
Citation: Zhou, L.-L.; Li, W.-X.; Zhao,

H.-B.; Zhao, B. Comparative Study of

M(II)Al (M=Co, Ni) Layered Double

Hydroxides for Silicone Foam:

Characterization, Flame Retardancy,

and Smoke Suppression. Int. J. Mol.

Sci. 2022, 23, 11049. https://

doi.org/10.3390/ijms231911049

Academic Editor: Alberto Pais

Received: 8 September 2022

Accepted: 17 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Comparative Study of M(II)Al (M=Co, Ni) Layered Double
Hydroxides for Silicone Foam: Characterization, Flame
Retardancy, and Smoke Suppression
Lin-Lin Zhou 1, Wen-Xiong Li 2, Hai-Bo Zhao 2 and Bin Zhao 1,*

1 Institute of Functional Textiles and Advanced Materials, Engineering Research Center for Advanced
Fire-Safety Materials Development and Applications, College of Textiles & Clothing, Qingdao University,
308 Ningxia Road, Qingdao 266071, China

2 Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National
Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan
University, Chengdu 610064, China

* Correspondence: binzhao@qdu.edu.cn

Abstract: To compare the different actions of the two representative transition metal cations of
Co2+ and Ni2+ in layered double hydroxides (LDHs), CoAl-LDH and NiAl-LDH intercalated with
CO3

2− were synthesized, and the chemical structures, microstructures, and surface areas thereof
were successfully characterized. Then, the two LDHs were utilized as flame retardants and smoke
suppressants for silicone foam (SiF). The densities, flame retardancy, smoke suppression, thermal
stabilities, and compressive strengths of the two SiF/LDHs nanocomposites were investigated. The
introduction of LDHs slightly decreased the density of SiF due to the catalytic actions of Co and Ni
during the foaming process of SiF. With respect to the flame retardancy, the addition of only 1 phr of
either CoAl-LDH or NiAl-LDH could effectively improve the limiting oxygen index of SiF from 28.7 to
29.6%. Based on the results of vertical flame testing and a cone calorimeter test, the flame retardancy
and fire safety of the SiF were effectively enhanced by the incorporation of LDHs. In addition, owing
to the good catalytic action and large specific surface area (NiAl-LDH: 174.57 m2 g−1; CoAl-LDH:
51.47 m2 g−1), NiAl-LDH revealed higher efficiencies of flame retardancy and smoke suppression
than those of CoAl-LDH. According to the results of energy-dispersive X-ray spectroscopy, Co and
Ni participated in the formation of protective char layers, which inhibited the release of SiO2 into the
gas phase. Finally, the influences on the thermal decomposition and compressive strength for SiF
resulting from the addition of LDHs are discussed.

Keywords: silicone foam; layered double hydroxides; transition metal; flame retardancy;
smoke suppression

1. Introduction

In recent years, due to their natural abundance, non-toxicity, and large specific
surface area, layered double hydroxides (LDHs) have garnered extensive attention [1].
LDHs, which are known as anionic clays, consist of brucite-like metal ion layers, in-
terlayer water molecules, and anions. The general formula of LDHs can be labeled as
[M2+

1−xM3+
x(OH)2]x+(An−)x/n·mH2O, in which M2+ and M3+ denote divalent and triva-

lent metal cations, respectively, and An− represents interlayer anions [2–5]. There are
many kinds of strategies for fabricating LDHs, such as co-precipitation [6–8], hydrothermal
synthesis [9,10], the urea hydrolysis method [11,12], microencapsulation technology [13],
reconstruction methods [14,15], and mechano-chemical methods [16–18]. Among them,
the co-precipitation method is the simplest and most commonly used, and it can be used
to directly synthesize LDHs with a variety of inorganic and organic interlayer anions,
obtaining highly tunable properties of the structure and function of LDHs [19].
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The functionalization of LDHs can be achieved by adjusting the types and proportions
of metal cations and the types and quantities of interlayer anions [1]. The highly tunable
properties of their structure and function make LDHs a hot research topic, and LDH-based
functional composites have been widely applied in many fields, including those of cata-
lysts [20–22], adsorbents [23–25], supercapacitors [26–29], biomedicine [30,31], and flame
retardants [2,32,33]. In an important application, LDHs have been considered as inorganic
flame-retardant fillers and synergists due to their moderate toxicity and low cost [34]. Com-
pared to other metal-modified flame retardants, LDHs are metal-containing fillers without
a traditional flame-retardant element [35–37]. The classical LDH flame retardants are MgAl-
LDH and ZnAl-LDH. At present, LDHs containing transition metals, such as CoAl-LDH,
FeZn-LDH, CuAl-LDH, and CoNi-LDH, are also commonly used as flame retardants due
to their special catalytic effects [11,37–40]. Jaerger et al. [41]. intercalated CoAl-LDH, NiAl-
LDH, and ZnAl-LDH with distinct organic anions as fillers for low-density polyethylene
and evaluated their thermal stability and flammability. The addition of CoAl-LDH and
NiAl-LDH did not affect the thermal stabilities of the nanocomposites, but ZnAl-LDH
decreased the thermal stability of the samples; the flame-retardant effects of NiAl-LDH
and ZnAl-LDH were better than that of CoAl-LDH. This demonstrates that the types of
metal cations in LDHs have different effects on the flame retardancy and thermal stability
of the nanocomposites. Nagendra et al. [42] used ultrasound to delaminate CoAl-LDH,
ZnAl-LDH, and CoZnAl-LDH in order to form LDH nanoparticles of a smaller size, and the
delaminated LDH solution was utilized to fabricate highly dispersed isotactic polypropy-
lene. The results showed improvements in the flame retardancy and thermal stability of
the nanocomposites in the following order: CoZnAl-LDH > ZnAl-LDH > CoAl-LDH. As a
result, the exhibition of desirable properties in polymer/LDH nanocomposites depends on
the selection of the metal constituents of the LDHs.

Silicone foam (SiF) is an organic–inorganic hybrid polymer elastomer foam with
excellent and comprehensive properties, and it has the advantages of silicone rubber
and foam materials. It is widely used in aerospace, the construction industry, medical
equipment, and other fields [43]. Compared to some traditional polymeric foams, such as
polystyrene foam, polyurethane foam, and organic aerogel materials [44–47], SiF shows
good flame retardancy due to its special siloxane structure. However, it is still necessary
to improve the flame retardancy and smoke suppression of SiF due to its many organic
groups and unique cell structure [48]. There are various methods for improving the
flame retardancy and smoke suppression of SiF, such as base rubber modification, surface
treatment, and addition of flame-retardant fillers [49]. Among them, adding flame-retardant
fillers method is relatively simple and has a low cost. However, the high loadings and low
flame-retardant efficiency limit its application [43,50–52]. In our previous work [53], the
addition of transition-metal-containing NiTi-LDH was able to significantly improve the
flame retardancy and smoke suppression of SiF. The incorporation of only 1 phr NiTi-LDH
endowed SiF with a high limiting oxygen index (LOI) of 30.3% and a UL-94 V-0 level.
Moreover, the total smoke production of the silicone foam could be reduced by 73%. Thus,
LDHs containing transition metals might contribute to the enhancement of the fire safety
of SiF.

In this work, CoAl-LDH and NiAl-LDH were facilely prepared through a co-precipitation
process and used as flame retardants and smoke suppressants in silicone foam. The in-
fluences of the existence of Co and Ni and the physical structures of the LDHs on the
representative properties of the SiF/LDH nanocomposites were examined and discussed
according to the results for the LOI, vertical flame testing, cone calorimeter test, thermo-
gravimetric analysis, and compression performance test.

2. Results and Discussion
2.1. Characterization of CoAl-LDH and NiAl-LDH

By using a facile co-precipitation method at an ambient temperature, CoAl-LDH and
NiAl-LDH were successfully synthesized with intercalated CO3

2−. Figure 1a displays the
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FTIR spectra of the CoAl-LDH and NiAl-LDH. As with typical LDHs, the IR bands centered
at 1629 and 3384 cm−1 were assigned to the O—H bending and stretching vibration peaks,
respectively, which resulted from the interlayer water molecules and hydroxyl groups in
the hydrotalcite layers [54]. The characteristic peaks at 770 and 1359 cm−1 belonged to the
stretching and bending modes of CO3

2−, respectively, indicating the presence of CO3
2− in

the interlayer of CoAl-LDH and NiAl-LDH [55].
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The XRD patterns (Figure 1b,c) were recorded to confirm the phase composition
and crystallinity of the CoAl-LDH and NiAl-LDH nanosheets. The two diffractograms
exhibited characteristic diffraction patterns of layered materials, showing peaks at (003)
and (006), which matched well with the standard LDH lamellar structures (JCPDS X-
ray powder diffraction files 51-0045 and 15-0087 are indexed). The diffraction planes of
(003) and (006) of CoAl-LDH at 11.75◦ and 23.60◦ corresponded to lattice spacings of
0.753 and 0.375 nm, respectively. For NiAl-LDH, the lattice spacings corresponding to
d(003) (2θ = 11.62◦) and d(006) (2θ = 23.25◦) peaks were 0.765 and 0.384 nm, respectively.
Moreover, the LDH structure could be classified as rhombohedral with a = 0.3064 and
c = 2.2573 nm as refined lattice parameters [56,57]. Combined with the results of FTIR and
XRD, it could be demonstrated that carbonate-intercalated CoAl-LDH and NiAl-LDH were
successfully synthesized.

Figure 1d presents the XPS survey spectra of CoAl-LDH and NiAl-LDH, and the typi-
cal elements in the two LDHs were detected. For CoAl-LDH, as shown in Figure 1e, the Co2+

(781.1 and 792.2 eV) and Co3+ (783.1 and 798.7 eV) signals appeared in the Co2p spectrum,
and the content ratio of Co2+/Co3+ was 2.579 [29]. The characteristic peak at 74.3 eV could
be attributed to Al2p, confirming the existence of Al3+ in the CoAl-LDH [58]. As shown
in the high-resolution spectrum of Ni2p for NiAl-LDH (Figure 1g), the two characteristic
peaks at 856.3 and 873.9 eV were assigned to Ni2p3/2 and Ni2p1/2, respectively, and were ac-
companied by two characteristic satellite peaks at 862.1 and 879.9 eV [59]. Additionally, the
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Al2p spectrum (Figure 1h) confirmed the existence of Al3+ (74.3 eV) in the NiAl-LDH [58].
The chemical formulas of the LDHs were further determined by using the ICP-OES test,
and the corresponding data are summarized in Table 1; the Co/Al molar ratio was 2.32
and the Ni/Al molar ratio was 2.28. Combining the content ratio of Co2+/Co3+ in the XPS
test and the general formula of the LDHs, the chemical composition of CoAl-LDH was
obtained as Co2+

0.504Co3+
0.195Al0.301(OH)2(CO3

2−)0.248. Similarly, it could be concluded
that the chemical composition of NiAl-LDH was [Ni0.695Al0.305(OH)2(CO3

2−)0.153].

Table 1. The corresponding data from the ICP-OES test.

Samples Metal Element Element Content (%) Metal Elements’ Molar Ratios

CoAl-LDH
Co 42.71

Co: Al = 2.32Al 8.42

NiAl-LDH
Ni 30.78

Ni: Al = 2.28Al 6.21

The TEM images of CoAl-LDH and NiAl-LDH presented in Figure 2a1,b1 show the
typical platelet-like morphology of the LDHs. As observed in the HRTEM images shown
in Figure 2a2,b2, the lattice spacing of 0.26 nm corresponding to the (012) lattice planes
was detected in the XRD patterns of the CoAl-LDH and NiAl-LDH. Furthermore, the
thicknesses of CoAl-LDH and NiAl-LDH were measured by using the cross-sections of
the corresponding scanned lines in the AFM images. As illustrated in Figure 2a3,b3,
the thicknesses of CoAl-LDH and NiAl-LDH were determined to be 1.71 and 3.10 nm,
respectively, and they were approximately 2–4 times thicker than the interlayer spacing
obtained in the XRD test. This can be ascribed to a slight layer accumulation phenomenon
occurring in LDHs [60].
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Figure 2. TEM and HRTEM images of CoAl-LDH (a1,a2) and NiAl-LDH (b1,b2); AFM images and
the corresponding height profiles of CoAl-LDH (a3,a4) and NiAl-LDH (b3,b4).

The surface areas and pore size distributions of CoAl-LDH and NiAl-LDH were
further characterized by with Brunauer–Emmett–Teller (BET) N2-sorption measurement.
Figure 3a,b show the N2 adsorption–desorption isotherms and pore diameter distribution
curves of CoAl-LDH and NiAl-LDH, respectively. Both CoAl-LDH and NiAl-LDH exhib-
ited typical IV isotherms, implying the existence of a mesoporous pore structure [61,62].
The BET specific surface area of NiAl-LDH was 174.57 m2 g−1, which was larger than the
value of 51.47 m2 g−1 for CoAl-LDH. The Barrett–Joyner–Halenda (BJH) method was used
to estimate the pore diameter distributions of the samples. The average pore diameters
of CoAl-LDH and NiAl-LDH according to the BJH method were, respectively, 34.66 and
10.42 nm.
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2.2. Morphological Analysis of the SiF/LDH Nanocomposites

The photographs and microscopic surface topographies of the SiF nanocomposites are
shown in Figure 4. From changed colors in the photographs of the SiF/LDH nanocompos-
ites before and after thermal treatment can be ascribed to the heat transition of the LDHs.
The microscopic surface topographies of the SiF/LDH nanocomposites were given by an
ultra depth-of-field microscope. In this way, we could more intuitively observe the cellular
structures of the silicon foam so as to explore the effect of the addition of the LDHs on the
cell structure of the silicone foam. As shown in the microscopic surface topographies of
SiF/LDHs nanocomposites, the cells of SiF/CoAl-LDH-1.0 were smaller than those of the
untreated silicone foam, while the cells of SiF/NiAl-LDH-1.0 were slightly changed. It
could be observed that the LDHs were uniformly dispersed in the bubble hole walls of the
SiF/LDH nanocomposites. As shown in Table 2, the densities of SiF/CoAl-LDH-1.0 and
SiF/NiAl-LDH-1.0 were 0.27 and 0.26 g cm−3, which were close to that of untreated SiF
(0.28 g cm−3). Thus, the addition of the two LDHs had little influence on the density of the
silicone foam. The slightly decreased densities of the SiF/LDH nanocomposites could be
ascribed to the fact that Co and Ni have the same catalytic effect as that of Pt catalysts, thus
increasing the cross-linking speed of SiF.

Table 2. The results of the density, LOI value, and vertical flame testing.

Samples Density
(g cm−3)

LOI
(vol%)

UL-94 (3.2 mm)

t1 (s) t2 (s) Rating Dripping

SiF 0.28 ± 0.01 28.7 >30 - NR No

SiF/CoAl-LDH-1.0 0.27 ± 0.01 29.6 25 ± 2 1 ± 1 V-1 No
SiF/NiAl-LDH-1.0 0.26 ± 0.02 29.6 14 ± 3 8 ± 1 V-1 No

2.3. Flame Retardancy and Fire Behavior of the SiF/LDH Nanocomposites

The flame retardancy of the SiF/LDH nanocomposites was assessed through vertical
flame testing and the limited oxygen index, the results of which are provided in Table 2
and Figure 5. After incorporating only 1 phr of CoAl-LDH and NiAl-LDH, the LOI value
of SiF was increased from 28.7% to 29.6%. As shown in Figure 5, SiF continued to burn
beyond 30 s after ignition and showed no rating in the vertical flame testing. Fortunately,
both 1.0 phr CoAl-LDH and NiAl-LDH were able to endow SiF with a UL-94 V-1 rating.
The two LDHs endowed SiF with the same LOI value and the same rating of vertical flame
testing. However, as shown in Figure 5, the SiF/NiAl-LDH-1.0 sample was damaged less
than the SiF/CoAl-LDH-1.0 sample, implying a better flame resistance.
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The cone calorimeter test can be used to evaluate the fire behaviors of polymeric
materials at a bench scale [63], and it provides an abundance of important parameters,
including the peak of heat-release rate (pHRR), total heat release (THR), time to pHRR
(tp), total smoke release (TSR), char residue, and fire-growth rate (FIGRA, defined as the
maximum of HRR(t)/t [64]). After evaluating the fire behaviors, the typical curves of the
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SiF/LDH nanocomposites were plotted, as shown in Figure 6, and the detailed characteristic
data are provided in Table 3. As can be observed in the HRR and THR curves, CoAl-LDH
and NiAl-LDH had limitations in reducing the heat release of silicone foams, reflecting a
slight improvement in flame retardancy under this forced radiation fire testing. However,
the addition of each kind of the two LDHs was able to effectively delay the time to pHRR
from 130 to 205 s (SiF/CoAl-LDH-1.0) and 190 s (SiF/NiAl-LDH-1.0), indicating a delayed
time to flashover of SiF during burning. Thus, the derived value of the FIGRA parameter
of the SiF was lowered from 0.87 to 0.53 and 0.55 kW m−2·s−1 by the introduction of both
CoAl-LDH and NiAl-LDH, respectively, leading to an enhanced fire safety of SiF. More
importantly, as in the previous report [53], the LDHs exhibited a high efficiency in smoke
suppression. The TSP values of SiF/CoAl-LDH-1.0 and SiF/NiAl-LDH-1.0 declined by 33%
and 45%, respectively, from the value of 9.5 m2 for the untreated SiF. As shown in Figure 6d,
both CoAl-LDH and NiAl-LDH endowed the SiF with a remarkable reduction in the smoke
production rate with loadings of only 1 phr. In addition, NiAl-LDH exhibited a better
smoke suppression effect than that of CoAl-LDH in the SiF. In addition to the good catalytic
action of Ni, the better smoke suppression performance of NiAl-LDH might depend on its
larger specific surface area (NiAl-LDH: 174.57 m2 g−1; CoAl-LDH: 51.47 m2 g−1), as it can
absorb a large amount of smoke.
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Table 3. Data on the SiF/LDH nanocomposites from the cone calorimeter tests.

Samples pHRR
(kW m−2)

tp
(s)

THR
(MJ m−2)

TSP
(m2)

FIGRA
(kW m−2·s−1)

Residue
(%)

SiF 112.8 130 43.0 9.5 0.87 76.0
SiF/CoAl-LDH-1.0 108.7 205 47.0 6.4 0.53 79.5
SiF/NiAl-LDH-1.0 104.3 190 47.1 5.2 0.55 79.9

2.4. Char Residue Analyses

The outer surface and inner surface of char residues from the SiF/LDH nanocom-
posites were characterized through SEM-EDS, as illustrated in Figure 7. The outer char
surfaces of the SiF and SiF/LDH nanocomposites were rough and cellular. The outer char
surfaces of SiF/CoAl-LDH-1.0 and SiF/NiAl-LDH-1.0 were more compact than that of the
untreated SiF. Cracks were observed on the inner char surface of SiF, while the SiF/LDH
nanocomposites retained an intact char layer covered with significantly white particles.
According to the EDS analyses, Co and Al elements were detected in the inner char layer of
SiF/CoAl-LDH-1.0 and Ni and Al were detected in that of SiF/NiAl-LDH-1.0, indicating
that both CoAl-LDH and NiAl-LDH contributed to the formation of the inner char layer.
In addition, the content of Si in the outer char layer of the SiF was higher than that in the
inner char layer, which may have been due to the volatilization of gas-phase SiO2 through
the outer char layer. After adding the two LDHs, the content of Si in the inner char layer
increased, implying that the LDHs could inhibit the release of SiO2 into the gas phase. The
char layer played the role of a physical barrier and showed better protective effects for the
foam matrix.
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1.0: c1) and inner surface (SiF: a2; SiF/CoAl-LDH-1.0: b2; SiF/NiAl-LDH-1.0: c2) of char residues
from the nanocomposites after vertical flame testing.

2.5. Thermal Decomposition of CoAl-LDH, NiAl-LDH, and the SiF/LDH Nanocomposites

The TG and DTG curves of the CoAl-LDH, NiAl-LDH, and SiF/LDH nanocomposites
were recorded in an air atmosphere. As shown in Figure 8 and Table 4, both of the LDHs
displayed two stages of weight-loss processes. Before 240 ◦C, the first stage took place due
to the removal of surface-adsorbed water and interlayer water. The second weight-loss
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stage (CoAl-LDH: 240–300 ◦C; NiAl-LDH: 240–400 ◦C) could be mainly attributed to the
complete dehydroxylation process of the LDH layers and the removal of the intercalated
CO3

2− [65,66]. CoAl-LDH started to decompose at 171 ◦C, while NiAl-LDH started to
decompose at 141 ◦C. Meanwhile, the amount of char residue of CoAl-LDH at 800 ◦C
was 68.0 wt% greater than that of NiAl-LDH (63.7 wt%). The above results indicate that
CoAl-LDH showed a higher thermal stability and char-foaming ability than those of NiAl-
LDH. The SiF/LDH nanocomposites were prepared by adding CoAl-LDH or NiAl-LDH
to the silicone foam. As a result of oxidation degradation of the methyl group in the
silicone side chains, the SiF decomposed at 380 ◦C under air [67]. With the increase in
temperature, further decomposition of SiF occurred at 480 and 562 ◦C, which was attributed
to the random scission reaction of the polymer backbone and the unzipping of the Si-OH
end-groups to generate cyclic oligomers [68]. Compared with SiF, the initial decomposition
temperature of the SiF/LDH nanocomposites decreased by 11–12 ◦C, showing a lower
initial thermal stability than that of SiF. However, the addition of CoAl-LDH was able
to significantly improve the char residue rate of silicone foam at 800 ◦C due to the large
amount of char residue of CoAl-LDH at high temperatures.
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Table 4. TGA data of the CoAl-LDH, NiAl-LDH, and SiF/LDH nanocomposites in an air atmosphere.

Samples T5% (◦C) Tmax1 (◦C) Tmax2 (◦C) Tmax3 (◦C) Char Residue at
800 ◦C (wt%)

CoAl-LDH 171 213 264 - 68.0
NiAl-LDH 141 184 317 - 63.7

SiF 380 367 480 562 50.1
SiF/CoAl-LDH-1.0 369 363 470 552 58.4
SiF/NiAl-LDH-1.0 368 366 495 557 50.9
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2.6. Mechanical Properties of the SiF/LDH Nanocomposites

The compressive stress–strain curves of the SiF/LDH nanocomposites are shown
in Figure 9; the compressive strength of the SiF was 21.6 ± 1.2 kPa. Compared with
SiF, the compressive strengths of the SiF/CoAl-LDH and SiF/NiAl-LDH nanocomposites
decreased to 16.7 ± 2.0 and 18.6 ± 1.0 kPa, respectively. The reduction in the compressive
strengths can be attributed to be the changed morphologies and decreased densities of the
SiF/LDH nanocomposites. As previously described, in detail, the cell sizes of SiF/CoAl-
LDH-1.0 and SiF/NiAl-LDH-1.0 increased compared with that of SiF; the density of the
SiF/LDH nanocomposites was lower than that of SiF.
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3. Materials and Methods
3.1. Materials

Anhydrous sodium carbonate and anhydrous ethanol were provided by Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Cobalt nitrate hexahydrate (Co(NO3)2·6H2O,
99%, cas. 10026-22-9), sodium hydroxide (NaOH, 97%, cas. 1310-73-2), and aluminum
nitrate nonahydrate (Al(NO3)3·9H2O, 99%, cas. 7784-27-2) were purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Nickel nitrate hexahydrate
(Ni(NO3)2·6H2O, 97%, cas. 13478-00-7) was purchased from Tianjin Heowns Opde Tech-
nologies Co., Ltd. (Tianjin, China). Hydroxyl-terminated polydimethylsiloxane (HO-PDMS,
3000 mPa·s) was provided by Jiashan Jiangnan Textile Material Co., Ltd. (Suzhou, China).
Karstedt-type catalyst (Pt, CAT-PL-56, 5000 ppm) and polymethylhydrogensiloxane oil
with 1.5% active hydrogen content (High-H PMHS, XiameterTM MHX 1107) were, respec-
tively, purchased from Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan) and Dow Corning Co.,
Ltd. (Midland, MI, USA). α,ω-divinylpolydimethylsiloxane (Vi-PDMS, 10,000 mPa·s) and
polymethylhydrogen silicone oil with an active hydrogen content of 0.1% (Low-H PMHS,
DY-H212) were bought from Shandong Dayi Chemical Co., Ltd. (Yantai, China). As an
inhibitor, 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4) was purchased from
Guangdong Wengjiang Chemical Reagent Co., Ltd. (Shaoguan, China).
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3.2. Synthesis of CoAl-LDH and NiAl-LDH

CoAl-LDH and NiAl-LDH were synthesized by using co-precipitation methods un-
der similar conditions. In detail, 0.01 mol Al(NO3)3·9H2O was mixed with 0.02 mol
Co(NO3)2·6H2O or Ni(NO3)2·6H2O and dissolved in 80 mL of deionized water. Then,
Na2CO3 solution (20 mL, 0.1 mol L−1) was introduced into the aforementioned mixed
salt solution under magnetic stirring. Afterwards, the pH of the mixture was adjusted to
11.2 (for the CoAl-LDH system) or 8.8 (for the NiAl-LDH system) by using aqueous NaOH
(1 mol·L−1) [69]. After reacting for 6 h, the suspension was aged for another 15 h at room
temperature. The precipitates were filtered and washed using deionized water and ethanol
until the filtrate was neutral. Finally, the LDH powders were dried in an oven at 60 ◦C
before use.

3.3. Preparation of the SiF/LDH Nanocomposites

The foaming chemistry reactions for SiF relied on a dehydrogenative coupling reaction
that occurred between PMHS and HO-PDMS for SiF, as well as an addition–cure reaction
that occurred between Vi-PDMS and PMHS in the presence of a Pt catalyst for Vi-PDMS [53].
For the SiF/LDH nanocomposites, in detail, the reactive materials were divided and
prepared in two parts. Part A was obtained by mixing Vi-PDMS (24.0 wt%), HO-PDMS
(48.0 wt%), Pt catalyst (0.5 phr), and the LDHs (CoAl-LDH or NiAl-LDH) (1.0 phr) for
15 min under vigorous mechanical stirring (1500 rpm). Part B included Low-H PMHS
(3.0 wt%), High-H PMHS (9.0 wt%), HO-PDMS (16.0 wt%), V4 (0.08 phr), and DI water
(0.5 phr). After being prepared, the parts A and B were cooled in a refrigerator at 1–5 ◦C
for 30 min, followed by a thorough mixing procedure with vigorous stirring (1500 rpm for
20 s). The as-prepared mixture was then quickly transferred into a polypropylene mold,
where it was allowed to freely foam for 3 min. Finally, the SiF/LDH nanocomposite was
put into an oven at 150 ◦C for 2 h for heat treatment before testing.

3.4. Characterizations

Fourier-transform infrared spectroscopy was utilized to analyze the chemical struc-
tures of CoAl-LDH and NiAl-LDH in a range from 4000 to 450 cm−1 (FTIR-ATR, Thermo
Scientific, Nicolet iS50, Waltham, MA, USA). X-ray diffraction was used to confirm the
phase compositions and crystallinity of CoAl-LDH and NiAl-LDH (XRD, Rigaku, Japan).
X-ray photoelectron spectroscopy was adopted to analyze the chemical compositions of
CoAl-LDH and NiAl-LDH (XPS, Thermo Scientific ESCALab 250Xi, Waltham, MA, USA).
Inductively coupled plasma optical emission spectrometry was used to identify the metal
element contents of the LDHs (ICP-OES, Thermo Fisher iCAP PRO, Waltham, MA, USA).
The Brunauer–Emmett–Teller test was used to determine the specific surface areas and
pore diameters of the LDHs (BET, Micromeritics ASAP 2460, Norcross, GA, USA). Scan-
ning electron microscopy (SEM, Regulus8100, Japan), transmission electron microscopy
(TEM, JEM-2100F, Tokyo, Japan), and atomic force microscopy (AFM, Bruker Dimension
Icon, Germany) were used to analyze the microstructures of the LDHs. Ultra depth-of-
field microscopy was used to study the microscopic surface topographies of the SiF/LDH
nanocomposites (Leica DVM6M, Weztlar, Germany). The flame retardancy of the SiF/LDH
nanocomposites was evaluated through vertical flame testing (VFT, CZF-3, Jiangning,
China) and the limited oxygen index (LOI, HC-2C, Jiangning, China) according to GB/T
10707-2008 and ISO 4589, respectively. The fire behaviors of the SiF/LDH nanocomposites
were evaluated with a cone calorimetric test with an external heat flux of 35.0 kW m−2, and
the sample size was 100.0 × 100.0 × 10.0 mm3 (FTT, East Grinstead, UK). Scanning electron
microscopy coupled with energy-dispersive X-ray spectroscopy was used to study the
microscopic morphologies of the char layers and to determine the compositions of the char
layers (SEM-EDS, Regulus8100, Tokyo, Japan). Thermogravimetric analysis was utilized
to study the thermal decomposition of the LDHs and the SiF/LDH nanocomposites in air
with a heating rate ramp of 20 ◦C min−1 from 40 ◦C to 800 ◦C (TGA, Perkin-Elmer STA 6000,
Norwalk, CT, USA). According to GB/T 18942.2-2003, a universal testing machine was used
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to determine the cyclic compression properties of samples with a size 40 × 40 × 10 mm3

(INSTRON5967, Canton, MA, USA).

4. Conclusions

CoAl-LDH and NiAl-LDH were synthesized by using a co-precipitation method
and were used in a flame-retardant SiF. The results of FTIR, XRD, XPS, and ICP-OES
indicated that CO3

2−-intercalated CoAl-LDH and NiAl-LDH were successfully prepared
and characterized. According to the results of a Brunauer–Emmett–Teller, the specific
surface areas of CoAl-LDH and NiAl-LDH were 51.47 and 174.57 m2 g−1, respectively.
With only 1 phr of CoAl-LDH or NiAl-LDH, the SiF/LDH nanocomposites showed a higher
LOI value (29.6%) compared with that of untreated SiF and passed the UL-94 V-1 rating.
Meanwhile, the results of cone calorimetry showed that NiAl-LDH revealed a better smoke
suppression effect in SiF than that of CoAl-LDH. This could be ascribed to the large specific
surface area and good catalytic action of NiAl-LDH. The SEM-EDS analyses of the outer
and inner surfaces of the char residues of the SiF/LDH nanocomposites indicated that
both CoAl-LDH and NiAl-LDH participated in the formation of a protective char layer. In
addition, the addition of CoAl-LDH and NiAl-LDH reduced the density of the silicon foam
and increased the size of the cells, thereby slightly reducing the compressive strength of
the silicone foam.
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