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Abstract: Carotid atherosclerosis (CA) is an important risk factor for ischemic stroke. We described the
miRNA and hemostasis profile of patients with moderate and advanced stages of carotid atheroscle-
rosis and elucidated potential correlations with hemostatic activation. A prospective case-control
study included 61 patients with evidence of carotid atherosclerosis (via ultrasound). The study
population was divided into groups depending on the degree of carotid artery stenosis: 60% or more
(advanced) and <60% (moderate). All patients underwent the following blood tests: general blood
test, hemostatic parameters and microRNA. Extraction of microRNA was performed using Leukocyte
RNA Purification Kit (NORGEN Biotec Corp., Thorold, ON, Canada); miRNA quantification was
performed via RT-PCR. Statistical analysis was performed in R programming language (v. 4.1.0)
using RSudio. MicroRNA expression profile was different depending on CA degree. MiR-33a-5p/3p
levels were higher in patients with ≥60% carotid stenosis (42.70 and 42.45 versus 38.50 and 38.50,
respectively, p < 0.05). Almost complete separation can be visualized with the levels of miR-126-5p:
9.50 in the moderate CA group versus 5.25 in the advanced CA (p < 0.001). MiR-29-5p was higher in
the moderate CA group: 28.60 [25.50;33.05] than in advanced CA group: 25.75 [24.38;29.50] (p = 0.086);
miR-29-3p was also higher in the moderate CA group: 10.36 [8.60;14.99] than in advanced CA group:
8.46 [7.47;10.3] (p = 0.001). By-group pairwise correlation analyses revealed at least three clusters with
significant positive correlations in the moderate CA group: miR-29-3p with factors V and XII (r = 0.53
and r = 0.37, respectively, p < 0.05); miR-21-5p with ADAMTS13, erythrocyte sedimentation rate and
D-dimer (r = 0.42, r = 0.36 and r = 0.44, respectively, p < 0.05); stenosis degree with miR-33a-5p/3p
and factor VIII levels (r = 0.43 (both) and r = 0.62, respectively, p < 0.05). Hemostasis parameters did
not reveal significant changes in CA patients: the only statistically significant differences concerned
factor VIII, plasminogen and (marginally significant) ADAMTS-13 and protein C. Down-regulation of
miR-126-5p expression has been identified as a promising biomarker of advanced carotid atheroscle-
rosis with high specificity and sensitivity. Correlation cluster analysis showed potential interplay
between miRNAs and hemostatic activation in the setting of carotid atherosclerosis.

Keywords: microRNA; cerebrovascular disease; carotid atherosclerosis; biomarkers

1. Introduction

Carotid atherosclerosis (CA) remains one of the leading causes of the atherothrom-
botic subtype of ischemic stroke, representing a major burden of disability and economic
impact. Atherosclerosis represents a complex arterial disease characterized by vascular
wall inflammation and remodeling, in the end resulting in the creation of atherosclerotic
plaques [1]. Based on data of the Framingham cohort study, the reported prevalence of CA
(defined as stenosis >50% evaluated by carotid ultrasound) in the study population was 7%
in women and 9% in men [2,3]. The main factor affecting the risk of stroke among patients
with CA is the degree of luminal stenosis [4]. The annual risk of stroke among patients
with asymptomatic CA with <60% stenosis is ≈1%, but this risk increases to 3% to 4% for
those with stenosis greater than 60% [5].

It is known that atherosclerosis is a multifactorial disease, which is based on pathology
of cholesterol metabolism, various inflammatory processes and endothelial dysfunction,
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associated with modifiable risk factors, such as smoke, obesity, hypertension, alcohol in-
take, unhealthy lifestyle, stress, etc. Identification of various CA biomarkers is essential
in order to develop novel diagnostic and therapeutic tools and strategies. MicroRNAs
(miR) are a family of important post-transcriptional regulators of gene expression, and
their involvement in the pathophysiology of cerebrovascular diseases and atherosclerosis is
frequently reported. MicroRNAs may represent the above-mentioned potential diagnostic
and therapeutic tools in clinical practice. MicroRNAs suppress gene expression by interact-
ing with the 3’-untranslated region of the target messenger RNA, causing its degradation
and/or blocking the translation of the gene product. An important property of miRNAs
is the pleiotropy of their action, i.e., one molecule can modulate many messenger RNAs
involved in various biological processes; the reverse is also true: one mRNA can be the
“target” of several miRNAs [6].

Previously, we studied a number of miRNAs (namely miR-126-5p, miR-126-3p, miR-
29a-5p, miR-29a-3p, miR-33a-5p, miR-33a-3p, miR-21-5p and miR-21-3p) involved in CA
pathogenesis [7]. When compared with otherwise healthy controls, patients with CA
demonstrated a different pattern of miRNA expression. In order to visualize interaction
networks between these selected miRNAs and target genes, we built an interaction graph
(via MIENTURNET) with only strongly validated targets, a minimum three of which were
shared, and a 0.05 threshold for the adjusted p value (Figure 1) [8].
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Built in MIENTURNET; network layout type ‘GEM’.

All the target genes shown in Figure 1 are implicated in various mechanisms of
atherosclerosis development and progression: pro-inflammatory cell interactions (ADAM9),
dysregulation of vascular homeostasis (FOXO3), cell proliferation and angiogenesis
(VEGFA/MYC pathway), vascular injury and remodeling (PTEN) and macrophage activa-
tion (AKT2) [9–13].

It has also been shown that hemostasis pathology is associated with the development of
carotid atherosclerosis [14,15]. Thus, it could be interesting not only to evaluate the relationship
of CA with miRNA expression levels but also to observe and analyze possible interactions
between miRNAs and hemostasis biomarkers depending on the severity of CA.
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2. Results

All patients’ clinical and demographic data are presented in Table 1. Both groups
were comparable by gender and age. More patients in the adCA group had prior stroke
(twelve versus eight), but the difference was not statistically significant. The most common
comorbidity in both groups was arterial hypertension. The major cardiovascular risk factor
was similarly distributed between groups, but the prevalence of other sites of atherosclerosis
(predominantly of the lower limbs’ arteries) was significantly higher in patients with
advanced CA (p < 0.001). Both internal carotid arteries were involved in 49.2% of patients.
Coronary heart disease burden was also higher in this group.

Table 1. Clinical and demographic characteristics of the study population.

mCA (n = 31) adCA (n = 30) Study Population
(n = 61) p *

Male, n (%) 17 (54.8) 17 (56.7) 34 (55.7) 0.99
Age, years (median [Q1;Q3]) 65.0 [61.5;70.0] 68.5 [61.3;71.8] 66.0 [61.0;71.0] 0.19

BMI, kg/m2 (median [Q1;Q3]) 27.1 [25.0;29.5] 27.2 [26.3;29.2] 27.2 [25.5;29.4] 0.60
Smokers, n (%) 8 (25.8) 13 (43.3) 21 (34.4) 0.24
Stroke, n (%) 8 (25.8) 12 (40.0) 20 (32.8) 0.36

AH, n (%) 27 (87.1) 29 (96.7) 56 (91.8) 0.37
CHD, n (%) 6 (19.4) 18 (60.0) 24 (39.3) 0.003

MI, n (%) 3 (9.7) 7 (23.3) 10 (16.4) 0.27
DM, n (%) 11 (35.5) 15 (50.0) 26 (42.6) 0.38

Carotid surgery, n (%) 2 (6.5) 24 (80.0) 26 (42.6) <0.001
Atherosclerosis of other locations, n (%) 10 (32.3) 26 (86.7) 36 (59.0) <0.001

AF, n (%) 3 (9.7) 4 (13.3) 7 (11.5) 0.96
ASA, n (%) 26 (83.9) 29 (96.7) 55 (90.2) 0.21

Anticoagulants, n (%) 5 (16.1) 8 (26.7) 13 (21.3) 0.49
Statins, n (%) 22 (71.0) 28 (93.3) 50 (82.0) 0.05

*—difference between mCA and aCA. mCA—moderate carotid atherosclerosis; adCA—advanced carotid
atherosclerosis; BMI—body mass index; AH—arterial hypertension; CHD—coronary heart disease;
MI—myocardial infarction; DM—type 2 diabetes mellitus; AF—atrial fibrillation; ASA—acetylsalicylic acid therapy.

Routine laboratory work-up (Table 2) did not demonstrate any statistically significant
difference between the two groups. Total cholesterol and LDL levels were relatively
low, perhaps due to high rates of statin treatment. A moderate increase in erythrocyte
sedimentation rate was also noted.

Table 2. Routine laboratory findings in the study population.

mCA (n = 31) adCA (n = 30) Study Population
(n = 61) p *

TC, mmol/L 4.9 [4.4;6.5] 4.6 [4.2;5.4] 4.8 [4.2;6.0] 0.25
LDL, mmol/L 2.0 [1.0;2.7] 2.0 [1.5;2.7] 2.0 [1.4;2.7] 0.36
HDL, mmol/L 1.7 [1.3;2.1] 1.7 [1.4;2.1] 1.7 [1.3;2.1] 0.78
TG, mmol/L 1.8 [1.1;2.0] 1.3 [0.9;2.0] 1.4 [1.0;2.0] 0.30

Hb, g/L 122 [113;130] 116 [110;128] 119 [110;130] 0.28
RBC, * 1012/L 4.1 [4.0;4.4] 4.4 [4.0;4.8] 4.2 [4.0;4.8] 0.13
WBC, * 109/L 6.7 [6.2;7.5] 7.2 [6.4;8.3] 6.8 [6.4;7.5] 0.15

Platelets, * 109/L 215 [172;280] 215 [150;253] 215 [165;260] 0.45
ESR, mm/h 20 [16;23] 21 [14;26] 20 [16;26] 0.59

*—difference between mCA and adCA. TC—total cholesterol; LDL—low-density lipoproteins; HDL—high-
density lipoproteins; TG—triglycerides; Hb—hemoglobin; RBC—red blood cells; WBC—white blood cells;
ESR—erythrocyte sedimentation rate.

MicroRNA expression profile was profoundly different depending on CA degree (Table 3
and Figure 2). MiR-33a-5p/3p levels were the only ones higher in patients with ≥60% carotid
stenosis (42.70 and 42.45 versus 38.50 and 38.50 respectively, p < 0.05). Almost complete
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separation can be visualized with the levels of miR-126-5p: 9.50 in the mCA group versus 5.25
in the adCA (p < 0.001). All other microRNAs were also lower in advanced CA patients.

Table 3. MicroRNA expression in the study population.

mCA (n = 31) adCA (n = 30) p

miR-126-5p 9.50 [8.42;14.80] 5.25 [4.76;5.68] <0.001
miR-126-3p 8.95 [7.35;12.70] 6.36 [5.59;7.24] <0.001
miR-21-5p 10.20 [8.26;12.90] 8.73 [7.15;10.05] 0.048
miR-21-3p 11.45 [9.15;12.57] 9.14 [8.37;10.73] 0.003
miR-29-5p 28.60 [25.50;33.05] 25.75 [24.38;29.50] 0.086
miR-29-3p 10.36 [8.60;14.99] 8.46 [7.47;10.3] 0.001

miR-33a-5p 38.50 [36.55;43.70] 42.70 [41.30;46.60] 0.015
miR-33a-3p 38.50 [36.60;42.70] 42.45 [40.55;44.60] 0.018
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Hemostasis parameters did not reveal significant changes in CA patients: the only
statistically significant differences concerned factor VIII, plasminogen and (marginally
significant) ADAMTS-13 and protein C (Table 4).

In order to elucidate possible biomarker interactions, we performed by-group pairwise
correlation analyses, which were visualized by clustered correlograms (Figures 3 and 4; as
for clustering method, see ‘Statistics’ in the ‘Materials and Methods’ section). In the mCA
group, we can identify at least three clusters with significant positive correlations: miR-
29-3p with factors V and XII (r = 0.53 and r = 0.37, respectively, p < 0.05); miR-21-5p with
ADAMTS13, ESR and D-dimer (r = 0.42, r = 0.36 and r = 0.44, respectively, p < 0.05); stenosis
degree with miR-33a-5p/3p and factor VIII levels (r = 0.43 (both) and r = 0.62, respectively,
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p < 0.05). Prominent negative correlations included: factor V levels with protein C, alpha-2-
antiplasmin and factor VII (r = −0.37, r= −0.36 and r = −0.48, respectively, p < 0.05); factor
VIII with miR-126-5p/3p (r = −0.52, p < 0.05); alpha-2-antiplasmin with miR-21-5p/3p
(r = −0.44 and r = −0.40, respectively, p < 0.05).

Table 4. Hemostasis markers in the study population.

mCA (n = 31) adCA (n = 30) p

D-dimer, ng/mL 360 [185;510] 350 [260;480] 0.42
Fibrinogen, g/L 3.71 [3.27;4.19] 3.63 [3.16;4.07] 0.53

AT III, % 91.5 [84.0;101.0] 87.7 [84.0;96.0] 0.29
Protein C, % 72.3 [63.3;78.0] 66.5 [62.0;70.4] 0.06
Protein S, % 70.0 [60.5;82.2] 71.0 [60.5;72.4] 0.85

Plasminogen, % 69.0 [64.2;88.3] 82.0 [68.5;98.0] 0.04
Alpha 2-antiplasmin, % 95.0 [92.4;104.0] 100.0 [94.3;107.0] 0.17

FV, % 76 [68;89] 76 [68;97] 0.76
FVII, % 67 [64;98] 85 [71;112] 0.10
FVIII, % 110 [89;142] 160 [141;185] <0.001
FXII, % 84 [68;106] 86 [68;101] 0.78

ADAMTS13, ug/ml 0.88 [0.76;1.08] 0.82 [0.67;0.99] 0.08
t-PA, ng/mL 2.9 [2.5;3.6] 2.77 [2.28;3.58] 0.69

PAI-1, ng/mL 47.4 [31.35;49.9] 44.5 [19.4;55.2] 0.55
AT—antithrombin III; FV—factor V (Leiden); FVII—factor VII; FVIII—factor VIII; FXII—factor XII; ADAMTS-13—
a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; t-PA—tissue plasminogen
activator; PAI-1—plasminogen activator inhibitor-1.
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Figure 4. Correlogram in patients with advanced CA with hierarchical clustering. The color indicates
the direction and strength of correlation (Spearman’s ρ). Asterisks indicate statistically significant
correlations (p < 0.05).

In the advanced CA group, different clusters were identified. Age was positively
associated with PAI-1, protein C and S levels (r = 0.46, r = 0.43 and r = 0.38, respectively,
p < 0.05); factors V and XII were also positively correlated (r = 0.47, p < 0.05). Of the
miRs, the only noticeable positive correlation was that of miR-33a-5p/3p with t-PA levels
(r = 0.37, r = 0.43, respectively, p < 0.05). Significant negative correlations were observed
for miR-29-5p with miR-21-3p, age, protein C and S levels and t-PA (r = −0.43, r = −0.46,
r = −0.37, r = −0.41 and r = −0.42, respectively, p < 0.05). Factor V levels were inversely
correlated with protein C and S levels (r = −0.69 and r = −0.51, respectively, p < 0.05).

A random forest analysis performed for each miRNA in terms of classifying the
advanced CA group demonstrated high levels of specificity and sensitivity for expression
levels of miR-126-5p (Figure 5). No multivariate analysis was performed due to near
complete separation with miR-126-5p as a covariate (see below in the ‘Discussion’ section).
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3. Discussion

Carotid atherosclerosis (CA) is one of the major risk factors for ischemic stroke, and it
is a diagnosis readily available in routine clinical practice via ultrasound. Yet, the complex
interplay between various biomarkers (endothelial function, hemostasis, lipid profile, etc.)
leading to atherosclerosis progression and eventually (in certain patients) to overt cerebrovas-
cular disease is still unclear. In our study, we hypothesized that patients with different stages
of CA would have distinct profiles of microRNA expression and hemostatic activity.

MicroRNAs are an important part of epigenetic regulation and have been proven to
be implicated in a wide range of cardiovascular disorders [16]. Almost all miRNAs in
our study were differentially expressed depending on the degree of CA, with miR-126-5p
nearly two-fold up-regulated in patients with moderate CA.

The miR-126 duplex is one of the most highly expressed in endothelial cells and is
instrumental for angiogenesis and vascular integrity, featuring strand-specific functions
and homeostasis [17]. It is understood that miR-126-5p is up-regulated by laminar flow
in arterial endothelial cells to limit atherosclerosis in areas of high shear stress [18]. This
may be the reason why patients with advanced CA in our study demonstrated severe
down-regulation of both strands of miR-126, leaving open the question of whether these
alterations were a consequence of atherosclerotic plaque formation or played a mediating
role. These results are corroborated by Santovito et al., who found reduced levels of
miR-126-5p in human plaques in areas of disturbed flow [17].

Another family of miRNAs that was significantly down-regulated in advanced CA
was miR-21-5p/3p. These miRNAs target PPARα, a key regulator of lipid-metabolizing
enzymes, and may promote angiogenesis and suppress apoptosis in endothelial cells post
hypoxia [19,20]. Experimental studies have also shown that overexpression of miR-21
increased NO production in human endothelial cells, thus contributing to attenuation of
atherosclerosis-induced endothelial dysfunction [21]. The expression of miR-21, along
with another from our study—miR-29—was, nevertheless, shown to be up-regulated
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in circulating CD4 + T cells of patients with atherosclerosis obliterans, a finding that
contradicts our results [22].

The only up-regulated miRNAs in advanced CA in our study were both strands of
miR-33a, which synergistically promote cellular cholesterol accumulation in macrophages.
Blocking miR-33-5p has resulted in rising HDL levels, which may be attributed to targeting
ABCA1 in the liver [23].

The hemostasis profile was less distinct between the two study groups; one of the more
prominent findings was increased factor VIII activity in advanced CA. Along with von Wille-
brand factor (which acts as its carrier protein), its role has been discussed in endothelial
dysfunction and atherosclerosis [24]. Our results show that factor VIII activity was negatively
correlated with miR-126 levels only in the moderate CA group. This may suggest a poten-
tially atheroprotective setting in the early stages of CA, which decreases as atherosclerosis
progresses. In the latter group, factor VIII was inversely associated with miR-33a-5p/3p levels,
an interesting finding considering their putative proatherogenic nature.

Another hemostasis marker—ADAMTS13 (a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13)—was marginally significantly lower in the adCA
group. It has been previously shown that low ADAMTS13 plasma levels are associated
with an increased risk of arterial thrombosis, including cerebrovascular disease [25]. In
our study, in the mCA group, ADAMTS13 was part of a cluster positively correlated with
miR-21, a potentially atheroprotective agent, while, in the adCA patients, it was negatively
correlated with levels of PAI-1 and FVIII.

4. Materials and Methods
4.1. Study Population and Clinical Data

This was a prospective case-control study that included 61 patients (median age
66.0 years, 55.7% male) with evidence of carotid atherosclerosis (CA, via ultrasound (adopt-
ing the NASCET criteria)). The recruitment took place from January 2020 until March 2021
at Research Center of Neurology, Moscow, Russia. The study population was then divided
in two groups depending on the degree of carotid artery stenosis: 60% or more (advanced
CA, adCA) and <60% (moderate CA, mCA). History of previous stroke, smoking, arterial
hypertension, coronary heart disease, previous myocardial infarction, diabetes mellitus,
atrial fibrillation, evidence of atherosclerosis in other locations and concurrent treatment
(acetylsalicylic acid, anticoagulants and statins) was noted. Patients with malignancies, cur-
rent infectious diseases, decompensated somatic pathology (including severe renal/hepatic
disease), autoimmune disorders and stroke/myocardial infarction within 6 months were
not included in this study.

4.2. Laboratory Analyses

All patients underwent the following blood tests: general blood test: HB (g/l), RBC
(1012/L), PLT (109/L), WBC (109/L) was carried out on an automatic hematological analyzer
Nihon Kohden MEK-7222 (Nihon Kohden Corp., Tokyo, Japan), ESR (mm/h) was measured
by the Panchenkov method; plasma hemostasis indicators: fibrinogen concentration (FG,
g/l), D-dimer level (ng/mL), plasma coagulation factors V, VII, VIII, XII (%) activity, activity
anticoagulant system: antithrombin-III (AT-III, %), proteins C (PC, %), S (PS, %) and
fibrinolysis: plasminogen (PG, %), a2-antiplasmin (PL-IN, %) were determined by generally
accepted methods on automatic coagulometer ACL Elite Pro (Werfen, Bedford, MA, USA)
using reagents Instrumentation Laboratory (Werfen, Bedford, MA, USA) and RENAM
(SPD RENAM, Moscow, Russia). Study of tissue plasminogen activator (t-PA, ng/mL),
tissue plasminogen activator inhibitor (PAI-1, ng/mL), ADAMTS-13 metalloproteinase
(ADAMTS-13, mcg/mL) in blood plasma was carried out by the solid-phase enzyme
immunoassay (ELISA) on the Victor 2 (PerkinElmer, Waltham, MA, USA) and ‘Real-best’
spot readers (VectorBest, Novosibirsk, Russia) using Technoclone reagent kits (Technoclone,
Vienna, Austria). Lipid profile (cholesterol (mmol/L), triglycerides TG (mmol/L), HDL
(mmol/L), LDL (mmol/L), were measured on an automatic biochemical analyzer Konelab
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30i (Thermo Scientific, Waltham, USA) using Randox reagent kits (Randox Laboratories,
Crumlin, UK).

4.3. MicroRNA Extraction

We described microRNA extraction and quantification in detail previously [26]. Briefly,
extraction of microRNA was performed using Leukocyte RNA Purification Kit (NORGEN
Biotec Corp., Thorold, ON, Canada) according to modified manufacturer protocol. The
PCR was performed starting with the reverse transcription step.

The following reagents and equipment have been used:

• Validated 20X primers for has-miR: miR-126-5p, miR-126-3p, miR-29-5p, miR-29-3p,
miR-33a-5p, miR-33a-3p, miR-21-5p, miR-21-3p (ThermoFischerScientific, Waltham,
MA, USA)

• Leukocyte RNA Purification Plus Kit (NORGEN Biotec Corp., Thorold, ON, Canada)
• TaqMan™ Advanced miRNA cDNA Synthesis Kit (Applied Biosystems™, Thermo

Fisher Scientific, Waltham, MA, USA)
• Real-time CFX96 Touch amplifier (BioRaD, Hercules, CA, USA)

4.4. Statistics

Statistical analysis was performed in R programming language (v. 4.1.0) using RSudio
(version 1.4.1717) and the following downloadable packages: ‘tidyverse’, ‘reshape’, ‘cor-
rplot’, ‘pROC’, ‘randomForest’, ‘Hmisc’. Nonparametric tests were implemented. Discrete
data are presented as frequency (%), continuous—as median (first quartile; third quartile).
Comparison of two proportions was conducted with the Pearson z test with continuity
correction. The Wilcoxon–Mann–Whitney test was used for two-sample comparisons.
Relationship between variables of interest was analyzed using Spearman’s rank correlation
coefficient (ρ). By-group correlation matrices were plotted with the variables ordered by
hierarchical clustering (Ward’s minimum variance method). A random forest algorithm
(number of trees = 500) was applied to the expression levels of all 8 microRNAs for clas-
sification analysis based on CA subdivision (≥60% or <60%). The resulting predicted
probabilities were used to build receiver operating characteristic (ROC) curves and calcu-
late the area under the curve (AUC) for each microRNA. All statistical tests were two sided
and results were deemed statistically significant if p value was < 0.05.

5. Conclusions

Carotid atherosclerosis (CA) is one of the leading causes of ischemic stroke, the risk of
which increases with the advancement of CA. In our study, we described the miRNA and
hemostasis profile of patients with moderate and advanced stages of CA. Down-regulation
of miR-126-5p expression has been identified as a promising biomarker of advanced CA
with high specificity and sensitivity. Correlation cluster analysis showed potential inter-
play between miRNAs and hemostatic activation in the setting of carotid atherosclerosis,
yet further validation and prospective studies are required. To our knowledge, this is
the first study to explore miRNAs and hemostasis biomarkers in patients with carotid
atherosclerosis.

6. Limitations

Our study has several limitations, among which the most prominent is the small cohort
size (yet, in many reviewed publications on miRNAs, sample sizes are relatively small);
another is the potential for selection bias (the patients were recruited at one center). We
defined the groups according to the maximal degree of stenosis in the carotid arteries, but,
on account of certain definition difficulties, did not take into account the number of involved
carotid/vertebral arteries (possibly in the mild-to-moderate CA group), which may be an
important factor influencing miRNA expression. The absence of a pure control group may
also be a limiting factor in this study, yet our main goal was to identify miRNA expression
and hemostasis biomarkers depending on degree of CA. A near complete separation
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was found for the expression levels of miR-126-5p, which precluded us from performing
multivariable logistic regression and also yielded high specificity and sensitivity values in
ROC curve analysis. This may potentially suggest flaws in miRNA quantification, but, in
our opinion, justifies further replication and validation studies. Both miRNA expression and
hemostasis biomarkers could have been influenced by concurrent medications (including
ASA and statin treatment). Nevertheless, we consider the groups to be evenly comparable
regarding most clinical and demographic characteristics.
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