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Abstract: Using structural relaxation calculations and first-principles molecular dynamics (FPMD),
we performed numerical simulations to explore the interaction of a 2D MoS2 surface and a platinum
atom, calculating the optical properties of the resulting material. We explored three initial positions
for the interaction of the Pt atom and the pristine MoS2 surface, plus another position between Pt and
the MoS2 surface with a sulfur vacancy VS. The surface absorbed the Pt atom in all cases considered,
with absorption energies ranging from −2.77 eV to −5.83 eV. We calculated the optical properties and
band structure of the two cases with the largest absorption energies (−3.45 eV and −5.83 eV). The
pristine MoS2 is a semiconductor with a gap of around 1.80 eV. With the adsorption of the Pt atom (the
−3.45 eV case), the material reduces its band gap to 0.95 eV. Additionally, the optical absorption in the
visible range is greatly increased. The energy band structure of the 2D MoS2 with a sulfur vacancy VS

shows a band gap of 0.74 eV, with consequent changes in its optical properties. After the adsorption of
Pt atoms in the VS vacancy, the material has a band gap of 1.06 eV. In this case, the optical absorption
in the visible range increases by about eight times. The reflectivity in the infrared range gets roughly
doubled for both situations of the Pt-absorbed atom considered. Finally, we performed two FPMD
runs at 300 K to test the stability of the cases with the lowest and highest absorption energies observed,
confirming the qualitative results obtained with the structural relaxations.

Keywords: ab-initio; DFT calculations; 2D materials; MoS2; optical properties; platinum; FPMD

1. Introduction

Bidimensional materials show different interesting physical properties, making them
suitable for many potential applications, including energy storage [1–3], biomedical re-
search [4–6], field-effect transistors (FETs) [7–10], as well as sensors and biosensing [11,12].
One of these materials is Molybdenum disulfide, MoS2, a layered dichalcogenide with a
hexagonal structure reminiscent of graphene. Like graphene, the bonds between layers are
weaker, allowing for a relatively easy dislocation [13–16]. Monolayer MoS2 is also a direct-
gap semiconductor with a band gap of 1.8 eV [17] with potential applications that have
been explored in fields as diverse as ultrafast photonics, the treatment of antibiotic-polluted
water, drug-delivery purposes, water splitting, and FETs [18–24].

Studying the band structure and optical properties of such 2D materials helps explore
their potential applications. The band structure of MoS2 has been previously explored,
including the effect of interlayer pressure [25]. Here, we studied the changes produced in
the optical properties of MoS2 when adsorbing Pt. The present work consists of two stages:
First we performed static calculations on four cases of interaction (see Section 2.2). Then, in
a second stage, we took two cases—the lowest and the highest adsorption energies—and
calculated their optical properties and band structure (Section 2.3 onwards). These results
were compared with those of the pristine MoS2 surface. Additionally, we performed first
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principles molecular dynamics (FPMD) calculations at 300 K on two cases to further explore
the qualitative behavior that was previously found with the structural relaxations.

In this work we considered pristine MoS2 as well as MoS2 with a sulfur monovacancy
(also labeled as Vs) on the unit cell. Vacancies on MoS2 have been previously studied ex-
perimentally and by first-principles calculations, finding relatively low formation energies
for a Vs vacancy [16,26], which in turn makes it relatively easy to find.

2. Results
2.1. Pristine MoS2 Layer

Figure 1a,b shows the hexagonal unit cell considered. With a cell parameter of 6.3 Å, it
contains 12 atoms: eight S atoms and four Mo atoms. We chose the size of the cell to ensure
a sufficiently long distance between one element of the system and its repetition in the next
cell since the code we used (Quantum ESPRESSO) considers periodic boundary conditions.
The unit cell is then large enough to give a sufficiently good amount of information while
avoiding spurious interactions. Starting from this cell, we removed one S atom to create a
vacancy. After performing a structural relaxation on the pristine MoS2, we calculated its
projected density of states (PDOS) [27], obtaining a gap of 1.8 eV (see Figure 1c), which
is in agreement with previously reported works [25]. Below the Fermi level, there is a
hybridization of orbitals p and d from molybdenum with orbitals s and p from sulfur.
Above 2 eV, there is a hybridization of the same orbitals, but the contribution of orbital p
from Mo is negligible.
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2.2. Static Calculations: Pt-Absorption on the MoS2 Layer 
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the MoS2 surface, as shown in Figure 2. The Pt atom was placed in the following initial 
positions: Directly above an S atom (Figure 2a); directly above the bonding line between 
two adjacent S atoms (Figure 2b); above the center of the triangle formed by three adjacent 
S atoms (Figure 2c); and above a VS vacancy (Figure 2d). In the last case, the system was 
previously relaxed structurally so the VS vacancy would be properly taken into account. 

Figure 1. (a) XY-plane view of the unit cell considered for the pristine MoS2. It contains 12 atoms:
four Mo and eight S atoms. The cell parameter is 6.3 Å. (b) XZ-plane view of the unit cell. (c) The
PDOS for the pristine MoS2, showing a gap of 1.8 eV.

2.2. Static Calculations: Pt-Absorption on the MoS2 Layer

We considered four initial configurations for the interaction between the Pt atom and
the MoS2 surface, as shown in Figure 2. The Pt atom was placed in the following initial
positions: Directly above an S atom (Figure 2a); directly above the bonding line between
two adjacent S atoms (Figure 2b); above the center of the triangle formed by three adjacent
S atoms (Figure 2c); and above a VS vacancy (Figure 2d). In the last case, the system was
previously relaxed structurally so the VS vacancy would be properly taken into account. In
all cases, the initial vertical distance between the Pt atom and the superior plane of S atoms
was 3 Å.
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Figure 2. Initial configurations considered for the static calculations. The Pt atom is placed (a) above
an S atom; (b) at the midpoint above the line between two adjacent S atoms; (c) above the center of
the triangle formed by three adjacent S atoms; (d) Above a previously introduced VS vacancy. In all
cases, the vertical distance between the Pt atom and the plane of S atoms was 3 Å.

Figure 3 shows the final configurations of the corresponding cases from Figure 2, while
Table 1 shows the absorption energies for each case, obtained according to Equation (5),
Section 4. In case (b), the Pt atom displaces horizontally as well, ending up directly above
the closest Mo atom (Figure 3b). In Figure 3b, we included part of the repeated cell—due
to the use of periodic boundary conditions—to show that the Pt atom is anchored by the
closest three S atoms and the Mo atom directly below it, resulting in this case being the
second strongest of the four considered. Case (d)—the Pt atom being absorbed in the VS
site—is the one with the strongest chemisorption interaction (Figure 3d).

Table 1. Adsorption energies Eads (in eV) of the Pt atom on the MoS2 surface, for the cases considered
in static calculations. The energies are calculated according to Equation (5) from Section 4.

Case 1 Description Eads

a Pt over S, pristine MoS2 −2.77
b Pt over S-S bond, pristine MoS2 −3.45
c Pt over S-S-S triangle, pristine MoS2 −2.94
d Pt over VS vacancy −5.83

1 The labelling of the cases corresponds to that in Figures 2 and 3.
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(c) above the center of the triangle formed by three adjacent S atoms; (d) Above a previously intro-
duced VS vacancy. In the four cases the absorption energies can be catalogued as chemisorption [28], 
with the largest energy being that of case (d): The Pt atom is absorbed by the surface at the VS va-
cancy site. See also Table 1. 
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not as big as in case (b), when compared to the pristine MoS2 surface. The orbitals hybrid-
ization is overall similar to the previous case. 

Figure 3. Final configurations considered for the static calculations of Section 2.2. The Pt atom is
initially placed (a) above an S atom; (b) at the midpoint above the line between two adjacent S atoms;
(c) above the center of the triangle formed by three adjacent S atoms; (d) Above a previously intro-
duced VS vacancy. In the four cases the absorption energies can be catalogued as chemisorption [28],
with the largest energy being that of case (d): The Pt atom is absorbed by the surface at the VS vacancy
site. See also Table 1.

2.3. PDOS for the Pristine and Defective MoS2 Surfaces + Pt

Of the four cases considered above, we calculated the PDOS, band structures and
optical properties for cases (b) and (d) from Figures 2 and 3, as they were the ones with
the strongest interactions. We took only these two cases to keep this work from being
unnecessarily large, while still being able to extract significant conclusions from the results.
In particular, the largest absorption energy of case (b)—when compared with the other two
cases (a and c) involving a Pt atom and the pristine surface—would also make it the most
stable and likely among cases a, b and c.

Figure 4 (top) shows the PDOS of the resulting optimized configuration (See Figure 3b).
The effect of the absorbed Pt atom is a reduction of the band gap, which for this case was found
to be 0.95 eV. Between −7.0 and 0 eV, there is a strong hybridization between the Mo 4d orbital,
the Pt 5d orbital and the S 3s and 3p orbitals. A weaker hybridization with the 4p Mo orbital is
also present. Between 1.0 and 3.5 eV there is a strong hybridization as well, this time between
the Mo 4d orbital, the S 3s and 3p orbitals, and the Pt 6s orbital.

Figure 4 (bottom) shows the PDOS for case (d), in which the Pt atom is absorbed on the
VS site of the MoS2 + VS system. The band gap reduction—from 1.8 eV to 1.06 eV—is not as
big as in case (b), when compared to the pristine MoS2 surface. The orbitals hybridization
is overall similar to the previous case.
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Figure 4. (Top) The PDOS of the pristine MoS2 interacting with a Pt atom, corresponding to case (b) 
in Figures 2 and 3. Here, the Pt atom was initially placed above an S-S bond. The band gap is reduced 
to 0.95 eV in this case. (Bottom) The PDOS of the MoS2 + VS system after interacting with a Pt atom, 
corresponding to case (d) in Figures 2 and 3. The Pt atom was initially placed above the VS vacancy, 
this being the strongest interaction among the cases considered. The band gap is 1.06 eV in this case. 
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in Sections 2.2 and 2.3, as well as the MoS2 + VS surface alone, we calculated the energy 
band structure of each case. In Figure 5, showing the results, the Fermi energy is normal-
ized at zero. 

The proposed manipulation of the MoS2 surface causes an overall reduction in the 
band gap related to the pristine surface. The pristine surface is a semiconductor with a 
band gap of 1.8 eV, as expected. The adsorption of a Pt atom on the pristine MoS2 (case 
(b)) does not change that property, but it reduces the band gap to 0.95 eV. Interestingly, 
the addition of a VS vacancy induces a further reduction in the band gap, down to 0.74 eV. 
But this change gets overturned by the adsorption of a Pt atom on the VS site, and the band 

Figure 4. (Top) The PDOS of the pristine MoS2 interacting with a Pt atom, corresponding to case (b)
in Figures 2 and 3. Here, the Pt atom was initially placed above an S-S bond. The band gap is reduced
to 0.95 eV in this case. (Bottom) The PDOS of the MoS2 + VS system after interacting with a Pt atom,
corresponding to case (d) in Figures 2 and 3. The Pt atom was initially placed above the VS vacancy,
this being the strongest interaction among the cases considered. The band gap is 1.06 eV in this case.

2.4. Band Structures of the Pristine and Defective MoS2 Surfaces + Pt

Using the final relaxed configurations of the pristine case plus the cases considered in
Sections 2.2 and 2.3, as well as the MoS2 + VS surface alone, we calculated the energy band
structure of each case. In Figure 5, showing the results, the Fermi energy is normalized at zero.

The proposed manipulation of the MoS2 surface causes an overall reduction in the
band gap related to the pristine surface. The pristine surface is a semiconductor with a
band gap of 1.8 eV, as expected. The adsorption of a Pt atom on the pristine MoS2 (case
(b)) does not change that property, but it reduces the band gap to 0.95 eV. Interestingly, the
addition of a VS vacancy induces a further reduction in the band gap, down to 0.74 eV. But
this change gets overturned by the adsorption of a Pt atom on the VS site, and the band gap
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gets increased to 1.06 eV. The changes in the band structure implied substantial changes in
the optical properties of the surface, as shown in the next section.
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Figure 5. The energy band structure calculations for the pristine MoS2, the same system with an
adsorbed Pt atom, the surface with vacancies, and the latter with an adsorbed Pt atom. The Fermi
energy is normalized at 0 eV. The band gaps are1.8 eV, 0.95 eV, 0.74 eV and 1.06 eV, respectively.

2.5. Optical Properties

For the cases considered from Section 2.2 onwards, we calculated the optical absorption
spectra in the infrared (IR), visible (VIS), and ultraviolet (UV) range along the Z-axis (see
Figure 6). Figure 7 shows the reflectivity.
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Figure 6. Absorption spectra in the infrared (left), visible (center), and UV (right) ranges, along
the direction perpendicular to the surface for the systems we have investigated: pristine MoS2; Pt
adsorbed on pristine MoS2 (case b); MoS2 with a sulfur vacancy (MoS2 + VS); and the latter surface
with a Pt atom adsorbed on the VS site (MoS2 + VS+Pt). The vertical scale is the same for the three
sections of the plot, but the range shown differs to make the features of each section more clear.

The optical absorption in the infrared region has its most significant values for the
surface of Pt adsorbed on pristine MoS2 and the smallest for MoS2 with a vacancy. We
have the same behavior in the visible range, except for the interval between 2.90 eV and
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3.25 eV, where the smallest values correspond to MoS2 with a vacancy. In the ultraviolet
region, Pt on the pristine MoS2 has the most significant absorption, keeping the overall
shape related to pristine MoS2 with about the same positions for peaks and valleys. In this
case, the absorption between 6.00 eV and 7.00 eV is approximately 46% larger compared to
the pristine surface.

In the case of reflectivity, the most substantial change related to pristine MoS2 is
between 0 eV and 5.00 eV and comes from the Pt adsorbed on non-defective MoS2. In the
same region, the smallest values correspond to MoS2 with a vacancy. The most considerable
value for reflectivity is for Pt adsorbed on defective MoS2, which occurs around 8.6 eV (see
Figure 7).
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Figure 7. Reflectivity spectra for the cases considered. The substitutionally absorbed Pt atom increases
the reflectivity overall. Most of the reflectivity is observed in the visible spectra, with a negligible
amount observed at energies beyond 20 eV.

2.6. FPMD Calculation for the Weakest and Strongest Interactions

Finally, to explore the stability of the combined systems in real-life situations, we
used first principles molecular dynamics calculations (see the Materials and Methods
section for more details on the FPMD calculation). We chose the weakest and strongest
interaction energies—cases (a) and (d) from Figures 2 and 3—for an FPMD calculation at
300 K. Figure 8 shows the initial and final configurations of said cases, along with an energy
evolution plot. In both cases, the initial configuration was the same as that considered in
the structural relaxations.

The ab initio molecular dynamics calculation at 300 K showed fundamentally the same
qualitative behavior, with the MoS2 surface absorbing the Pt atom. Figure 8I shows the
initial and final positions of the Pt atom during the adsorption process on the pristine MoS2
layer (case b), along with the energy evolution of the system during the 3561-iterations
FPMD calculation.
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Figure 8. Energy evolution for the first principles molecular dynamics calculations performed. We
considered the two extreme cases: (I) those with the lowest absorption energy, corresponding to
case (a) in Figures 2 and 3; and (II) with the highest one, corresponding to case (d) in Figures 2
and 3. The FPMD calculations shown ran for 3561 and 2800 iterations, respectively. In both cases the
qualitatively behavior agrees with the structural relaxation calculations previously performed.

Figure 8II shows a similar plot for the FPMD calculation of the Pt interacting with
the MoS2 + VS system. Again, the qualitative behavior of the system is the same as that of
Section 2.2. The FPMD run consisted of 2800 iterations and the Pt atom is absorbed in the
VS site rather early in the calculation.

3. Discussion

We performed static calculations and then FPMD simulations to investigate the Pt
adsorption effect on the optical properties of 2D MoS2. We considered pristine and defective
MoS2 at 300 K and atmospheric pressure. The initial static calculations show that the
strongest interaction (chemisorption) occurs when the Pt atom is absorbed at a VS site of the
surface, with an absorption energy of−5.83 eV. When a pristine MoS2 surface is considered,
the strongest interaction occurs when the Pt atom is initially placed above an SS bond line,
with it ending up being absorbed above the closest Mo atom.

The inclusion of either the Pt atom or a VS vacancy on the MoS2 surface results in an
overall reduction of its band gap. The initial pristine surface is found to be a semiconductor
with a band gap of 1.8 eV, which agrees with previous works. The adsorption of a Pt atom
(case b) reduces the band gap to 0.95 eV. Including a VS vacancy reduces the band gap
to 0.74 eV, as seen from the band structure diagram (Figure 5). However, the subsequent
adsorption of a Pt atom on the VS site (case d) again increases the band gap to a value
of 1.06 eV. The changes in the band structure implied substantial changes in the optical
properties of the surface. It remains a point of interest to use the Kubelka–Munk function
relation along with its Tauc plot [29] to confirm the band-gap values obtained, considering
that the method is robust mainly for polycrystalline semiconductors [30].

Regarding previous experimental and theoretical results on the interaction between Pt
and MoS2, it is known that Pt atoms are more likely to occupy sites on a tubular MoS2 structure
rather than on a planar one [31]. On the planar 2D MoS2, the Pt atoms tend to cluster. Thus, the
Pt decoration for photocatalysis or gas sensors on 2D MoS2 involves Pt nanoparticles [32–35]
instead of single Pt atoms. Our results may explain this fact. The cohesive energy of Pt is
5.84 eV/atom [36], while we obtained an adsorption energy of 3.45 eV for a Pt atom on the
pristine 2D MoS2 surface. It can be inferred then that the Pt atoms will tend to cluster instead
of being adsorbed on the surface. Furthermore, we found that the adsorption energy of a Pt
atom on a VS vacancy (5.83 eV) is strikingly close to the Pt cohesive energy. In this way, a 2D
MoS2 surface with VS vacancies could likely absorb a single Pt atom on the vacancy.

A question arises about the possibility of plasmons causing an enhanced Pt decoration
on the MoS2 surface, as plasmons are present in metallic systems. When MoS2 is decorated
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with Pt nanoparticles—which are small metallic particles—we would have plasmons on
those particles. But in the system considered in this work, we included a Pt atom, not
metallic nanoparticles decorating the surface. Thus, we don’t expect to have plasmons.

The vacancy we are considering in our unit cell is equivalent to a 12.5% vacancy
density on the surface. For future works it is of interest to explore the effects that varying
the vacancy density could have on the MoS2 properties and on its interaction with Pt.

The optical absorption in the infrared region has its most significant values for the
surface of Pt adsorbed on pristine MoS2 (case b) and the smallest for MoS2 with a vacancy.
We have the same behavior in the visible range, except for the interval between 2.90 eV and
3.25 eV, where the smallest values correspond to MoS2 with a vacancy. In the ultraviolet
region, Pt on the pristine MoS2 has the most significant absorption, keeping the overall
shape related to pristine MoS2 with about the same positions for peaks and valleys. In this
case, the absorption between 6.0 eV and 7.0 eV is approximately 46% larger compared to
the clean material.

For the reflectivity, the most substantial change related to pristine MoS2 is between
0 eV and 5.00 eV and comes from the Pt adsorbed on non-defective MoS2. In the same
region, the smallest values correspond to MoS2 with a vacancy. The maximum reflectivity
is for Pt adsorbed on defective MoS2, which occurs at around 8.60 eV.

Understanding the optical properties of MoS2—and the effect that vacancies alone and
in combination with the Pt decoration have on them—is essential, as it could be helpful in
the developing of FETs-related technologies. The modulation of the band structure and
its related optical properties found in this work could be extended to other surfaces of the
transition metal dichalcogenides such as tungsten disulfide or WS2. This material has a
similar 2H phase structure and a direct band gap as MoS2 [16,37], but more research is
needed on it to explore the transferability of these results to it and to other 2D materials of
the same family.

For future research we are exploring the potential of these combined systems in sensor
technologies, particularly for pollutant molecule sensing devices.

4. Materials and Methods

All ab initio calculations in this work were made using the Quantum ESPRESSO
code [38,39] within the Density Functional Theory (DFT), the pseudopotential formalism,
and the projector-augmented wave (PAW) method [40]. All the calculations were non-
relativistic, non-spin polarized, with cut-off energy of 80 Ry (1088 eV), and threshold energy
for convergence of 1.0 × 10–6 eV. This code suite considers periodic boundary conditions
and plane-wave expansions. For the static calculations we considered an 8 × 8 × 2 k-mesh
grid, using the PBE XC functional expression [41] and the semiempirical Grimme’s DFT-D3
Van der Waals correction [42]. The terms “structural relaxations” and “static calculations”
are used indistinctly in this work and correspond to the calculation option ‘relax’ in the
Quantum ESPRESSO input file.

Additionally, we considered Born-Oppenheimer first principles molecular dynamics
(FPMD) as implemented by Quantum ESPRESSO. FPMD is the method chosen whenever
bonds may be broken or formed, or in the presence of complex bonding as in transition
metals, which is the case here. We were also interested in considering the effect of vibrations,
rotations, velocities, and interactions for all particles of our system, and FPMD allows us to
do that. Due to its nature, large and “chemically complex” systems can be better handled by
FPMD methods [27,43–45]. The FPMD calculations considered a 551 k-points mesh within
the Monkhorst–Pack special k-point scheme [46], which is the same scheme considered in the
static calculations. Stochastic velocity rescaling is used to control the temperature of 300 K
considered in this work. For the time step, we used the default value of 20.0 a.u. in Rydberg
atomic units (not Hartree atomic units), where 1 a.u.= 4.8378 × 10−17 s = 0.048378 fs. This is
equivalent to a time step of 0.96756≈ 1 fs. The convergence parameter considered for the MD
calculations was set as 1.0 × 10–4 eV.
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The valence electronic states considered are, for hydrogen: 1s, for molybdenum: 4d5

5s1, for sulfur: 3s2 3p4, for platinum: 5d9 6s1. As a previous step to calculate the PDOS using
the projwfc.x program of Quantum ESPRESSO, we performed geometrical optimizations
with an 882 k-points mesh. XCrySDen software was used for visualization purposes [47].

We calculated the energy band structure to obtain the imaginary part of the dielectric
tensor. We used the Kramers-Kronig relations [48] to obtain the real part, following the
procedure explained in more detail in a previous work [49]. We obtained the reflectivity
and the optical absorption by considering the two components of the tensor, using the
following equations (where n is the refractive index and k is the extinction coefficient):

Rii(ω) =
(n− 1)2+k2

(n + 1)2+k2 (1)

Aii(ω) =
2ωk(ω)

c
(2)

where

nii =

√
|εii(ω)|+Reεii(ω)

2
(3)

kii(ω) =

√
|εii(ω)| − Reεii(ω)

2
(4)

We calculated the adsorption energy for all static calculation cases, using the following
formula [28]:

Eadsorption= Esystem 1+system 2 − Esystem 1 − Esystem 2 (5)

Each term of the right side in Equation (5) is taken from the converged structural
relaxation calculation of the corresponding system.
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