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Abstract: A general possibility of a sustainable cycle for carbon return to high-value-added products
is discussed by turning wastes into acetylene. Pyrolyzed solid municipal wastes, pyrolyzed used
cationic exchangers, and other waste carbon sources were studied in view of the design of a sustain-
able cycle for producing calcium carbide and acetylene. The yields of calcium carbide from carbon
wastes were as high as those from industrial fossil raw materials (coke, charcoal, etc.). Conversion of
carbon-containing wastes to calcium carbide provides an excellent opportunity to make acetylene,
which is directly compatible with modern industry. Overall, the process returns carbon-containing
wastes back to sustainable cycles to produce high-value-added products involving only C2-type
molecules (calcium carbide and acetylene). Calcium carbide may be stored and transported, and
on-demand acetylene generation is easy to realize. Upon incorporation into the waste processing
route, calcium carbide may be an efficient carbon reservoir for quick industrial uptake.

Keywords: calcium carbide; acetylene; pyrolysis; municipal waste

1. Introduction

Waste recycling involving thermochemical treatment is a universal approach and an
important component of a circular economy [1–4]. Pyrolysis is an efficient way of waste
recycling, allowing the recovery of valuable feedstock from waste [5,6]. The key advantage
of pyrolysis [7] and thermochemical methods [8] is their versatility and applicability to
various types of processed materials, including mixtures of these materials. For example,
a wide variety of plastics can be successfully processed individually or in mixtures. The
importance of this area recalls urgent strategies for further usage of pyrolyzed products.
Indeed, considering the amount of waste processed, a massive amount of carbon can be
potentially produced by pyrolysis [9,10].

Efficient use of carbon is one of the major challenges in the circular economy [11–16].
The end-of-life of used materials is accompanied by certain carbon losses in the form
of waste. Conventional incineration [17] of waste results in carbon dioxide emissions
(approximately 1 ton of CO2 per 1 ton of waste) ruining the carbon neutral cycle.

In fact, mined fossil carbon is transformed into consumption products followed by
unpreventable carbon wastes (Figure 1A). Of course, many options are now considered
for developing approaches that can be used to move towards the circular economy [18–24].
Regeneration of carbon after using consumption products should return carbon, decreasing
disposal areas and reducing the required amount of fossil carbon (Figure 1B). Pyrolysis is a
promising approach for carbon waste revalorization [25,26] and sustainable chemistry [27].
After pyrolysis, elemental carbon can be easily retrieved to form a solid black powder [28].
The challenging point is the development of a platform for converting regenerated carbon
from waste into industrially valuable products with the possibility of reaching an overall
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carbon-neutral cycle [29]. Calcium carbide can be considered an opportunity to return
carbon back and close the carbon cycle.
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Hydrolysis of calcium carbide results in gaseous acetylene, which can be easily inte-
grated into industrial processes, providing a wide range of valuable chemicals [30–34]. In
addition to the well-established large-scale manufacturing of acetylene, carbide is also used
directly, skipping gaseous acetylene, in many fundamental processes [35–51]. Currently,
calcium carbide is a valuable product of the chemical industry and is produced from natural
limestone and fossil carbon [52–58]. The initial reagents in the manufacturing of carbide
remained the same until, in 2010, Zhang and co-authors presented a powerful approach
based on biochars [59], which were obtained by pyrolysis of biomass and successfully used
instead of mined carbon.

Considering carbon recycling opportunities, municipal solid waste (MSW) is one
of the rich carbon sources of organically bound carbon produced each year in large
amounts [60–62]. However, MSW recycling is accompanied by many challenges due
to the layering and often heterogeneity of this type of waste [18]. Synthesis of calcium
carbide from returned carbon from waste is a conceptually new approach developed here.

In this work, we developed a new approach using the product of pyrolysis as a
starting source in the synthesis of calcium carbide instead of mined carbon. Pyrolyzed
MSW, industrial waste and biomass sources and other carbonaceous materials (CMs) were
used in carbide synthesis. As a co-reagent, calcium carbonate and calcium metal were
used. The synthesis occurred inside a thermogravimetric apparatus in a special crucible.
The yield of carbide was calculated according to the TG curves. Then, the same CMs
were heated in a quartz tube with Ca metal to obtain carbide on a gram scale. According
to the studied processes, waste carbon was used to produce CaC2 and acetylene and
successfully employed for the synthesis of vinyl ethers—valuable monomers. To the best
of our knowledge, for the first time, we discuss such a sustainable calcium carbide cycle
with high carbon efficiency.
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2. Results and Discussion
2.1. Concept of a Sustainable Ca Cycle Using Carbon-to-Acetylene Transformation

Converting carbon to acetylene is a useful process since a large variety of chemicals
can be further obtained from acetylene using existing technologies. Calcium carbide is a
powerful option for acetylene storage and on-demand generation upon a simple reaction
with water:

CaC2 + 2H2O = Ca(OH)2 + C2H2

Importantly, calcium hydroxide can be reused to produce calcium carbide again. In
principle, a closed loop on calcium can be maintained (Figure 2). Pyrolysis of wastes to
obtain carbon and synthesis of calcium carbide constitute another loop for the overall
carbon to acetylene conversion (Figure 2, blue circle). By combining these two cycles, a
certain amount of carbon can be kept in use without the need for fossil carbon mining and
avoiding the negative scenario of increased carbon dioxide emissions. As a general idea,
the possibility of a sustainable cycle can be considered using the combination of two closed
loops (Figure 2).
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2.2. Calcium Carbide Synthesis: Electric Arc at 2100 ◦C vs. Oven at 1500 ◦C

Industrial carbide manufacturing technology is based on electrodes that supply power
to the furnace. In the mixture, heat transfer is significantly hindered [57,63,64], and con-
sidering the high enthalpy of carbide formation according to the equation, the process is
carried out at high temperatures up to 2100–2200 ◦C to melt supplied portions of reagents
immediately and reduce the reaction time. The decomposition of carbide at high tempera-
tures is compensated by the fast rate of smelting and sufficient heating of outlying zones
of the reaction mixture [65]. In total, the yield can reach 85% as a result of the optimized
process.

When the reaction occurs inside a TG apparatus with facilitated heat transfer, mil-
ligrams of previously calcinated and fractionated reagents are usually used. This technique
is a convenient approach for a comparative study of various carbon sources. However, the
reaction itself should also be studied in larger quantities under regular conditions.

Here, we tested the reaction both in a TG spectrometer and in a regular quartz tube.
The former process occurred in a ZrO2 crucible covered with a platinum cap. The latter
reaction was carried out on a gram scale inside a vacuum oven at 1100 ◦C.
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2.3. Carbon Content

Carbon content is an essential indicator of the quality of the initial carbonaceous raw
materials. Obviously, the yield of calcium carbide depends on the available elemental
carbon amount in the raw material. Note that carbon can be present in a sample both as
elemental carbon and as a part of a compound. If a sample already contains elemental
carbon or a compound that decomposes to form elemental carbon, the carbon will react
with CaO. Otherwise, if carbon is bound in organic molecules, it may be unavailable for
the synthesis of calcium carbide or the reaction efficiency would be much lower.

Therefore, before the synthesis of carbide, the available carbon was determined by
heating each sample from 0 ◦C up to 1680 ◦C in a ZrO2 crucible inside a TG apparatus
under a He-atmosphere to detect weight loss. The upper-temperature limit was chosen to
be related to the temperature of carbide synthesis. We also continued heating to check for
further changes and, finally, stopped the curves at 1680 ◦C since no changes were detected.
The carbon content was analyzed for the standard source—industrial coke; commercially
available highly pure carbonaceous materials, such as carbon nanotubes (NT), nanoglobular
carbon (NG), and carbon fiber (CF); residues after the pyrolysis of cation exchangers CE1
and CE2; MSW; humins (synthesized according to the literature procedure) [66] and
microcrystalline cellulose (MCC) (Figure 3). NG and NT consisted almost entirely of carbon
because their weight remained unchanged when heating. Mined coke usually used for
the synthesis of carbide lost approximately 10% of its weight, presumably as a result
of the decomposition of residual amounts of organic compounds. One of the selected
standards, carbon fiber, showed a low carbon content (77.4%), which is most likely due to
the incomplete decomposition of residual organic polymers during the previous treatment.
To our surprise, one of the pyrolysis products of the cation exchange resin (CE2) lost only
13% in weight, approaching coke at this value. For another cation exchanger (CE1), the
carbon content was lower (45.4%). A similar value was obtained for MSW (38%), which
makes both materials promising for the synthesis of carbides. The lowest values were
detected for humins (12.3%) and cellulose (15%). Both compounds are rich in carbon but
the carbon is found in volatile organic or polymeric forms, resulting in low residual mass.
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Figure 3. Weight loss in the selected samples according to TGA (m, %) and applied temperature
program; notations of carbon materials: nanoglobular carbon and nanotubes, 98.5%; coke, 90.6%;
CE2, 87%; carbon fiber, 77.4%; CE1, 45.4%; MSW, 38%; microcrystalline cellulose, 15%; humins, 12.3%.

Thus, commercially available NG, NT, and coke were the best initial carbon sources in
carbide synthesis. The high carbon content in MSW and CE2 is also promising, and all the
sources were tested in the synthesis of calcium carbide inside a TG crucible. Humins were
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not chosen as a carbon source in carbide synthesis in TGA due to having the lowest carbon
content (12.3%).

Then, the samples were burned under an oxygen atmosphere to determine the inor-
ganic residue (see Supplementary Materials). The content of available elemental carbon
was corrected and calculated as the difference between the residue after heating under an
inert atmosphere and the residue under an oxygen atmosphere. All the experiments and
calculations of loadings during the synthesis of calcium carbide were carried out related to
the corrected residual amount.

2.4. Synthesis of Calcium Carbide in a TG Crucible

Graphite and calcium carbonate were chosen as standard reagents for the synthesis
of calcium carbide. First, we varied the conditions of the synthesis (see Supplementary
Materials). Then, under optimized conditions, different carbonaceous materials were tested
in carbide synthesis. Calcium carbonate is completely decomposed upon reaching 1000 ◦C
to carbon dioxide and calcium oxide, which further react with elemental carbon. Detailed
optimization was previously carried out (molar ratios, reaction time, temperature) [59],
and after checking the optimal conditions using calcium carbonate (see Supplementary
Materials), all carbonaceous materials were tested in calcium carbide synthesis (Figure 4).
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Figure 4. Weight loss in calcium carbide synthesis from commercial carbon sources: nanoglobules,
coke, carbon fiber, and nanotubes according to TGA (m, %).

The reaction profiles were similar in each case. The first zone of weight loss was
observed at 600–800 ◦C and corresponded to calcium carbonate decomposition with CO2
evolution (33% weight loss). Calcium carbonate decomposed completely in all cases in the
same way (Equation (1)); some variations in weight loss were possible due to additional
pyrolysis processes of carbonaceous materials (Figure 3). The second reaction corresponded
to calcium carbide formation with CO evolution (Equation (2)) at 1500–1680 ◦C (NT, NG
and CF—20%; and coke—16% weight loss). The reaction time depended on the temperature
and heating rate and the process was terminated after completing the weight loss.

CaCO3
600−800 ◦C−−−−−−→ CaO + CO2(∆m(CO2)) (1)

CaO + 3C 1500−1680 ◦C−−−−−−−−→ CaC2 + CO (∆m(CO)) (2)

Next, we tested carbonaceous materials as a carbon source in the reaction with calcium
carbonate (Figure 5). Of course, the weight loss was lower in the CO zone for MCC
and cation exchangers; however, the carbon content was much lower in those materials,
therefore increasing the loading would lead to better results. Moreover, the weight loss in
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the case of MSW was similar to that of commercial materials (15%), therefore this result
was very promising.
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To calculate the yield of calcium carbide, the mass of CO released should be calculated
since the formation of calcium carbide accompanied the release of only one volatile com-
ponent (carbon oxide). Thus, the mass of CO released is an appropriate value related to
the carbide amount (2). Furthermore, weight loss in the CO zone and carbide yield will
be calculated. The total weight loss ∆m(total) is a complicated value consisting of weight
loss due to pyrolysis (∆m(pyr)), CO2 weight loss (∆m(CO2, total)) due to decomposition of
calcium carbonate, and CO weight loss due to carbide formation (∆m(CO, total)) (3).

∆m(total) = ∆m(pyr) + ∆m(CO2, total) + ∆m(CO, total) (3)

CO2 release starts and finishes at lower temperatures than carbide formation; thus,
weight loss in the CO2 zone should be neglected.

At the same time, a part of a loaded CM was not pyrolyzed, and the inactive residue
was determined after burning a sample of a CM under an oxygen atmosphere (designated
inorganic residue); therefore, CM consists of a burned part and an inorganic residue (4).

m(CM, loaded) = m(burned residue) + m(inorg. residue) (4)

The pyrolyzed part can be calculated from the pyrolysis (m(CM, pyrolyzed)) and the
part that reacted with CaO (C to CaC2) should be calculated according to (5) and (6).

m(C to CaC2) = m(C, loaded) −m(C, pyr) −m(inorg. residue) (5)

m(C, pyr) = m(CM, loaded) × ∆m(pyr) (6)

Next, m(CO from CaC2) can be calculated according to Figures 4 and 5.

m(CO from CaC2) = m(loaded) × ∆m(CO, total) −m(CM, loaded) × ∆m(pyr, CO zone) (7)

Then, comparing the CO mass from the reaction with the theoretical value and con-
sidering the purity (carbon amount) of the carbonaceous materials, the yield of calcium
carbide can be calculated (Table 1; detailed Table S1 is in Supplementary Materials).
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Table 1. Calcium carbide yield data in TGA.

CM C, % a ∆m(CO,total), % (mg) b ∆m(pyr,CO zone), % (mg) c m(CO), mg d Yield, % e

CF 67.9 19.6 (1.80) 9.8 (0.28) 1.51 99
NT 98.0 20.2 (1.50) 2.0 (0.04) 1.46 97

Coke 66.4 15.8 (1.69) 4.8 (0.15) 1.54 99
NG 98.0 20.0 (1.71) 0.5 (0.01) 1.70 98
CE1 40.4 6.7 (0.64) 6.3 (0.27) 0.37 27
CE2 86.2 6.0 (0.53) 4.5 (0.12) 0.41 24

MSW 28.5 15.0 (1.62) 9.0 (0.47) 1.14 99
MCC 12.7 6.1 (0.74) 3.7 (0.31) 0.44 54

a Reactive carbon content, determined according to pyrolysis, burning in an oxygen atmosphere, and inorganic
residue determination. b Total weight loss as a result of CO emission. The first values are from Figures 4 and 5 and
the second in brackets are calculated from the loadings (see Supplementary Materials). c Weight loss in the CO
zone as a result of pyrolysis. The first values are from Figure 3 and the second values in brackets are calculated
from the loadings (see Supplementary Materials). d The real masses of CO released, calculated according to (7).
The theoretical values are listed in Supplementary Materials. e The yields of calcium carbide considering the
carbon content in carbonaceous materials according to burning and pyrolysis data.

As expected, the yields of calcium carbide from commercial sources were very high
(97–99%). Cation exchangers show moderate results (27 and 24%), considering the high
carbon content. However, the exchangers were presented as small solid balls and were
hard to grind. Indeed, grinding is fundamentally important for the reaction, therefore
we assume that with dedicated industrial grinding, the carbide yield can be significantly
improved. MSW was used as a fine powder and showed excellent results (99%). The yield
of carbide derived from MCC was moderate (54%); however, the reaction is of academic
interest only due to the very low carbon content available for the reaction in the initial
carbonaceous material.

The purity of the carbide was confirmed by means of gas chromatography using a
column based on molecular sieves for acetylene detection. The synthesized powders were
mixed with water in a vial and an aliquot of the gas was injected into a chromatograph (no
other gases were detected during the analysis).

2.5. Gram-Scale Synthesis of Calcium Carbide

The synthesis of carbides in a TG apparatus is a convenient technique for a mechanistic
study. Uniform rapid heating of a reaction mixture ensures the high performance of the
reaction. However, these conditions are difficult to achieve in real synthesis on a larger
scale. In addition, the mass of the resulting carbide in a TG analyzer was very small (several
milligrams): this amount is not enough for a complete investigation and even isolated yield
determination, and during the transfer of such amounts, the synthesized carbide is rapidly
hydrolyzed.

Therefore, the reaction with the tested carbonaceous materials (Table S2) in gram
quantities was also evaluated. The reaction involving calcium metal with carbonaceous
materials was selected since no CO gas evolution takes place and no carbon is lost during
the reaction. In this work, there is no discussion or call for replacing the standard method
of calcium carbide manufacturing from lime and coke with a method from calcium metal.
Of course, calcium metal is more expensive than lime and even the desired carbide. This
method of obtaining carbide (from calcium and carbon) was used in this work only as a test
and verification of the presence (and content) of carbon in carbonaceous materials since it
is not possible to implement gram synthesis according to the classical scheme at 2200 ◦C in
the laboratory.

Pieces of calcium metal 2–4 mm in size were mixed with the carbonaceous materials
in a 1.1:2.0 ratio. The reaction of CaC2 preparation occurred in a vacuum oven in quartz
glass at 1100 ◦C for an hour (Scheme 1). The oven was cooled after the process under an
argon atmosphere. No optimization was performed since this reaction is fundamentally
different and this work is a separate investigation (in progress in our lab).
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Determination of the content of calcium carbide in the final product (the yield) is a
challenging task due to the volatile nature of acetylene. In the case of a standard volumetric
approach, the accuracy of measurements may be very low. Transfer of carbide from a
reaction vessel is accompanied by hydrolysis. Therefore, the yields were determined
according to the nucleophilic addition to acetylene (i.e., thiovinylation). Thiovinylation,
as a special case of vinylation, provides quantitate yields in the case of some thiols and
completely converts gaseous acetylene into the corresponding thiovinyl ethers (Scheme 1,
see also Supplementary Materials and reference [35] for more information), which can be
easily detected by NMR. Dodecanethiol was selected as a model thiol for this reaction.

The selected commercial carbide sample showed 75% calcium carbide purity in the
chemical. After that, the reaction with the same thiol was carried out by varying the
thiol/carbide ratio, and the final thiol/vinyl ether ratio was determined according to
the 1H NMR spectrum. As a result, a calibration curve was created (see Supplementary
Materials). The tested CM-derived carbides were studied under the same conditions, so
the determination of the purities was precise enough due to the same conditions. The best
result was obtained with pure commercial graphite (89%) since the content and purity
of available carbon were the highest. Very promising results were obtained with CE2
(54%); moreover, using MSW as a carbon source in the synthesis of carbide is also possible
(37% yield). The other CE1 showed a poor purity of 23%.

Comparing the yields of carbides obtained by different methods, it can be concluded
that the yield of carbide depends on the amount of available carbon in a CM. Since the
reactions for carbide synthesis are completely different (the first originates from a CM and
calcium carbonate, and the second one is from a CM and calcium metal), different CMs
provided various yields. When the reaction mixture is heated, residual organic impurities
decompose, and the carbide yield depends on the carbon content in the mixture at a current
temperature. In the case of MCC, the temperature of 1100 ◦C is insufficient to decompose the
carbon-containing compounds, and the existing carbon-containing compounds decompose
at a higher temperature, which gives a yield upon reaction with calcium oxide. At the same
time, the decomposition of calcium carbonate produces carbon dioxide, which can react
with carbon-containing compounds in the mixture, thereby reducing the yield. Either the
formed calcium oxide can block some compounds due to an alkaline nature or by reacting
and converting the required carbon into refractory components.

3. Materials and Methods

Materials. Calcium carbonate, calcium carbide (granulated, technical), potassium
hydroxide, calcium metal, dodecanethiol, DMSO were supplied by Sigma-Aldrich and
used as received without any further purification. Potassium fluoride was received from a
local company Vecton and was ground and dried at 170 ◦C for 24 h.

Synthesis of Calcium Carbide in the TG Apparatus (Netzsch). A mixture of a carbona-
ceous material and calcium carbonate was placed in a crucible and placed in the apparatus.
After heating, the mixture was kept under dry atmosphere and used in further experiments.

Synthesis of Calcium Carbide in an Oven. Each mixture of calcium metal and carbona-
ceous material in appropriate ratio was loaded into a quartz tube and placed into a vacuum
oven. The oven was heated to 1100 ◦C for an hour. After the reaction, the oven was cooled
to room temperature and the residue was placed in a sealed vial and then used.

Volumetric Investigations. A round-bottom flask equipped with a pressure-compensated
dropping funnel and an outlet was charged with 25 mg of commercial CaC2. A dropping
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funnel was filled with 25 mL of water and sealed with a stopper. A silicone hose was
connected to the outlet of the flask, the end of which was placed underwater in an inverted
10 mL measuring cylinder completely filled with water. Then, while stirring, an excess of
water (10 mL) was added dropwise to the flask, while acetylene was quickly released, the
excess of which went through a hose into a graduated cylinder, which was used to determine
the volume of evolved gas.

Characterization Methods. NMR spectra were recorded using Bruker 400 MHz NMR
spectrometer WB Avance III (Germany). Deuterated solvents (chloroform-d and DMSO-d6)
were purchased from Cambridge Isotope Laboratories, Inc., UK. Chloroform-d was pre-
viously passed through a column with Al2O3 to remove the traces of the acid and stored
under molecular sieves.

Chromatographic Identifications. A sample of commercially available calcium carbide
(1 mg or less) was placed into a vial (1.8 mL). Using a syringe, a drop of water was injected
into a vial. After the reaction, a sample of gas in vial was taken in a gas syringe and
injected into a “Kristall” gas-chromatograph. A peak of acetylene was identified. The
same procedure was carried out with synthesized calcium carbide samples using new gas
syringe each time. The retention time of acetylene peak was the same as in the case of
using commercially available calcium carbide. Note, gas syringe after dosing should be
kept open during night. Every determination must be started with a blank sample of air to
check the residual amounts of acetylene gas in a syringe.

4. Conclusions

A series of carbonaceous materials were tested as a carbon source in the synthesis of
calcium carbide according to a common procedure. The sustainable potential for carbon
reuse was studied for MSW and cation exchangers. Excellent yields were obtained in the
reaction of MSW with calcium carbonate towards the formation of calcium carbide (99%).

Practical applications should be considered taking into account that pyrolysis is ap-
plicable to revalorize various types of waste. However, black carbon-containing powder
obtained after pyrolysis is currently often disposed of. We found that this residue can be
successfully utilized as a carbon source in the synthesis of calcium carbide. Turning carbon
wastes into acetylene is a promising general opportunity to achieve a sustainable carbon
cycle (Figure 2).

Overall, we believe that the sustainable potential of calcium carbide should be rethought
and that the conversion of carbon-containing wastes to acetylene may be a useful route.
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