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Abstract: Heat stress during the preflowering panicle initiation stage seriously decreases rice grain
weight in an invisible way and has not been given enough attention. The current review aims to
(i) specify the heat effects on rice grain weight during the panicle initiation stage compared with the
most important grain-filling stage; and (ii) discuss the physiological mechanisms of the decreased
rice grain weight induced by heat during panicle initiation in terms of assimilate supply and phy-
tohormone regulation, which are key physiological processes directly regulating rice grain weight.
We emphasize that the effect of heat during the panicle initiation stage on rice grain weight is more
serious than that during the grain-filling stage. Heat stress during the panicle initiation stage induces
alterations in endogenous phytohormones, leading to the inhibition of the photosynthesis of func-
tional leaves (source) and the formation of vascular bundles (flow), thus reducing the accumulation
and transport of nonstructural carbohydrates and the growth of lemmata and paleae. The disruptions
in the “flow” and restrictions in the preanthesis “source” tissue reduce grain size directly and decrease
grain plumpness indirectly, resulting in a reduction in the final grain weight, which could be the direct
physiological causes of the lower rice grain weight induced by heat during the panicle initiation stage.
We highlight the seriousness of preflowering heat stress on rice grain weight, which can be regarded
as an invisible disaster. The physiological mechanisms underlying the lower grain weight induced by
heat during panicle initiation show a certain novelty because they distinguish this stage from the
grain-filling stage. Additionally, a number of genes that control grain size through phytohormones
have been summarized, but their functions have not yet been fully tested under heat conditions,
except for the Grain Size and Abiotic stress tolerance 1 (GSA1) and BRASSINOSTEROID INSENSITIVE1
(OsBRI1) genes, which are reported to respond rapidly to heat stress. The mechanisms of reduced
rice grain weight induced by heat during the panicle initiation stage should be studied in more depth
in terms of molecular pathways.

Keywords: rice; heat stress; grain weight; panicle initiation; phytohormone

1. Introduction

Global warming has raised the Earth’s average surface temperature, and extreme
heat events have become more frequent worldwide [1]. On a regional scale, significant
warming trends are observed in China (0.4 ◦C/decade), India (0.45 ◦C/decade), Spain
(0.5 ◦C/decade), and Iran (0.6 ◦C/decade) [2–5]. As one of the most important staple crops,
rice has experienced severe yield losses due to frequent heat events [6,7]. Recently, the
occurrence of heat events has shifted to an earlier date. For example, heat events have been
occurring in the rice growing regions of the Yangtze River basin in China in mid-July or
even earlier [8]. In most rice paddy regions in China, the panicle initiation stage of middle
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rice often occurs in July, which begins when the panicle primordia have differentiated
(approximately 30 days before heading) and ends when the pollen is fully matured [9].
The optimum and maximum temperatures for panicle initiation in rice are 26.7 ◦C and
33.1 ◦C, respectively [10]. However, the average maximum temperature in July in most
rice growing regions in the Yangtze River basin has frequently surpassed 35 ◦C in recent
years. The significance of heat stress during the preflowering periods in rice plants [11],
especially the heat effects on meristem initiation and development of rice [12], has attracted
attention and is emphasized as a key area for understanding plant heat stress responses in
future studies.

Heat stress, which appears as an increase in temperature beyond a critical threshold
(33.1 ◦C for panicle initiation) for a certain duration [10], occurs during the panicle initiation
stage and leads to marked declines in the number of spikelets per panicle, spikelet fertility,
and grain weight [13]. The effects of heat stress during the reproductive stage of rice on
yield components as well as the underlying mechanism have been studied in depth [14,15].
However, studies of the heat effect on grain weight have focused mostly on the middle
and late reproductive growth stages, i.e., the flowering to grain-filling stage [16], while
the influence of heat stress on the grain weight of rice during the early reproductive
growth stage, i.e., the panicle initiation stage, has not attracted much attention and is
thus only superficially understood [6]. Rice grain weight depends on grain size (width,
length, grain thickness) and grain plumpness (degree of filling) [17], both of which require
assimilates as basic materials that are regulated by phytohormones [18]. In the current
review, the effects of heat stress during the panicle initiation stage on the grain weight
of rice are discussed with respect to two components: grain size and grain plumpness.
Furthermore, the physiological mechanism through which heat stress during the panicle
initiation stage influences the grain weight of rice is analyzed in terms of assimilate supply
and phytohormone regulation.

2. Heat Effects on Rice Grain Weight during the Panicle Initiation Stage

The grain weight of rice is severely decreased by heat stress during the panicle initia-
tion stage, during which the heat effects on grain weight are even more severe than those
in the grain-filling stage, according to Aghamolki et al. (2014) [19] and the observations of
our 5-year case studies (Figure 1). Similarly, high soil temperature treatment significantly
reduces the grain weight of rice during the panicle initiation stage but has a small or null
effect on rice grain weight during the grain-filling stage [20]. It is estimated that the grain
weight of rice is decreased by an average of 11.7% (5.4–17.1%) by heat during the panicle
initiation stage [13,21–23]. Thus, the panicle initiation stage is one of the critical periods for
rice grain weight under heat conditions, in addition to the grain-filling stage.
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Figure 1. Effects of heat stress on rice grain weight during the panicle initiation, flowering, and
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Agricultural University, Wuhan, China (30◦29′ N, 114◦22′ E). Heat treatments were imposed at panicle
initiation, flowering, and grain-filling for 15, 7, and 30 days, respectively.
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Grain size, which is established during the panicle initiation stage (the first critical
stage), determines the maximum potential grain weight, and grain plumpness, which is
established during the grain-filling stage (the second critical stage), determines the final
grain weight [24]. Previous studies on the effects of heat stress on grain weight have
mostly concentrated on the grain-filling stage, during which heat stress reduced grain
weight by decreasing grain plumpness but not through grain size, and the reduced grain
plumpness was mainly attributed to the affected physiological and biochemical processes
such as sucrose unloading, conversion, and starch synthesis under heat stress during the
grain-filling stage [25]. It is concluded that heat stress during the panicle initiation stage
has serious adverse effects on rice grain weight, but the reasons for the effects of heat stress
during the panicle initiation stage on the grain formation of rice are somewhat different
from those during the grain-filling stage [18,26].

3. Heat-Induced Changes in Assimilate Supply Explain the Reduced Rice Grain Weight
during the Panicle Initiation Stage

The reduced grain weight of rice induced by heat during the panicle initiation stage is
associated with decreased grain size and grain plumpness, both of which require sufficient
amounts of nonstructural carbohydrates (NSCs) as basic materials [27]. Heat stress inhibits
the photosynthesis of functional leaves and thus reduces the preflowering production and
accumulation of NSCs during the panicle initiation stage [28]. If combined with a high
nighttime temperature, additional respiration-based carbohydrate consumption will be
induced [29], resulting in further reduction of the preflowering accumulation of NSCs in the
stems. Heat stress during the panicle initiation stage results in an inadequate accumulation
and supply of NSCs [30] and further restricts the growth of lemmata and paleae [31],
manifesting as a reduced grain size, which cannot be discerned until heading [13].

Heat stress during the panicle initiation stage reduces the number of vascular bundles
and the area of the large and small vascular bundles in panicles, thus restricting the
transport of NSCs toward the young panicles during the panicle initiation stage and
hindering the transport of assimilates to the spikelets during the grain-filling period [32].
In fact, the panicle initiation stage is a critical period for the development of young panicles,
the formation of vascular bundles, and the accumulation of NSCs in panicles prior to
flowering under heat conditions [21,28,32,33]. As a result, insufficient and disrupted
NSC accumulation prior to flowering restricts post-flowering grain-filling (endosperm
proliferation and plumpness) and reduces grain plumpness, ultimately reducing rice
grain weight.

Most studies on the influence of heat stress on grain weight have focused on the
grain-filling stage. Rice glumes reach their final size at anthesis, and heat treatment during
the grain-filling stage thus has no obvious influence on the length and width of rice
grains [34,35]. However, heat stress during the panicle initiation stage directly reduces
the length and width of grain [13] and indirectly reduces post-flowering grain plumpness,
thereby resulting in decreased grain weight. Hence, the underlying mechanism through
which heat stress induces a decrease in rice grain weight during the panicle initiation
stage is different from that during the grain-filling stage. In summary, heat stress during
the panicle initiation stage may simultaneously decrease both grain size and plumpness,
which are associated with the assimilate supply (Figure 2). However, it is not clear exactly
how heat stress reduces rice grain size and grain plumpness by regulating the supply of
assimilates during the panicle initiation stage. The relationships between grain size, grain
plumpness, and grain weight from the aspects of the assimilate supply and distribution are
discussed as follows.

(i) Grain plumpness. The amount of NSCs in the stems decreased during the panicle
initiation stage when plants were subjected to heat stress, but the heat-stressed plants
showed a compensatory response after the heat stress was removed [36], which was
reflected by a greater accumulation of aboveground biomass compared with that of the
plants under control conditions. Deficit irrigation is usually adopted to ensure high and
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stable grain yields [37], which benefit mainly from the compensatory effect induced by
regulating water availability [38]. However, how the compensatory effect induced by heat
stress during the preflowering panicle initiation stage influences grain plumpness has
rarely been evaluated. If heat stress during the panicle initiation stage exerts any effect
on grain plumpness, is the outcome negative (zero or partial compensation) or positive
(overcompensation)? If the effect is negative, what are the main reasons for the reduction
in grain weight caused by heat stress? Furthermore, it is unclear whether the NSC/floret
ratio (NSCs/number of florets) at heading decreases [39] and whether the quantity of NSCs
increases due to the compensatory effect under heat conditions during the panicle initiation
stage [36]. It is speculated that the amount of photosynthesis may not be the primary reason
why heat stress restricts grain plumpness. Heat stress during the panicle initiation stage
may affect grain plumpness by influencing the post-flowering remobilization of NSCs.
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Figure 2. Proposed mechanisms of reduced rice grain weight in terms of phytohormonal regulation
and assimilate supply under heat during the panicle initiation stage. R0: initiation of panicle
development; R1: formation of panicle branches; R2: formation of the flag leaf collar; R3: panicle
emergence from the boot; R4: at least one floret on the main panicle reach anthesis; R5–R6: one or
more caryopsis on the main panicle elongate to the end of the hull; R7–R9: grains on the main stem
panicle show yellow or brown hulls. (the illustrations of the reproductive stages with morphological
markers are adapted from those by Wu et al. [18]).

(ii) Grain size. To obtain heavy grain, breeding scientists usually aim to increase
grain size, i.e., sink expansion, through genetic improvements [24], and cultivation experts
generally advocate for “increasing the source and improving the flow”, in addition to
“sink expansion”, to improve grain plumpness [40]. In fact, the variation in grain size
resulting from cultural practices can cause a variation as high as 10% in grain weight [41].
In recent years, scholars have suggested increasing the grain weight by regulating the
grain size using cultivation techniques [42]. Statistical analysis of existing data shows
that heat events during the panicle initiation stage induce more than a 10% variation in
grain weight [13,22,23], imposing a great impact on rice grain yield. Heat stress during the
panicle initiation stage reduces the preflowering assimilate supply and thus decreases grain
size, which restricts the sink capacity. Further studies should be performed to elucidate
exactly how heat stress dominates rice grain weight during the panicle initiation stage.

4. Effect of Phytohormones on Grain Weight under Heat during the Panicle Initiation Stage

Rice grain weight is directly regulated by phytohormones such as cytokinins (CTKs),
indoleacetic acid (IAA), gibberellic acids (GAs), and brassinosteroids (BRs) to a considerable
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degree [18,43–45]. IAA in the shoot apical meristem regulates leaf differentiation and
further influences leaf area [46], CTKs affect the net photosynthetic rate of leaves [47] and
aboveground biomass [48], and CTK, GA, and IAA regulate the development of vascular
bundles in rice [49,50]. The physiological activities directly determine the preflowering
accumulation and transport of NSCs and thus influence grain size and grain plumpness.
IAA interacts with salicylic acid to mitigate injury during the differentiation and growth
of spikelets under heat conditions [23], and the changes in endogenous CTK, IAA, and
GA1 levels induced by heat are significantly correlated with heat-induced changes in grain
weight during the panicle initiation stage [39]. Path analysis revealed that CTKs were most
strongly correlated with grain weight (coefficient of determination of 0.91), followed by
IAA (0.27), GA1 (0.25), and ABA (−0.08) (unpublished data). These results indicate that
phytohormones, particularly CTKs, are strongly related to rice grain weight under heat
stress during the panicle initiation stage.

Previous studies have shown that many genes or quantitative trait loci controlling rice
grain weight also regulate grain size by influencing phytohormones (Table 1). For example,
the Cytokinin oxidase (OsCKX), PURINE PERMEASE (OsPUP), MIKCC class type II MADS-box
gene (OsMADS29), and DROUGHT AND SALT TOLERANCE (DST) genes regulate grain
size by influencing CTK contents. The OsCKX gene regulates the oxidative degradation
of CTKs [51], the DST gene regulates CTK accumulation in the shoot apical meristem by
interacting with OsCKX2 directly [44], the OsPUP4 gene regulates the long-distance transport
of CTK [52], and the OsMADS29 gene affects grain size and grain weight by regulating
carbohydrate metabolism via CTKs [53]. The genes GRAIN-LENGTH-ASSOCIATED 2 (GL2),
GRAIN WIDTH 5 (GW5), and SLENDER GRAIN ON CHROMOSOME (SLG) regulate grain
size through BRs that possess antistress activity [54–56]. Among the genes regulating rice grain
weight (Table 1), the OsCKX2, DST, a member of the CYP450 gene cluster (DSS1/CYP96B),
calcium-dependent protein kinase 1 (OsCDPK1), Grain Size and Abiotic stress tolerance 1 (GSA1),
and BRASSINOSTEROID INSENSITIVE1 (OsBRI1) genes showed rapid and strong changes in
their expression under abiotic stresses, such as heat, high light, salinity, and drought. However,
the functions of the other genes in Table 1 have not yet been tested under abiotic stress and
should be studied in more depth to clarify the molecular mechanisms for reducing rice grain
weight under heat during the panicle initiation stage.

Table 1. The genes controlling grain size.

Genes Regulated Trait of Grain Size Regulated Phytohormones Verified Stresses References

RGB1 Grain length CTK — [57]
OsER1 Grain length CTK — [58]

OsPUP1 Grain length, grain width CTK — [59]
AGO2 Grain length CTK — [60]

OsCKX2 Grain length, grain width CTK Salinity, drought [51,61]
OsSGL Grain length CTK — [62,63]

OsPUP4 Grain width, grain thickness, grain length CTK — [52]
GNP1/GA20ox1 Grain length CTK, GA — [64]

OsMADS29 Grain length CTK — [53]
OsPUP7 Grain length, grain width CTK — [65]

DST Grain length, grain width CTK Salinity, drought [44]
GW6 Grain length, grain width GA — [66]
SGD2 Grain length, grain width GA — [67]

OsGASR9 Grain length, grain width, grain thickness GA — [68]
DSS1/CYP96B Grain length, grain width GA, ABA Drought [69]

SGL Grain length, grain width GA — [45]
OsCDPK1 Grain length, grain width GA Drought [70]

OsARF6/OsAUX3 Grain length IAA — [71]
GSA1 Grain length, grain width IAA Heat, salinity, drought [72]

TSG1/FIB Grain length, grain width IAA — [73]
OsSK41/OsGSK5 Grain length, grain width IAA — [74]

DS1/OsEMF1 Grain length, grain width IAA, BR — [75]
Gnp4/LAX2 Grain length IAA — [76]
SMOS1/DLT Grain length IAA, BR — [77,78]

BG1 Grain length, grain width IAA — [79]
CYP78A13 Grain length, grain width, grain thickness IAA — [80]

TGW6 Grain length IAA — [43]
NAL2/3 Grain width IAA — [81]
OsPIN2 Grain length, grain width IAA — [82]
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Table 1. Cont.

Genes Regulated Trait of Grain Size Regulated Phytohormones Verified Stresses References

DSS1/OsDWARF Grain length, grain width BR — [83]
POW1 Grain width, grain thickness, grain length BR — [84]
ZmD11 Grain length BR — [85]
OsBRI1 Grain length, grain width BR Heat, high light [86,87]

OsGRAS19/D26 Grain length, grain width BR — [88]
GSN1 Grain length BR — [89]

OsRac1 Grain length, grain width BR — [90]
LTBSG1/BRD2 Grain length, grain width BR — [91]

SRS5 Grain length BR — [92]
GW5 Grain width BR — [56]
DSG1 Grain length, grain width BR — [93]
OFP1 Grain width BR — [94]
DG1 Grain length, grain width BR — [95]

CYP734A4 Grain length BR — [96]
SMG11/D2 Grain length, grain width BR — [97]

SLG Grain length, grain width BR — [55]
LHDD10/BRD2 Grain length, grain width BR — [98]

CPB1/D11 Grain length, grain width BR — [99]
GL2 Grain length, grain width BR — [54]

OsMAPK6 Grain length BR — [100]
sg4/D11 Grain length BR — [101]

GS5 Grain width BR — [102]
OsMKK4/SMG1 Grain length, grain width BR — [103]

SRS3 Grain length, grain width BR — [104]

—: the gene function has not yet been tested under abiotic stress.

5. Conclusions and Perspective

Heat stress during the panicle initiation stage negatively affects grain in seemingly
unapparent ways. The mechanism through which heat stress during the panicle initiation
stage reduces grain size and grain plumpness is summarized in terms of assimilates and
endogenous phytohormones. (i) Heat stress during the panicle initiation stage prevents
the accumulation and sufficient supply of NSCs in young panicles, thus restricting spikelet
growth and leading to reduced grain size. Moreover, the inadequate accumulation and
impaired translocation of NSCs in the culm during the panicle initiation stage and the
reduced sink size may restrict post-flowering grain plumpness. (ii) Heat stress during the
panicle initiation stage influences the levels of endogenous phytohormones (CTKs, BRs,
IAA, and GAs), thus affecting glume enlargement and the accumulation and transport of
NSCs, further hindering preflowering glume growth and reducing post-flowering grain
plumpness. There is no doubt that heat stress during the panicle initiation stage can reduce
grain size and grain plumpness simultaneously, but it is still not clear exactly how heat
stress dominates rice grain weight during the panicle initiation stage, which should be
elucidated in further studies.

Phytohormone homeostasis (biosynthesis, catabolism, deactivation, and transport)
is pivotal in regulating plant acclimation to environmental stress [18]. However, there is
still a lack of comprehensive analysis and an overall understanding of the effects of heat
stress on the processes involved in phytohormones homeostasis. The possible mechanisms
of reduced rice grain weight in terms of CTK homeostasis under heat during the panicle
initiation stage are proposed (Figure 3) based on the discussion above and our previous
study [39]. Future studies on the physiological mechanisms of the reduced rice grain weight
induced by heat stress during the panicle initiation stage should focus on the responses of
processes involved in the homeostasis of other phytohormones, especially the anti-stress
hormone BRs. Additionally, a number of genes have recently been identified to regulate
grain weight through phytohormones (Table 1). However, most of the currently identified
genes that play a role in grain weight are associated with grain size, but the genes that
regulate grain plumpness have rarely been identified. The genes involved in grain size and
grain plumpness should be further explored, and their functions should be given more
attention under heat conditions during the panicle initiation stage.

Notably, the panicle initiation stage is the key stage for top-dressing fertilizers such
as nitrogen, potassium, and phosphorus, which regulate source–sink relations and thus
contribute to high grain yield [105]. Heat stress inhibited the remobilization of nitrogen,



Int. J. Mol. Sci. 2022, 23, 10922 7 of 11

potassium, and phosphorus to panicles [106,107], and high levels of nitrogen and/or sil-
icon application significantly impacted the aboveground biomass and rice grain weight
under heat conditions during the panicle initiation stage [108,109]. In fact, fertilizer appli-
cation usually interacts with heat treatments in terms of source–sink relations and yield
formation [110]. Nitrogen and silicon may protect rice plants against heat injury because
fertilizers delay senescence and enhance the synthesis of cytokinins [111,112], which tightly
regulate source–sink relations and grain weight in rice plants (Figure 3). Furthermore,
silicon fertilizer positively regulated the translocation efficiencies and allocation rates of
nitrogen and potassium under heat conditions [107]. Thus, the effects of fertilizers on rice
grain weight under heat stress during the panicle initiation stage should also be emphasized
in further studies.
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NSCs, further hindering preflowering glume growth and reducing post-flowering grain 
plumpness. There is no doubt that heat stress during the panicle initiation stage can re-
duce grain size and grain plumpness simultaneously, but it is still not clear exactly how 
heat stress dominates rice grain weight during the panicle initiation stage, which should 
be elucidated in further studies. 

Phytohormone homeostasis (biosynthesis, catabolism, deactivation, and transport) is 
pivotal in regulating plant acclimation to environmental stress [18]. However, there is still 
a lack of comprehensive analysis and an overall understanding of the effects of heat stress 
on the processes involved in phytohormones homeostasis. The possible mechanisms of 
reduced rice grain weight in terms of CTK homeostasis under heat during the panicle 
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anti-stress hormone BRs. Additionally, a number of genes have recently been identified 
to regulate grain weight through phytohormones (Table 1). However, most of the cur-
rently identified genes that play a role in grain weight are associated with grain size, but 
the genes that regulate grain plumpness have rarely been identified. The genes involved 
in grain size and grain plumpness should be further explored, and their functions should 
be given more attention under heat conditions during the panicle initiation stage. 

Notably, the panicle initiation stage is the key stage for top-dressing fertilizers such 
as nitrogen, potassium, and phosphorus, which regulate source‒sink relations and thus 
contribute to high grain yield [105]. Heat stress inhibited the remobilization of nitrogen, 
potassium, and phosphorus to panicles [106,107], and high levels of nitrogen and/or sili-
con application significantly impacted the aboveground biomass and rice grain weight 
under heat conditions during the panicle initiation stage [108,109]. In fact, fertilizer appli-
cation usually interacts with heat treatments in terms of source‒sink relations and yield 
formation [110]. Nitrogen and silicon may protect rice plants against heat injury because 
fertilizers delay senescence and enhance the synthesis of cytokinins [111,112], which 
tightly regulate source‒sink relations and grain weight in rice plants (Figure 3). Further-
more, silicon fertilizer positively regulated the translocation efficiencies and allocation 
rates of nitrogen and potassium under heat conditions [107]. Thus, the effects of fertilizers 
on rice grain weight under heat stress during the panicle initiation stage should also be 
emphasized in further studies. 
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