
Citation: Helliwell, A.M.; Stockwell,

P.A.; Edgar, C.D.; Chatterjee, A.; Tate,

W.P. Dynamic Epigenetic Changes

during a Relapse and Recovery Cycle

in Myalgic

Encephalomyelitis/Chronic Fatigue

Syndrome. Int. J. Mol. Sci. 2022, 23,

11852. https://doi.org/10.3390/

ijms231911852

Academic Editor: Michael Klutstein

Received: 26 August 2022

Accepted: 28 September 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Dynamic Epigenetic Changes during a Relapse and Recovery
Cycle in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Amber M. Helliwell 1, Peter A. Stockwell 2 , Christina D. Edgar 1, Aniruddha Chatterjee 2,† and Warren P. Tate 1,*,†

1 Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
2 Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
* Correspondence: warren.tate@otago.ac.nz
† These authors contributed equally to this work.

Abstract: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease
with variable severity. Patients experience frequent relapses where symptoms increase in severity,
leaving them with a marked reduction in quality of life. Previous work has investigated molecular
differences between ME/CFS patients and healthy controls, but not the dynamic changes specific to
each individual patient. We applied precision medicine here to map genomic changes in two selected
ME/CFS patients through a period that contained a relapse recovery cycle. DNA was isolated
from two patients and a healthy age/gender matched control at regular intervals and captured the
patient relapse in each case. Reduced representation DNA methylation sequencing profiles were
obtained spanning the relapse recovery cycle. Both patients showed a significantly larger methylome
variability (10–20-fold) through the period of sampling compared with the control. During the relapse,
changes in the methylome profiles of the two patients were detected in regulatory-active regions
of the genome that were associated, respectively, with 157 and 127 downstream genes, indicating
disturbed metabolic, immune and inflammatory functions. Severe health relapses in the ME/CFS
patients resulted in functionally important changes in their DNA methylomes that, while differing
between the two patients, led to very similar compromised physiology. DNA methylation as a
signature of disease variability in ongoing ME/CFS may have practical applications for strategies to
decrease relapse frequency.

Keywords: ME/CFS; DNA methylation; RRBS; DMAP; Epigenetics

1. Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a lifelong severely
debilitating disease from which only a small proportion of individuals eventually fully
recover (<5%) [1]. While currently not well understood, it is estimated to have a global
prevalence of ~1% [2] and to have a higher overall disease burden than conditions like
multiple sclerosis, autism or HIV/AIDS [3]. Patients experience a wide variety of debil-
itating symptoms including severe fatigue, post exertional malaise, and cognitive, sleep
and orthostatic dysfunctions [4]. These symptoms vary in severity such that ~25% of
patients are house or bedbound throughout the illness. The remaining 75% of those af-
fected transition to a life-long chronic phase where they may be able to participate in work
and hobbies, albeit with a reduced capacity. However, they are vulnerable to frequent
debilitating “relapses”, particularly after even minor stress.

The disease presentation and key research to date indicate that there is a complex
pathophysiology affecting ME/CFS patients, with biological functions reduced in a number
of systems including immune/inflammatory, and neurological as well as in metabolism.
For example, an analysis found 80% of 612 metabolites analysed in plasma of ME/CFS
patients were significantly decreased, indicating that there was an overall reduction in
metabolic activity in patients. This has been compared to the ‘dauer effect’, a shut down
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like hibernation in animals [5]. Additionally, patient mitochondria have a dysfunction in
the mitochondrial complex V where the energy molecule ATP is synthesised, resulting
in proteins in the upstream mitochondrial complexes, particularly complex 1, being up
regulated as an apparent attempt to compensate [6], as well the metabolic pathways
and mechanisms to control regulation of reactive oxygen species [7]. This could explain
one component of why ME/CFS patients are unable to respond biologically to day-to-
day stresses, let alone high-level stress events. We have proposed a theory based on
fluctuating neuroinflammation to explain the sustained chronic state of the illness and
‘relapse recovery’ cycles [8]. It hypothesises that neuroinflammation of the hypothalamus’
stress centre within the paraventricular nucleus could be responsible for the unexplained
prolonged and fluctuating symptom presentations [8]. More recently we have developed a
model to explain the molecular mechanisms of neuroinflammation that sustain disease and
promote relapses in ME/CFS and Long COVID [9].

The absence of a specific molecular diagnostic test, and also the fluctuating variations
across patients in disease presentation and symptom severity, has made understanding
ME/CFS and conclusions from molecular data difficult. When studies focus on large
cohorts of patients, they often include very varied presentations of ME/CFS, and different
studies have often used different clinical case definitions for diagnosis. A recent study
of the involvement of cytokines addressed the diversity within the patient cohorts on a
molecular scale, and found that a large number of pro-inflammatory cytokines were found
to be linearly associated with ME/CFS severity [10]. This investigation highlighted the
dilemma of many investigations targeting ME/CFS, since the cytokines associated with
severity were not sufficient to distinguish the patients from the controls because of the
abundance of mild ME/CFS cases in the study group. Other studies have approached this
issue by classifying ME/CFS patients into different subgroups. A study in 2008 examining
expression levels of transcripts classified 7 subtypes, through mean relative transcript
quantities with 88 transcripts that corresponded with clinical severity [11]. In recent years,
DNA methylation has been applied to investigate the disease status of ME/CFS patients,
and a number of studies have found important differences separating the patients from
controls [12–17]. A recent publication with this technology has identified four subtypes
utilising DNA methylation and symptom severity [18], with key differentially methylated
genes between subtypes having primarily immune and metabolic functions. This study
indicated that molecular analyses could differentiate patients with the molecular changes
reflecting physiology relevant to the observed symptoms.

The gradual trend to a more personalised approach taken by these investigations is
an important step towards understanding the intricacies of ME/CFS. Many patients, once
they have entered the chronic state of their disease following an initial acute period often
lasting several years, experience frequent extreme symptom fluctuations characteristic of a
relapse event. No published molecular studies have yet followed patients longitudinally
through a ‘relapse recovery’ cycle. In order to understand in depth a disease as complex as
ME/CFS this more personalized approach with individual patients is both informative and
appropriate, not only for researchers in their studies but also for patients in the management
of their disease. Indeed, precision medicine is becoming more readily accessible not only as
a research tool to understand the impact of disease on an individual, but also how they will
respond to a specific medical intervention [19,20]. This seems especially relevant for the
study of ME/CFS where patients have a wide-ranging level of functionality, for example in
their ability to exercise, their cognitive deficits, and often different comorbidities.

How can precision medicine be applied to ME/CFS? DNA methylation is an important
epigenetic modification that affects the expression of genes without altering the genomic
code itself. This specific analysis is with increasing precision helping researchers to bridge
the gap between understanding genetic risk and assessing environmental contributions
to disease. Changes are captured that are not permanently reflected in the genome but
occur in individuals as a result of the disease. An excellent example of this is an in-depth
investigation that followed 87 individuals that had transitioned from a pre-diabetic state
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to a diabetic state. It revealed methylation differences that occurred before the switch
to the disease state [21]. Since DNA methylation can capture transcriptional changes
that reflect physiological variations, it is an ideal tool in ME/CFS to determine temporal
changes in genomic regions that reflect the symptom fluctuations. These are not so easily
detectable or may not yet be present in single time point proteome or transcriptome analyses.
Understanding variation in an individual’s dynamic epigenetic code with sampling over a
precise time period time can provide an insight into the molecular activity and course of
their disease.

2. Results
2.1. Study Design and Participants

Blood was taken from two ME/CFS patients and a healthy age matched control at
5 spaced time points spanning an eleven-month period that captured a health relapse in
the ME/CFS patients from their typical compromised health state (see Figure 1A). The
participants gave a subjective numerical assessment on a scale of 1–10 as an indicator of
their relative health [22]. As is shown in Figure 1A patient 1 (hereafter referred to as P1)
showed a drop from a relatively good health state, self-ranked as ‘7’; ‘well’—at the first
sample time a to an off scale ‘−3’ and ‘−2’, ‘fragile’ indicating a severe relapse condition
at time points b and c. She then showed relative recovery to a health status ‘7’ again at
sample times d and e. Patient 2 (hereafter referred to as P2) in contrast had a more fragile
steady state ‘4–6’, mainly ‘fragile’—across the five separate sample collection points with
a drop into a relapse ‘2’ at the time of sample c. The control remained in excellent health
‘10’ throughout the timeline. The term ‘recovery’ is used in this investigation to define the
time points following the relapse where the individual returns to the state of health they
experienced prior to the relapse. It is also used as the term, for convenience, to define the
time point(s) prior to the relapse event.

The data from Reduced Representation Bisulphite Sequencing (RRBS) of each of the
5 samples from the three subjects were analysed using the Differential Methylation Analysis
Package (DMAP) platform with intra-individual variably methylated fragments (iVMFs)
identified for each patient and the control (Figure 1B) -named ME-iVMFs. Fragments
suitable for analysis had 10 or more reads of at least 2 CpG sites. A total of 13,954, 53,442
and 38,135 met these criteria for P1, P2 and the C respectively. The statistical parameters
applied to the analysis are described in methods. For the control individual, there were
a total of 6324 fragments that met the significance threshold FDR < 0.05. The qualifying
fragments had a median size of 80 bp and an average size of ~84 bp. These fragments
contained 52,791 CpG sites, with an average of 8.4 CpGs in each fragment. For P1, there
were a total of 2788 statistically significant variably methylated fragments with a total
of 22,550 CpG sites and an average of 8.1 per fragment (FDR corrected p < 0.05). These
fragments themselves had a mean length of ~78 bp with a median length of ~75 bp. For P2,
11,577 fragments with a total of 87,734 CpGs and an average of 7.6 CpGs per fragment met
the same significance threshold, and had a median fragment size of 75 bp, and an average
fragment size ~80 bp.
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Figure 1. Study design. (A) Summary of self-reported health status of study subjects through a re-
lapse and relative recovery cycle. The timeline of the health status of two patients over an 11 month 
period that spanned a relapse in each patient is shown along with the matched control. Self-reported 
information from the patients that they supplied on the day of blood donation indicated their health 
status (between –3 and 10). (B) The study design for longitudinal analysis. Following RRBS, and 
adaptor trimming and alignment of the data to human reference genome hg19 using Bismark, each 
sample was analysed. Initial estimates of variation utilised genome wide CpG methylation infor-
mation, before the samples were analysed utilising the DMAP platform where a Chi squared anal-
ysis was used to identify methylation variation. The fragment methylation was also used to estimate 
variation but at key genomic locations. Comparisons were made between the patients and control. 
Continued analysis utilised the 577 statistically significant variable fragments identified across all 
15 samples (FDR corrected p < 0.05) where correlation was calculated with health scores and ‘re-
lapse’ and ‘recovery’ events to identify intra-individual variably methylated fragments (iVMFs). 

Figure 1. Study design. (A) Summary of self-reported health status of study subjects through
a relapse and relative recovery cycle. The timeline of the health status of two patients over an
11 month period that spanned a relapse in each patient is shown along with the matched control. Self-
reported information from the patients that they supplied on the day of blood donation indicated their
health status (between –3 and 10). (B) The study design for longitudinal analysis. Following RRBS,
and adaptor trimming and alignment of the data to human reference genome hg19 using Bismark,
each sample was analysed. Initial estimates of variation utilised genome wide CpG methylation
information, before the samples were analysed utilising the DMAP platform where a Chi squared
analysis was used to identify methylation variation. The fragment methylation was also used to
estimate variation but at key genomic locations. Comparisons were made between the patients and
control. Continued analysis utilised the 577 statistically significant variable fragments identified
across all 15 samples (FDR corrected p < 0.05) where correlation was calculated with health scores and
‘relapse’ and ‘recovery’ events to identify intra-individual variably methylated fragments (iVMFs).
Genes associated with the individuals iVMFs were determined and functional categories investigated.
# see Figure 2, ## see Figure 3, ### see Tables 1 and 2, #### see Figure 5.
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2.2. Dynamic Analysis of DNA Methylation Variation

Initially the variation in the methylomes across the time points within each individual
was investigated by performing a comparison of the variability at each CpG site. This was
calculated from the number of statistically significantly differently methylated CpG sites
(p < 0.05, methylation difference > 15% compared with the other time points) that were unique
to each time point. The percentage of unique DNA methylation variations within each sample
was derived from this number compared with the total number of CpG sites analysed for that
individual. For example, in the healthy control at time point A 1276 statistically significantly
differentially methylated CpGs were identified from a total of 119,931 CpGs compared with
the other four time points giving a unique variation of 0.12% (see Figure 2A). This was a
consistent pattern, with each time point of the control having a similarly low level of unique
differential methylation at CpG sites (ranging from 0.12–0.15%). By contrast the patients
showed about a 20-fold greater variation -P1, at time point a compared to their other four
time points had 2.06% of sites differentially methylated uniquely, and P2 at time point a had
a similar level of variation of 2.67%). The unique differential methylation at the five time
points ranged from 2.06–3.78% in P1 and 1.91–2.67% in P2.

Further predictions of variability based on the DMAP-produced fragment methylation
data on further analysis showed that the patients were again more variable than the
control, though not as distinctly obvious as from the individual CpG site methylation
comparisons described above. The number of statistically significant variably fragments for
each individual was divided by the total number of fragments assessed for that individual
to produce a variability score. For C, P1, and P2, respectively the overall variability scores
were 0.17, 0.20, and 0.22. In order to assess the relative variability of the two patients and
the control across functionally important regions of the genome their individual data were
extracted across regions of interest, such as within gene bodies, Transcriptional Start Sites
(TSS) upstream regions of 10,000 bp (see Figure 2B), and relative CpG island regions of
<500 bp with more than 55% GC content position) (Figure 2C).

As seen in Figure 2B the healthy control showed a lower level of variability compared
to both the patients at almost every gene related site analysed apart from the TSS where all
three individuals in the analysis show similar levels of variability. P2 with the more fragile
health showed a higher level of variability compared to both the control and P1.

As seen in Figure 2C the variability of the three individuals across the CpG island
related features reflected the same pattern as in Figure 2B at the gene related regions. The
control showed the lower variability score compared to both patients. As before, P2, who
had the more debilitating ongoing ME/CFS, showed consistently higher levels of variability
across the features analysed when compared to P1.
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Figure 2. Line plots showing the variability calculated for each individual. (A) summary of the sta-
tistically significant unique differentially methylated CpG sites at each time point a to e for the two 

Figure 2. Line plots showing the variability calculated for each individual. (A) summary of the
statistically significant unique differentially methylated CpG sites at each time point a to e for the two
patients and the healthy control. The level of methylation variation was calculated utilising individual
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CpG methylation scores, with the significant differentially methylated CpGs found at that time point
compared with the other time points, divided by the overall number of CpGs analysed for that
individual, to give the percentage that were uniquely differentially methylated in each sample from
each time points a to e. (B). Line plots showing the variability scores calculated for each individual
across the gene features indicated on the x axis. Variability score was calculated by dividing the
number of statistically significant (q < 0.05) variable fragments by the total number of fragments
analysed at that feature. (C). Line plots showing the variability scores calculated for each individual
across the features indicated on the x axis related to CpG Islands. CpG islands were defined as
regions less than 500 bp with more than 55% GC content, CpG shores are defined as regions 2 Kb
from the island with shelves 4 Kb away, the boundaries between these features are included (CpGI
core/shore, shore/shelf and shelf edge). Variability score was calculated by dividing the number of
statistically significant (q < 0.05) variable fragments by the total number of fragments analysed at
that feature.

2.3. Common ME-iVMFs Methylation Patterns in Patients

Continued analysis of ME-iVMFs included only those fragments that were present in
all 15 samples of the three individuals, which resulted in a total of 577 common fragments.
Figure 3 is a heatmap that shows the methylation variation across these fragments. It
identified the hierarchical clustering of the individual samples based on methylation
percent values at each segment, with the associated dendrogram in Figure 3A clearly
showing the relationships between the 15 individual samples. The variation within each
patient and within the control sample (a to e time point samples) is lower than the variation
among the samples (P1, P2, C), since the heatmap and associated dendrogram clearly
grouped the 15 samples into three separate groups that relate to each individual (P1, P2, C).
However, it also shows visually the variation within each individual with the 5 different
time points clearly showing differences in methylation at a number of fragments.

Initial investigations of these 577 common fragments involved comparing the two
patients individually with the matched control in a differential methylation analysis. If
the mean methylation difference was greater than 15% between the patient and control
methylation scores at these fragments, they were then investigated further. Figure 3B shows
the differentially methylated fragments across 68 such selected fragments for P1 vs. C and
Figure 3C shows the 53 selected for P2 vs. C.

To further analyse the data for the differentially methylated fragments in the patients
compared with the control that fell within gene bodies, STRING.org pathway enrichment
analysis was performed. Of the 26 genes that contained differentially methylated fragments
in P1 compared with C, two pathways were identified; Nicotine addiction and Morphine
addiction due to the presence of genes GNAS, CACNA1A and GABRD. The 23 genes
that contained differentially methylated fragments in P2 compared with C showed two
pathways with the protein domains; Transforming growth factor-beta (TGF-beta) family
and Immunoglobulin C-2 Type, that were identified from the genes; IGSF9B, OPCML,
GDF7, CERS1 and LINGO3.

2.4. Identifying Methylation Pattern Associated with the Relapse Condition

In order to find fragments with changes relevant to the relapse in the patients, the
data from the overall 577 ME-iVMFs were correlated with the patients self-reported health
scores. A Pearson’s correlation coefficient was calculated using the association between the
methylation percent at each fragment to the individuals self-reported heath score (as seen in
Figure 1A). A minimum Pearson’s correlation coefficient of 0.9 was set. In order to further
filter the fragments and select those that reflect the greatest changes in methylation between
the patients self-assessed ‘relapse’ and better health ‘recovery’ conditions, a methylation
difference was calculated based on the average mean methylation percentages of the relapse
and recovery samples, for example, for P1 time points “b” and “c” were ‘relapse’ and “a”,
“d” and “e” were classified as ‘recovery’. A minimum differential methylation of +/− 15%
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was set. This correlation analysis for P1 identified 17 fragments (Table 1). A total of
14 fragments were identified using this method for P2 (Table 2).
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Figure 3. Heatmap showing the individual methylation variation at ME-iVMFs of interest. (A) Shows
the methylation percent variation across all 577 statistically significant ME-iVMFs detected across
all 15 samples. (B) shows the methylation variation in 68 ME-iVMFs where the mean methylation
difference between the P1 and C groups is greater than 15% and (C) shows the methylation variation
in 53 ME-iVMFs where the mean methylation difference between the P2 and C groups is greater
than 15%. The dot plots associated with B and C on the right of the figure show the degree of
differential methylation. The scale below Figure 3A shows the corresponding colour associated with
the methylation scores.
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Table 1. Fragments associated with the relapse condition for P1. Fragments with a Pearson’s
correlation coefficient of at least 0.9 and a mean methylation difference between the “relapse” and
“recovery” time points of at least 15% are shown. The table describes the location of each fragment,
and the gene id if appropriate. It lists any overlapping regulatory elements (promoters/enhancers)
recorded in Genehancer and the gene id associated with clusters of regulatory interaction determined
using UCSC genome browser. Additionally, the table shows the methylation percent recorded for
each time point (P1-a to P1-e) at each fragment with the relapse time points italicised.

Frag Chr Start End Position GeneID Genehancer Regulatory Interactions P1-a P1-b P1-c P1-d P1-e

1 19 33,885,306 33,885,381 On Intron PEPD GH09J033388 CEBPG:PEPD 78 45 44 71 64

2 X 150,565,438 150,565,527 On Intron VMA21 GH0XJ151395 VMA21 50 33 31 45 49

3 19 55,464,080 55,464,189 On Intron NLRP7 GH19J054952 NLRP2 78 55 48 81 75

4 7 5,741,705 5,741,780 On Intron NF216 GH07J005687 ACTB:CCZ1:RNF216:USP42 86 60 74 84 88

5 X 135,579,269 135,579,310 On Intron HTATSF1 - - 39 28 22 46 40

6 X 152,908,188 152,908,279 On Intron DUSP9 - DUSP9 46 18 30 37 45

7 17 45,925,149 45,925,204 On Exon SP6 GH17J047846 SP2:CDK5RAP3:
OSBPL7:SCRN2 46 28 29 46 44

8 X 23,761,294 23,761,378 On Exon ACOT9 GH0XJ023741 ACOT9 37 18 18 34 37

9 8 145,003,618 145,003,684 On Exon PLEC GH08J143914 ZC3H3:EEF1D:PLEC 70 34 37 58 59

10 X 149,106,531 149,106,576 On Exon CXorf40B GH0XJ149937 INC00B94:CXorf40B 48 28 36 54 58

11 22 42,316,243 42,316,306 Intergenic - GH22J041918 WBP2NL:CYP2D8P:CEN
PM:CYPSD6:TNFRSF13C 44 30 27 44 44

12 1 17,199,256 17,199,369 Intergenic - - NECAP2:CROCC 55 35 44 59 57

13 2 232,348,597 232,348,713 Intergenic - - NMUR1:NCL 57 38 34 69 62

14 13 114,918,456 114,918,525 Intergenic - - CDC16:UPF31:
RASA3 87 65 62 96 84

15 2 26,521,360 26,521,433 Intergenic - GH02J026298 HADHB:HADHA:
ADGRF3 53 38 35 60 53

16 3 10,334,731 10,334,778 Intergenic - GH03J010291 GHRLOS:GHRL 33 13 22 40 41

17 15 22,095,431 22,095,475 Intergenic - - - 51 40 34 51 56

P1-a to P1-e in Table 1 represents percent methylation data from the samples taken
from P1 at each of the time points a to e. As can be seen at time points b and c during which
there was a self-reported severe relapse (Figure 1A) there was a much lower methylation
rate (number italicised) than in the samples from the ‘recovery’ times a, d and e.

Whereas the ME-iVMFs that associated with the relapse condition of P1 were all
hypomethylated (see Table 1), for P2, while the majority of the fragments 1–11 were also
hypomethylated, three (12–14) by contrast were hypermethylated (shown in bold in Table 2)
in the relapse condition (P2-c) compared to the recovery conditions.

The fragments for both patients show a number of interactions with genomic elements
including direct overlaps with gene bodies as well as regulatory elements as recorded
in GeneHancer, and USCS genome browser recorded clusters of regulatory interactions
between regulatory elements and gene bodies. As these fragments show clear changes
in the methylation state of the individual across their relapse and recovery states it has
important implications on the regulatory behaviour of a number of associated genes.
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Table 2. Fragments associated with the relapse condition for P2. Fragments with a Pearson’s
correlation coefficient of at least 0.9 and a mean methylation difference between the “relapse” and
“recovery” time points of at least 15% are shown. The table describes the location of each fragment
and the gene id if appropriate. It lists any overlapping regulatory elements (promoters/enhancers)
recorded in Genehancer and the gene id associated with clusters of regulatory interaction determined
using UCSC genome browser. Additionally, the table shows the methylation percent recorded for
each time point (P2-a–P2-e) at each fragment with the relapse time point italicised. Fragments
hypermethylated in the relapse condition are shown in bold.

Frag Chr Start End Location GeneID Genehancer Regulatory Interactions P2-a P2-b P2-c P2-d P2-e

1 19 4,543,716 4,543,762 On Intron SEMA6B GH19J004539 YJU2:PLIN5:SEMA6B:LRG1 80 81 47 91 67

2 X 15,353,393 15,353,501 On Intron PIGA GH0XJ015333 ZRSR2:PIGA 40 41 18 39 33

3 22 17,640,812 17,640,923 On Intron CECR5 GH22J017157 HDHD5 69 82 60 80 71

4 14 105,936,238 105,936,292 On Exon MTA1 GH14J105464 IGHGP:CDCA4:CRIP2:MTA1
:ENSG00000257270 84 80 63 87 76

5 22 18,027,985 18,028,072 On Exon CECR2 - - 49 46 68 38 51

6 X 102,565,776 102,565,848 Intron–Exon
Boundary BEX2 GH0XJ103310 BEX2 42 45 26 43 41

7 1 155,098,923 155,098,964 Intergenic - GH01J155123 DAP3:CLK2:DPM3:GBAP1
:THBS3:EFNA1 54 67 35 72 60

8 3 10,334,731 10,334,778 Intergenic - GH03J010291 GHRLOS:GHRL 49 56 32 61 41

9 9 38,687,682 38,687,760 Intergenic - - - 61 62 39 65 42

10 7 100,882,140 100,882,220 Intergenic - GH07J101231 FIS1:CLDN15 80 80 65 90 75

11 2 219,233,608 219,233,704 Intergenic - GH02J218366 AAMP:SCL11A1
:TMBIM1:CATIP 49 55 38 62 52

12 6 170,403,979 170,404,085 Intergenic - - WDR27 62 66 81 63 70

13 X 129,299,533 129,299,622 Intergenic - GH0XJ130164 ELF4:AIMF1:ZNF280C 42 36 61 31 49

14 X 135,579,192 135,579,268 Intergenic - - - 28 27 61 30 44

2.5. Relapse Associated Methylation Signature Exhibits Striking Variation Compared to Control

Figure 4 gives examples of the top 6 fragments across the five time points for both
patients that had the greatest level of differential methylation between their relapse and
recovery states. Figure 4 clearly shows that there are clear changes in methylation within
the two patients at the relapse condition. In Figure 4A the relapse condition is shown for P1
at time points b & c compared to recovery time points a, d & e, and in Figure 4B for P2 with
relapse at time point c and a, b, d & e for recovery. Due to their genomic location, these
fragments have important functional implications, for example from P1 shown in Figure 4A
is a fragment that is located within the first intron of NLRP7 gene. It also overlaps with an
enhancer (GH19J054952) and directly overlaps a region of regulatory interaction for NLPR2
in addition to being located within a region of Dnase hypersensitivity. As previously
mentioned all these fragments were hypomethylated in the relapse state of P1, illustrated
in the examples shown in Figure 4A, indicating that the corresponding regulatory features
likely have a downstream up-regulation on associated genes.

Both hypomethylation and hypermethylation is shown in Figure 4B with the examples
from P2. P2 also has a number of fragments of regulatory importance such as a fragment
located on chr1:155098923-155098964 that is located within an archived promoter region
(GH01J155123) and has 37 target genes. Additionally, this fragment overlaps with a number
of clustered interactions between Genehancer regulatory elements and genes for; DAP3,
CLK2, DMP3, GBAP1, THBS3, EFNA1. Another fragment of interest shown in Figure 4B is
located within the 17th (last) exon of SEMA6B, as it encodes a protein that may be involved
in both peripheral and central nervous system development. Additionally, this fragment
overlaps with a Genehancer archived promoter region (GH19J004539). It overlaps with a
DNAse hypersensitivity cluster and four clustered interactions of Genehancer regulatory
elements and genes (YJU2, PLIN5, SEMA6B and LRG1).
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In order to investigate the potential impact of the methylation variation on the patient’s
molecular activity during relapse recovery cycles a total gene list was built that associated
with the regulatory elements found to be overlapping with the fragments described in
Tables 1 and 2. There were a total of 157 genes associated with the 17 ME-iVMFs identified
on relapse in P1, and 127 genes associated with the 14 ME-iVMFs identified in P2 (see
Supplementary Excel File ‘Supplementary.xlsx’ sheets ‘Genes associated with P1′ and
‘Genes associated with P2′).

2.6. Simulated Relapses for the Control Subject Identified Fewer Variable Methylated Genes Than
the Patients

To determine whether the ME-iVMFs and associated genes were actually due to
the ME/CFS relapse and recovery conditions and not simply a result of random chance
and random methylation variation, the control sample was also analysed in two separate
determinations as though the healthy control also had the relapse health scores of the two
patients, respectively, at the appropriate time points. Thus, each patient relapse health
scores were assigned ‘artificially’ to the relevant control time points in separate analyses
to calculate the correlation and determine differential methylation from the control data
between these simulated ‘relapse’ and ‘recovery’ states. From these analyses, 11 fragments
with only 39 genes associated with them (see Supplementary Excel File ‘Supplementary.xlsx’
sheet ‘Control_Filt Correl with P1′ and, see Supplementary Excel File ‘Supplementary.xlsx’
sheet ‘Genes_assoc with C-P1 condition’) met the filtering requirements with P1′s health
scores, and 14 fragments with 53 genes with P2′s health scores (see Supplementary Excel
File ‘Supplementary.xlsx’ sheet ‘Control_Filt Correl with P2′ and, see Supplementary Excel
File ‘Supplementary.xlsx’ sheet ‘Genes_assoc with C-P2 condition’). This compares with
157 genes in the data comparison and health states comparison for P1 and 127 genes in the
analysis for P2. To determine whether the relationship between the number of associated
genes identified per fragment was significantly higher in the patients relapse times, the
number of genes identified from each fragment from these ‘simulated’ control analyses
and the ‘real’ patient analyses were subjected to an unpaired t-test. The number of genes
per fragment were significantly higher for the patient group compared to the two control
simulations, with a p-value = 0.0053 (see Figure 5A). This implies that while a proportion of
the methylation changes seen in the patients may be due to random methylation variation,
most of the identified changes during relapse in the patients are due to their physiological
relapsed state and are associated with important regulatory regions of the genome linked
to ME/CFS disease presentation.

The potential functional associations of each gene that were linked to the variably
methylated fragments associated with a ‘relapse’ event were determined. The gene func-
tions identified by this analysis associated with patient symptom fluctuations indicate a
change primarily in ‘immune response’ for both patients. Additional functions associated
with the genes involved metabolism and transcription for both patients. P1 also had a num-
ber of genes involved in cell cycle progression while P2 had a larger number of neuronal
related genes. Gene annotations for each gene are listed in the supplementary Excel file
‘Supplementary.xslx’ sheets ‘Genes associated with P1’ and ‘Genes associated with P2’. Of
the immune related genes identified, a number were associated with activities implying
increases in the inflammatory response in individuals, with specific functions linked to
NF-kappa B activity, wound healing, cytokine release, and angiogenesis observed multiple
times. This suggests that during a period of relapse the patient’s immune systems are in an
enhanced inflammatory state compared to their relative ‘recovery’ periods.
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Figure 5. Investigation of the genes associated with relapse associated ME-iVMFs. (A) Box plots
showing the number of genes linked with each statistically significant variably methylated fragment
associated with a ‘simulated’ relapse event for the control in grey (in two analyses using each of
the patient health relapse time points) and the ‘real relapse events’ of the two patients in red. Each
point represents a fragment with the number of associated genes shown on the y-axis. The mean
number of genes associated with the identified fragments for the patient and control groups is
shown with the horizontal line. An unpaired t-test resulted in a significance value of p = 0.0053.
(B) Sankey plot showing relationship between the variably methylated fragments identified in each
patient associated with a relapse event and the biological functions they associate with through
various regulatory genomic elements of relevant genes. From the statistically significant variably
methylated fragments identified for each individual the location was determined and relevant
regulatory interactions were recorded from UCSC genome browser. A gene list was compiled of genes
associated with these regulatory interactions and the functional annotations were utilised to place
them into categories. Some genes fell into multiple categories with others having no known function.
Tables showing the full gene list, function and functional category is included in Supplementary
Excel File ‘Supplementary.xlsx’ sheet ‘Genes_associated with P1’ and ‘Genes associated with P2’.

3. Discussion

Previous studies [12–17], including our own study that described the first DNA methy-
lome of ME/CFS patients produced by Reduced Representation Bisulphite Sequencing
(RRBS) [16], have established ME/CFS patients at a fixed time point in their disease display
an altered DNA methylome in comparison to matched controls. This current study is the
first of its kind to analyse the DNA methylome of ME/CFS in individual patients across a
longitudinal timeline to investigate a change in health status. Utilising the principles of
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precision medicine it has identified two key features: (i) the number of variably methy-
lated sites and fragments of the genome are much greater in the two ME/CFS patients
than in the control at each time point of the longitudinal study and, (ii) the severity of
ME/CFS symptoms during a relapse is associated with methylation variation at key ge-
nomic features. The variable methylated DNA fragments enabled us to identify statistically
important features specifically associated with a significant ‘relapse’ in the health of the
two patients, compared with their prior health and their recovery after the relapse. The
genomic features implicated regulatory changes affecting primarily immune functions with
associated inflammation, but also metabolic, neurological and mitochondrial functions in
patients as they experience symptom fluctuations along the course of their disease.

3.1. Benefits of DNA Methylation for a Precision Investigation of ME/CFS

The individuals selected to participate in this study were within a similar weight, age
range with the same gender, ethnicity and lifestyles. This was done to prevent any potential
confounding factors, since DNA methylation is a dynamic epigenetic mark known to vary
due to environmental factors [23,24]. These patients had taken part in many of our studies,
had been diagnosed by the same expert ME clinician and we had detailed information on
comorbidities, medications, and general lifestyle, family status, including their diets, and
level of activity. They were carefully selected to be as closely matched as possible and that
their diets were similar and healthily balanced with the main nutritional groups. Indeed
they had no comorbidities, had not experienced a pregnancy, but both had taken melatonin
to help with sleep, and one patient was taking medication for controlling blood pressure.
They were both originally paediatric cases having contracted the illness in their teens and
had had their illness formally diagnosed for 6 and 10 years, respectively, but it is likely
to have started earlier than that. Hence, The specific criteria for patient selection utilised
aimed to ensure that the variation in methylation would be primarily due to fluctuations in
ME/CFS symptom severities.

While previous epigenetic studies have utilised primarily array-based methods, stud-
ies involving the same method of RRBS and analysis platforms described here have been
performed successfully previously [25,26]. Indeed, our recent study [16] with this method
with ME/CFS patients gave methylation changes that significantly overlapped with the
other similar studies of this disease that used the array technology [12–15,17]. Utilising
RRBS technology a large number of changes were identified that differentiated ME/CFS
patients from controls. The use of RRBS here has followed extensive in-house development
and experience with the platform used [25–27]. The advantage of using RRBS is that it
identifies changes not captured by the array-based studies as it is not limited to the set
number of sites in the array, allowing wider coverage of the whole genome.

DNA methylation is an excellent method to investigate physiological changes as it is
reflective of transcriptional changes linked to the disease state, and so is very appropriate
to study the relapse recovery cycle of ME/CFS. DNA methylation is a versatile method
to investigate an individual’s physiology [21]. Small observed changes often reflect much
larger changes occurring in a subpopulation of cells that are obscured by the broader range
and number of cells from which the DNA is taken. Notably, previous research has indicated
that even small measured methylation changes can have large impacts on the associated
expression levels of a gene [28]. For example, a recent investigation found that even a small
change in methylation percent of (1%) was associated with a two-fold change in expression
of insulin like growth factor-2 (IGF2) [29]. A key study relevant to our ‘relapse and recovery’
in ME/CFS patients showed DNA methylation to be changed in at risk individuals before
their transition to diabetes [21]. This application of personalised medicine allows DNA
methylation variation to be utilised not only to distinguish patients from healthy controls,
but also to provide a more specific pathophysiological understanding of an individual
patient’s disease trajectory.
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3.2. Inter-Individual Differences Indicate Increased Epigenetic Variation Linked to Disease Severity

As we develop a deeper understanding of the onset of ME/CFS, it is becoming clear
that there is an underlying genetic predisposition in combination with an environmental
trigger to precipitate an altered homeostatic state or compromised health ‘baseline’ in
patients [30]. Once the disease progresses past the initial acute stage ~75% of patients can
transition to a chronic state but the partial recovery is interspersed with frequent periods of
relapse followed by relative recovery to the initial compromised health state again. This
‘new normal’ chronic state of ME/CFS for patients may leave them more vulnerable to even
minor changes in their environment that would not affect a healthy person. For ME/CFS
patients in their altered homeostatic state a dramatic change in physiological state can
easily be precipitated.

Initial analysis of the DNA methylation of the genome-wide CpGs of the patients
and the healthy control in this study supported the idea that ME/CFS patients are more
vulnerable to environmental changes. Month to month, the unique variability in methyla-
tion in the healthy control, who had stable excellent health throughout the longitudinal
study, was low <1 per 500 sites, but both of the patients had a much higher level of unique
variability at each sampling time point at between 1 per 20–50 sites. A similar estimate
of variability was performed utilising the DMAP fragment methylation each containing
multiple sites, and produced similar but less dramatic trends with the patients having
0.20 and 0.22 variability scores compared with 0.17 for the healthy control (based on the
number of statistically significant variable fragments divided by the overall number of
fragments in each individual). A key determinant however, is not the extent of variation but
the variation at regions of functional importance across the genome, such as in proximity to
CpG islands (often associated with regulatory regions), and upstream of and within gene
bodies. This investigation found that the patients were consistently more variable than the
control at all regions investigated (Figure 2) with the exception of the Transcriptional Start
Site (TSS) where both patients and control had similar levels of variability. Of importance
to note is that, while both patients were much more variable than the control, P2, in a more
compromised state of health throughout the longitudinal timeline, was consistently the
more variable of the two patients. The results from this study indicate that not only are
patients more epigenetically variable than a healthy control, but also illness severity may
be positively associated with methylation variation.

3.3. Intra-Individual Variation Identifies Regulatory Regions

An individual is often their own best control for personalised medical applications,
especially in studies like this where there is fluctuating health during a longitudinal disease
course. Individuals have fluctuating baseline DNA methylation, so important changes
occurring within an individual could be obscured when compared to a control [31]. In this
analysis however, when the fifteen samples were clustered based on the methylation scores
of the 577 significant fragments identified in all samples (Figure 3), while intra-individual
sample variation was indeed revealed, the heatmap and associated dendrogram produced
by hierarchical clustering showed that the inter-individual variation clearly differentiated
the three individuals and was greater than this intra-individual variation.

For this reason, while a healthy control was included in the analysis, the ‘relapse
recovery’ study focused primarily on variation within each individual patient and within
the control as three separate individuals, utilising each as their own ‘control’ along a longi-
tudinal time scale (for example Figure 4). Variably methylated fragments were identified in
both the patients that strongly associated with the individuals self-reported health scores
(r > 0.9) with a distinct methylation percentage difference between the ‘relapse’ and ‘re-
covery’ conditions (+/– 15%). These thresholds enabled us to capture the more relevant
changes occurring in the DNA methylation as a result of the relapse condition as discussed
above since even small changes in methylation are often are indicative of larger transcrip-
tomic changes. The control was also analysed in the same manner by ‘simulating’ a relapse
and analysing time point samples b & c (as though it were a relapse as experienced by P1),



Int. J. Mol. Sci. 2022, 23, 11852 16 of 22

and sample c (as in P2). This determined how many variably methylated fragments are
likely to associate, by chance alone independent of disease, when the patient health scores
are arbitrarily assigned to the control. A number of variably methylated fragments were
identified and were further investigated to identify any functional associations. However,
it was clear that the downstream gene associations were much lower when compared to
the two patients during relapse (as shown in Figure 5).

From the variably methylated fragments identified in the patients a large number
of downstream genes were associated through either direct physical overlap with the
variable fragment, association with a promoter or enhancer, or within a region of regulatory
interaction as recorded on UCSC genome browser. They were functionally relevant to
physiological changes occurring in the patients as they experience fluctuations in health in a
‘relapse’ and ‘recovery’ cycle. The large majority of the intra-individual variable methylated
fragments (ME-iVMFs) were hypomethylated in the relapse condition compared to the
recovery condition (only three hypermethylated from P2) (Tables 1 and 2) indicating
that there would be a corresponding increase in transcription in the downstream genes
associated with the regulatory features. As there are such a large number of genes associated
with the ME-iVMFs identified in this investigation it suggests there are consequentially
wide-ranging regulatory changes occurring in patients.

3.4. Immune and Inflammatory Changes Implicated in Relapse-Recovery Cycle

While there was a broad range of functional roles identified that were performed
by the genes associated with the significant ME-iVMFs (see Supplementary Excel File
‘Supplementary.xlsx’ sheets ‘Genes associated with P1′ and ‘Genes associated with P2′) the
largest category identified encompassed genes involved immune/inflammatory functions,
then in metabolic pathways. As these biological systems have been implicated from previous
ME/CFS research studies [6,32,33] it was not surprising that such functional categories
would be highlighted as ME/CFS patients experienced fluctuations in their health.

The immune functions identified have important functional relevance to the presenta-
tion of ME/CFS. In their relapse compared to their recovery states, P2 had with 34 immune
related genes affected. Of these genes, CXCR2 and CXCR1 indicated the potential activation
of the interleukin-8-mediated signalling pathway. IL8 has already been observed as the gene
most differentially expressed between ME/CFS and controls [7]. Other previous studies
also have observed a significantly higher level of IL-8 in severely affected ME/CFS patient
group compared to both healthy controls and moderately affected ME/CFS patients [33].

P1 also showed a number of affected genes that like IL8 are known to be associated
with inflammatory responses, for example, NLRP7, and genes associated with NF-kappa-B
function (COMMD5, LRRC14, TONSL). P2 additionally also showed a similar relation-
ship with a number of the immune related genes having inflammatory roles including
(TICAM1 and IL17RA) which are involved in the positive regulation of cytokine production
in inflammatory responses. Significantly a number of the immune related genes from
P2 are associated specifically with inflammatory disorders including genes involved in
the neutrophil degranulation pathway including; TMBIM1, SLC11A1, MOSPD2, CRCR2,
CRCR1 and LRG1.

Among the additional genes of interest identified during relapse in the ME/CFS
patients were seven mitochondrial genes in P1 that included ACOT9, which is a member of
the acyl-CoA family involved in the hydrolysis of Coenzyme A. HADHA, HADHB are both
involved in mitochondrial beta-oxidation of long chain fatty acids into either 3-etoacyl-CoA
if NAD is present, or acetyl CoA if both NAD and coenzyme A are present [34]. In ME/CFS
patients it has been hypothesised that a number of factors may be interfering with the
production of coenzyme A as a result of inflammation, and with reactive oxygen species
through the pyruvate dehydrogenase kinase pathway in the mitochondria [35]. As the
activity of mitochondrial beta-oxidation is key to cellular energy production, P1 may be
showing the effects of reduced mitochondrial function in the relapse condition that reflects
the severity of her relapse state.
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While the majority of previous work investigating DNA methylation in ME/CFS
patients has focused on the differences between the patients and healthy controls, a 2018
study classified patients into 4 subgroups based on DNA methylation patterns associated
with symptom severity [18]. DNA methylation from 1939 genomic sites was utilised as a
signature to differentiate the four subgroups. Of these, the top differentially methylated
sites had associations related to immune signalling. The subtypes of ME/CFS with the
more severe symptom presentation in terms of post exertional malaise were the sites with
the highest differential methylation indicating changes in metabolic and immune responses.
When considered together with the outcomes of this current study, where the relapse events
also highlighted regions potentially affecting the function of immune, inflammatory and
metabolic activity, it reinforces the importance of fully understanding the dysfunction of
these pathways, not only in patients compared to healthy controls but in individual patients
along their disease course.

This investigation has shown regulatory disruptions occurring in the patients asso-
ciated with their self-reported relapse events. It is worth noting that, while both patients
followed here did display a similar overall pattern of disrupted functional pathways asso-
ciated with their relapse events, there were notable differences. These differences would
likely have been obscured if they had been part of a larger scale patient vs. control analysis.
As personalised medicine is becoming more accessible, ME/CFS patients remain a patient
group that will greatly benefit further from this style of investigation. Affected ME/CFS
patients would be able to contribute to the overall understanding of the activity of their
disease, and with individual molecular assessments be able to adopt therapeutic and be-
havioural management strategies that might better manage their illness and decrease the
frequency of relapses during the long course of their disease as illustrated in Figure 6.
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Figure 6. Summary of the longitudinal timeline of a ME/CFS patient. The initial external trigger
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susceptible person. Following progression into the chronic state patients experience frequent relapse
events, which as this investigation suggests are primarily associated with the up regulation of a
number of key biological systems.
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4. Materials and Methods
4.1. Cohort Recruitment

ME/CFS patients were recruited from Dunedin, New Zealand. Diagnosis was initially
made by expert clinician, Dr Rosamund Vallings, of the Howick Health and Medical Centre,
Auckland, NZ using the International Consensus Criteria [36]. The two patients and the
healthy control. The two patients (aged 22 and 26 and the healthy control aged 24 were NZ
European females of similar weight. Each was asked to self-report on their health status at
each blood sampling indicating whether they were in a stable health period or in a more
fragile or relapsed health state. Details of these assessments from each patient and control
can be found in Figure 1A. The study conforms to the ethics approval 17/STH/188 for
ME/CFS patient studies from the Southern Health and Disability Ethics Committee of New
Zealand. General consultation with Ngai Tahu Research Committee of the University of
Otago was carried out before the beginning of this research.

4.2. PBMC Isolation

The study involved sampling of blood on 5 occasions from two patients and a healthy
control over an 11-month period with the aim of catching a ‘relapse/relative recovery’
cycle of their illness. The patients filled out a brief survey detailing their current condition
at the time of each blood collection. These brief health indicators are seen in Figure 1A.
Blood was collected early to midmorning and the fractions were then processed within
the same day. Peripheral Blood Mononuclear Cells (PBMCs) were isolated from the whole
blood by layering on Ficoll-Paque before separating plasma from PBMCs and other cells
by centrifuging at 400× g. The PBMC layer was pelleted (100× g) through PBS and the
resulting pellet resuspended in PBS and RNA later and stored at −80 ◦C).

4.3. DNA Extraction

DNA was extracted from 200 µL of the PBMC fraction using the Illustra blood Ge-
nomic Prep Mini Spin Kit (GE Healthcare UK Ltd., UK) according to the manufacturer’s
instructions. DNA was eluted into the provided EB buffer. Concentration was determined
utilising the Qubit 2.0 fluorometer, following the Qubit dsDNA HS Assay Kit protocol
(ThermoFisher Scientific, USA).

4.4. Generating Methylation Map Using RRBS

RRBS libraries were prepared as previously described [16,37,38]. Briefly, genomic DNA
(500 ng) was digested with 160 U of MSP1 restriction enzyme (NEB, USA). Following end
repair and adenylation of 3′ ends, adaptors were ligated to the DNA fragments. Bisulfite
conversion was performed using the specifications of the EZ DNA methylation kit (Zymo
research, USA). Semi-Quantitative PCR was performed on the bisulfite converted DNA in
order to determine the optimal amplification cycle needed for the final large-scale PCR of the
final library. Following PCR amplification of the DNA it was size selected using a 6% (w/v)
NuSieve Gel (Lonza bioscience, USA) in order to extract the 40–220 bp desired fragments
for RRBS libraries and to minimize adaptor contamination. Following purification and
analysis of quality using a BioAnalyzer (Agilent, USA) and Qubit (Thermofisher Scientific
USA) measures, samples were further purified using AMPure XP Bead (Beckman Coulter,
USA) purification.

4.5. High-Throughput Sequencing

The samples were sequenced through the Otago Genomics and Bioinformatics Fa-
cility (Dunedin, New Zealand). Following sequencing the raw fastq files were checked
for adaptor presence and trimmed. The data were aligned to the human genome ver-
sion GRCh37/hg19 using Bismark bowtie alignment generating BAM files utilised in the
differential methylation analysis.
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4.6. DNA Methylation and Statistical Analysis

Analysis was performed with the DMAP analysis program [39,40] run on a MAC OS X
computer in order to investigate regions of methylation variability within each individual
across fragments 40–220 bp in length. DMAP applied a Chi-squared test comparison for
each individual. The fragment-based analysis approach has been well described previ-
ously [41–43]. All samples collected from each individual were included in these analyses.
A minimum of two CpGs in each fragment had a minimum of at least 10 sequencing hits
in order for the fragment to qualify. A Chi-square distribution test was performed on the
five samples taken from each individual in this longitudinal study. False discovery rate
corrected p values were calculated for each fragment and only fragments that met the
significance threshold of FDR <0.05 were used in the remaining analysis. The genomic
features overlapping with the fragments were identified using the DMAP Geneloc function.

Differential methylation was performed on each patient compared with the control
producing gene lists, i.e., differentially methylated fragments directly overlapping with
exon/intron regions. These gene lists were then analysed with pathway enrichment
analyses using String.org [44]. A FDR p value cut-off of 0.05 was applied to select the
enriched pathways.

Fragments associated with patient relapse events were identified using 577 common
ME-iVMFs detected across the three individuals. A fragment was associated with the
relapse condition if it was found to have at least 15% average methylation difference
between the relapse and recovery states, and if the methylation scores had a Pearson’s
correlation coefficient of at least 0.9. In order to identify the functional associations of
each variably methylated fragment associated with patient relapse events the regions
covered by the ME-iVMFs of interest were investigated using the UCSC genome browser
to compile a list of archived overlapping enhancers, promoters and regions of regulatory
interactions. The associated genes were determined using the Genehancer database [45].
The functional roles of these genes were determined using Genecards [46] which was then
used for determining appropriate functional categories for downstream analyses.

5. Conclusions

This study shows the benefits of precision medicine for individual patients with a
disease as physiologically complex as ME/CFS. Currently, ME/CFS patients can respond
quite differently to specific medications, for example supplements like vitamin B12, and to
anti-inflammatory drugs like naltrexone, and to physiological states like pregnancy, with
some showing marked improvement, some marked deterioration, and some seemingly
no change in their condition. By considering individual patients over the course of their
ME/CFS disease we can better understand not only the similarities within the overall
patient group, but also develop an in depth understanding of the fluctuations for each
patient that relates to their specific pathophysiology. Variable methylation of regulatory
regions associated with the relapse condition has in this study identified a number of genes
with key functional roles in immune, inflammatory, metabolic and mitochondrial pathways.
For a disease that has proven challenging to diagnose and characterise, with the delay
in diagnosis detrimental for the affected person, this kind of analysis provides not only
further evidence of serious biological dysfunction, but importantly also ongoing system-
atic molecular changes that inform future targets for individual treatment or symptom
management as we continue to unravel and understand the complex nature of ME/CFS.
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