of the patch pipette to establish the membrane
potential. Currents were digitized at 20 µs intervals using a National Instruments model
BNC-2090 A/D converter with a PCI 6111e acquisition card and recorded to the hard disk
of a PC using the program Acquire (Bruxton Corporation, Seattle WA, USA). For analysis
the acquired data were filtered at a bandwidth of 5 kHz using a Gaussian filter.

Analysis of single channel currents was performed using the program TAC 4.3.3
(Bruxton). To analyze open and closed dwell times, single channel events were detected
using the half amplitude threshold criteria, dwell times were plotted using a logarithmic
abscissa and a square root ordinate with an imposed dead time of 30 µs, and the sum of
exponentials was fitted to the histograms by maximizing the likelihood. To analyze single
channel current amplitude, an all-points histogram was generated for a sweep of data
containing multiple channel openings, and a Gaussian function was fitted to the baseline
and open channel current levels. The difference between the means of the baseline and open
channel currents was averaged for five to ten sweeps to yield the mean current amplitude
for a given experimental condition, as described [7].

To quantify the durations of clusters of channel openings, a cluster was defined as a
series of openings interspersed by closings briefer than a specified critical duration (τcrit).
This duration was determined from the histogram of closed dwell times as the point of
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intersection between the exponential component of closings with longest mean duration
and that of the preceding briefer component and ranged between 1 and 3 ms.

4.5. Statistics

For statistical analysis, data are presented as the mean and S.D. Statistical comparisons
were carried out using an unpaired non-parametric t-test using GraphPad Prism 9.2.0
(GraphPad Software Inc., San Diego, CA, USA). Differences between the mean values
of measurements being compared were considered significant if the p-value was less
than 0.01.
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