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Abstract: Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have
been extensively studied in recent years. Aging is a process related to functional decline that is
regulated by signal transduction. An increasing number of studies suggest that circRNAs can
regulate aging and multiple age-related diseases through their involvement in age-related signaling
pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly
interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein,
we summarize research progress on the biological functions of circRNAs in seven main age-related
signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and
NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In
this review, we suggest that circRNAs are widely involved in the regulation of the main age-related
pathways and are potential biomarkers for aging and age-related diseases.
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1. Introduction

Aging is an irreversible process accompanied by various declining functions in organ-
isms, weakened homeostasis, and reduced resistance to environmental damage. It is the
largest risk factor that leads to age-related diseases, such as cancer, diabetes, cardiovascular
disease, and Alzheimer’s disease [1]. Similar to many other biological processes, aging is
regulated by classic signaling pathways and transcription factors. In recent years, research
on aging has shifted from simply observing the lifespan to exploring a series of complex
intracellular signaling pathways and biological processes [2–4].

Genes are an important factor affecting the aging process [5]. Previous studies have
found that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs
(circRNAs), and microRNAs (miRNAs), play vital regulatory roles in aging and age-related
diseases [6,7]. CircRNAs are formed as covalently closed circular structures without
5′ caps or 3′ poly(A) tails. Because of their unique circular structure, circRNAs have more
resistance to RNA exonucleases and are more stable than linear RNAs [8]. In 1976, circRNAs
were first discovered in viroids [9]. However, because of their low expression abundance,
circRNAs are considered to be byproducts of mRNA splicing and have not been further
researched [10]. Recent studies suggested that circRNAs are abundant in humans, mice,
worms, flies, and other organisms [11], which indicates that circRNAs might be a class of
molecules with special functions. Moreover, circRNAs have been implicated in aging, such
as showing an age-related accumulation in male Macaque brains [12], in mouse cortexes and
hippocampi [13], in C. elegans [14], and in Drosophila heads and photoreceptor neurons [15].
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Furthermore, the overexpression of an insulin-sensitive circRNA sulfateless (circSfl) has
been confirmed to significantly extend lifespan in Drosophila [16].

This article highlights the biogenesis and mechanisms of circRNAs in seven main
age-related pathways. We aim to lay a solid foundation for the exploration of circRNAs as
biomarkers for the diagnosis and treatment of aging and age-related diseases.

2. Biogenesis and Functional Mechanisms of circRNAs
2.1. Classification of circRNAs

According to the different biogenesis mechanisms, circRNAs can be divided into
exonic circRNAs (ecircRNAs), which participate in only exon circularization; intronic circR-
NAs (ciRNAs), which participate in only intron circularization; exonic–intronic circRNAs
(EIciRNAs), which participate in circularization involving exons and introns; and tRNA
intronic circRNAs (tricRNAs), which are derived from splicing pre-tRNA introns [17].
There are three main modes of the formation of ecircRNAs and EIciRNAs: exon-skipping
or lariat-driven circularization, direct back-splicing or intron-pairing-driven circularization,
and RNA-binding-protein-driven circularization [18]. The biosynthesis of ciRNAs was
thought to be initiated by the lariat of removed introns during the pre-mRNA splicing
process and mainly depended on a 7-nt GU-rich element near the 5′ splice site and an 11-nt
C-rich element close to the branch-point site [19]. The formation of tricRNA requires tRNA
splicing enzymes to divide pre-tRNA into two parts: tricRNAs are generated by a 3′–5′

phosphodiester bond, and the other part generates tRNAs [20].

2.2. Functional Mechanisms of circRNAs

CircRNAs regulate biological processes mainly through four molecular functions. At
present, the most extensive research on the functional mechanisms of circRNAs has been
carried out with respect to their actions as molecular sponges of miRNAs, and there are
multiple miRNA response elements on the circular sequences [21]. One of the most well-
studied circRNAs is cerebellar degeneration-related protein 1 antisense RNA (CDR1as),
which contains more than 70 binding sites of miR-7 in its sequence and is also known as a
circRNA sponge for miR-7 (ciRS-7) or CDR1NAT [22]. CircRNAs can inhibit miRNA activity
by adsorption and affect the expression of downstream target genes [22]. Furthermore, the
same circRNA might target different miRNA–mRNA axes to perform diverse functions in
different diseases [23,24]. However, some research has demonstrated that most circRNAs
contain fewer miRNA binding sites and do not possess the properties of effective miRNA
sponges [25].

In addition to functioning as miRNA sponges, some circRNAs can also directly interact
with RNA-binding proteins (RBPs), such as circRNA muscleblind (circMbl) which could
adsorb MBL protein to maintain dynamic stability of circular and linear RNAs [26]; or reg-
ulate gene transcription [27], such as circRNA ras homolog family member T1 (circRHOT1)
which recruited TIP60 to the NR2F6 promoter and initiated NR2F6 transcription [28]. In
addition, recent research has shown that circRNAs, which are modified with internal ribo-
some entry sites (IRESs) [29] or N6-methyladenosine (m6A) [30], might have the potential
to translate in a cap-independent way to perform biological functions. For example, circMbl
encoded a protein of about 6.5 Kda which was modulated by starvation and FOXO [31]
(Figure 1).
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Figure 1. Classification and molecular functions of circRNAs. The top of the figure shows that
circRNAs are divided into 4 categories: (a) exonic circRNAs (ecircRNAs), (b) exon–intron circRNAs
(EIciRNAs), (c) intronic circRNAs (ciRNAs), and (d) tRNA intronic circular RNAs (tricRNAs). The
bottom of the figure shows four potential functions of circRNAs: (e) microRNA (miRNA) sponging:
some circRNAs serve as efficient miRNA sponges, regulating the activity of miRNA target genes;
(f) binding to proteins: circRNAs affect protein function directly; (g,h) regulation: some circRNAs
regulate transcription and encode peptides or proteins if they have internal ribosome entry sites
(IRESs).

3. Age-Related Signaling Pathways

Functional decline in aging and age-related diseases is associated with several highly
conserved cell signaling pathways, which form a complex network through multiple
molecular reciprocal regulations and regulate lifespan and age-related diseases. Based on
previous studies, we selected and described seven classic and well-researched longevity
signaling pathways.

3.1. Insulin/Insulin-like Growth Factor-1 Signaling (IIS) Pathway

The insulin/insulin-like growth factor-1 (IGF-1) signaling pathway was the first estab-
lished aging pathway [32] (Figure 2a). More than twenty years ago, the mutation of daf-2,
the gene homologous to the human IGF-1 receptor (IGF-1R), resulted in a twofold extension
of the lifespan of C. elegans [33], and the effect required DAF-16, the FOXO ortholog in
C. elegans [34]. The lifespan-extension effect of the decreased activity of insulin receptors is
conserved in Drosophila [35]. In mammals, reduced growth hormone (GH), insulin, and
IGF-1 signaling due to various mutations have also been shown to be associated with
longevity phenotypes [36].

Insulin/insulin-like peptide (ILP) binds to insulin receptors on the surface of tar-
get cells and activates insulin receptor substrates (IRSs) to initiate an intracellular kinase
cascade that culminates in the activation of the kinase AKT. The activation of AKT phos-
phorylates the downstream transcription factor FOXO, which inhibits the transcriptional
function of FOXO, further promoting cell survival, growth, and proliferation [37].
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Figure 2. Signal transduction through seven age−related signaling pathways. (a) IIS signaling
pathway; (b) PI3K−AKT signaling pathway; (c) mTOR signaling pathway; (d) AMPK signaling
pathway; (e) FOXO signaling pathway; (f) p53 signaling pathway; (g) NF−κB signaling pathway. The
blue squares indicate the core factors in each pathway, while the gray squares indicate the upstream
or downstream targets.

IRSs are components of the downstream IIS pathway. In mammals, IRS1-mutant
female mice presented a longer lifespan and various symptoms of delayed aging [38].
The homozygous or heterozygous deletion of IRS2 in the mouse brain also resulted in an
increased lifespan and features consistent with delayed aging and/or the attenuation of age-
related functional alterations [39]. In C. elegans, IRS proteins have not been identified [40],
while Drosophila expresses a single IRS ortholog protein called chico. The mutation of chico
has been proven to significantly extend the Drosophila median lifespan by up to 48% in
homozygotes and 36% in heterozygotes [41].

3.2. PI3K/Akt Signaling Pathway

Phosphatidylinositol 3-kinase (PI3K) is an intracellular kinase that acts as a key
molecule in the initiation of signal transduction pathways after the binding of extracellular
signals to cell surface receptors that, together with mTOR, appear to play a role in aging
and lifespan [42] (Figure 2b). Protein kinase B (AKT, also known as PKB) is a major effector
during PI3K-driven cell signal transduction in response to extracellular stimuli, and AKT
activity is upregulated by PI3K signaling during the activation of receptor tyrosine kinases
or G-protein-coupled receptors [43].

PI3K is activated by multiple cell surface receptors and forms PIP3 on the cell mem-
brane. PIP3 is a secondary messenger that activates downstream proteins, the most impor-
tant of which is the phosphoinositide-dependent protein kinase-1 (PDK1), which controls
the activation of AKT signal transduction [44]. PIP3 binds AKT and PDK1 and promotes
the phosphorylation of AKT at Thr308. However, AKT activation also requires its phos-
phorylation at Ser473 by mTORC2 [45,46]. Activated AKT affects downstream targets,
including GSK3, p21, FOXO, and mTOR, thus regulating multiple intracellular signal-
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ing pathways that affect cell growth, proliferation, differentiation, apoptosis, migration,
secretion, angiogenesis, transcription, and protein synthesis [47,48].

3.3. mTOR Signaling Pathway

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine-
threonine kinase that belongs to the PI3K-related kinase family and forms part of two struc-
turally and functionally distinct complexes, mTORC1 and mTORC2 (Figure 2c). mTORC1
contains mTOR, mammalian lethal with sec-13 protein 8 (mLST8), DEP domain containing
mTOR-interacting protein (Deptor), the Tti1/Tel2 complex, regulatory-associated pro-
tein of mammalian target of rapamycin (Raptor), and proline-rich Akt substrate 40 kDa
(PRAS40). mTORC1 is inhibited by rapamycin, integrates diverse environmental and
intracellular signals, such as growth factors and nutrients, and subsequently regulates
diverse cellular processes, including metabolism, survival, growth, differentiation, and
autophagy [49]. mTORC2 is composed of mTOR, mLST8, Deptor, the Tti1/Tel2 complex,
rapamycin-insensitive companion of mTOR (rictor), mammalian stress-activated map
kinase-interacting protein 1 (mSin1), and protein observed with rictor (protor). mTORC2
regulates cellular processes such as metabolism, survival, apoptosis, growth, and prolifer-
ation by directly activating Akt, controls ion transport and growth by directly activating
serum- and glucocorticoid-induced protein kinase 1 (SGK1), and regulates cell shape in a
cell-type-specific fashion by affecting the actin cytoskeleton by activating protein kinase
C-α (PKC-α) [50].

The inhibition of mTOR signaling delayed aging and extended the lifespan in yeast [51],
Drosophila [52], C. elegans [53] and mice [54]. Two key downstream effectors of mTORC1,
ribosomal protein S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding
protein (4E-BP), regulate mRNA translation, ribosome biogenesis, and protein synthesis [3].
Both decreased S6K activity and increased 4E-BP activity could extend the lifespans of
multiple species.

3.4. AMPK Signaling Pathway

AMP-activated kinase (AMPK) is a conserved serine/threonine kinase consisting of
a catalytic α subunit and two regulatory β and γ subunits that plays a fundamental role
in energy metabolism in cells and organisms [55] (Figure 2d). AMPK signaling activation
decreases with aging and may be associated with many age-related diseases, such as
cardiovascular disease and metabolic syndrome. The overexpression of AMPK (AMPK
ortholog named AAK-2 in C. elegans) extended the lifespans of C. elegans and Drosophila [56].

An increased level of AMP/ADP activates AMPK, thereby reducing the utilization
of ATP by inhibiting the synthesis of glycogen, protein, and cholesterol and inducing
the production of ATP by promoting fatty acid oxidation and glycolysis [57]. AMPK
is also activated by upstream kinases, including Ca2+/calmodulin-dependent protein
kinase β (CaMKKβ), serine/threonine kinase 11 (LKB1), and transforming growth factor-β-
activated kinase 1 (TAK1), by phosphorylating the catalytic α subunit at Thr172. However,
activated AMPK can be inhibited by protein phosphatases (PPs), such as PP2A, PP2Cα, and
Ppm1E [58]. AMPK controls a complex signaling network with other longevity pathways.
AMPK affects autophagy via the mTOR pathways, enhancing resistance against stress
by the FOXO/DAF-16 and sirtuin 1 (SIRT1) pathways and inhibiting the inflammatory
response by suppressing NF-κB signaling [59]. It has been stated that lifespan extension
induced by AMPK is mediated by CRTC-1 and CREB signaling [60].

3.5. FOXO Signaling Pathway

Forkhead box O (FOXO) represents a subfamily of the Forkhead family of transcription
factors and is conserved from C. elegans to mammals (Figure 2e). There is only one FOXO
gene in the invertebrate genome (daf-16 in worms and dFOXO in flies), while there are four
in mammals, namely, FOXO1, FOXO3, FOXO4, and FOXO6. FOXO proteins mainly act
as transcriptional activators that bind to the consensus core recognition motif TTGTTTAC
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and are inhibited by the IIS pathway [61]. The activated IIS pathway triggers the PI3K-
Akt pathway and then allows AKT to phosphorylate FOXO factors at three conserved
residues. The phosphorylation of FOXO leads to its exit from nuclei and transport to the
cytoplasm, resulting in the suppression of the FOXO-dependent transcription of target
genes. Conversely, in the absence of IIS, FOXO is translocated into the nucleus and activates
the expression of FOXO-dependent target genes [62]. In addition, other kinases, such as
AMPK, JNK, and ERK, can also phosphorylate FOXO. In addition to phosphorylation, some
diverse posttranslational modifications, including acetylation, deacetylation, methylation,
and ubiquitination, have also been shown to modify the subcellular localization, protein
levels, DNA binding, and transcriptional activity of FOXO factors [63].

In flies, dFOXO overexpression significantly extended the lifespan [64]. In C. elegans,
lifespan extension was mediated by a loss-of-function mutation of Daf-2/IGF-1, which is
associated with Daf-16, the ortholog of FOXO in worms [65]. There are several mechanisms
by which FOXO promotes longevity, such as participating in autophagy, improving cellular
antioxidant capacity, and maintaining stem cell homeostasis [61].

3.6. p53 Signaling Pathway

p53 is a central effector of many stress-related molecular cascades, and plays a crucial
role in tumor suppression and aging by regulating DNA repair, cell cycle progression, cell
death, and senescence [66] (Figure 2f). p53 regulates cellular senescence via the activation
of the cyclin-dependent kinase inhibitor 1 CDKN1A (p21) and promyelocytic leukemia
protein (PML) [67]. Some of the effects of p53 on organismal aging are mediated by
autophagy [68] directed at the IIS and mTOR pathways or through MDM2 [69]. MDM2
is the major negative regulator of p53 and interacts with p53 to form a stable complex.
On the one hand, MDM2 binds to p53 to prevent the transcriptional activation of p53
and promote p53 degradation through ubiquitination. On the other hand, p53 stimulates
MDM2 transcription by binding to its promoter region. Therefore, there is a regulatory
feedback loop between p53 and MDM2 [70].

3.7. NF-κB Signaling Pathway

The nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB) protein
family complex contains five different transcription factors: p50, p52, RelA (p65), RelB,
and c-Rel [71] (Figure 2g). In the cytoplasm, NF-κB exists in an inhibited state and is
sequestered by a series of NF-κB inhibitors (i.e., IκB). Exposure to one of several inducing
stimuli results in the phosphorylation of IκB proteins by the IκB kinase (IKK) complex,
followed by ubiquitination, the proteasomal degradation of IκB-inhibiting NF-κB, and
the concomitant translocation of NFκB to the nucleus, where it functions as a gene tran-
scriptional regulator of key biological processes. In the nucleus, NF-κB, together with
transcriptional coactivators, fine-tunes the activity of RNA polymerase (Pol) II at different
stages of the transcription cycle [72].

NF-κB plays an important role in cell proliferation, apoptosis, immunity, and inflam-
mation, and can respond to oxidative stress, DNA damage, immune activation, and growth
regulatory signals [73,74]. During the aging process, NF-κB activity is significantly in-
creased, and it has been reported that NF-κB activity is repressed by several longevity
genes, such as Daf-16/FOXO3a [75] and sirtuin 1 (SIRT1) [76].

4. CircRNAs in Age-Related Signaling Pathways
4.1. IIS Pathway

In the IIS pathway, circRNAs mainly act as miRNA sponges to regulate the expression
level of IGF-1R or IRS2/4, for instance, CDR1as/miR-7 [77], circRUNX1/miR-145-5p [78],
circ_0067835/miR-296-5p [79], circ_0014130/miR-142-5p [80], circ_0000517/miR-326 [81],
circPLK1/miR-4500 [82], circPDHX/miR-378a-3p [83], hsa_circ_0002577/miR-625-5p [84],
hsa_circ_0020850/miR-195-4p [85], hsa_circ_0023409/miR-542-3p [86], circ_0000003/miR-
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338-3p [87], and circFAM126A/miR-613 [88] (Figure 3). In this review, three circRNAs are
discussed.
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cRNA/miRNA indicates circRNAs that act as miRNA sponges, circRNA/protein indicates circRNAs
that directly bind to proteins, and circRNA/mRNA indicates circRNAs that regulate the transcription
of mRNA.

4.1.1. CDR1as

CDR1as is a specific circRNA with multiple miRNAs binding sites on its sequence,
and it has been confirmed that it increase with age in mouse cortex samples [14]. The dys-
regulation of CDR1as may lead to a series of aging-related diseases, including Alzheimer’s
disease [89], diabetes [90], and various cancers [91,92], which suggests its grander prospects
in the field of pathologic diagnosis and targeted therapy. CDR1as is more highly expressed
in colorectal cancer (CRC) tissues than in normal tissues. Silencing CDR1as inhibited the
proliferation and invasion of CRC cell lines, and mechanistically, it was dependent on
increasing miR-7 expression and suppressing EGFR and IGF-1R expression and further
affecting downstream factors. It has also been suggested that CDR1as could serve as a
potential molecular target for CRC therapy design [77].

4.1.2. Hsa_circ_0020850

Hsa_circ_0020850 was the most differentially expressed circRNA between normal
tissues and lung adenocarcinoma tissues, and was upregulated in the latter. Silencing
hsa_circ_0020850 suppressed tumor development, while knocking down miR-195-5p re-
versed this effect. Dual-luciferase reporter assays revealed that miR-195-5p was targeted
via hsa_circ_0020850. Similarly, IRS2 was identified as a downstream target of miR-195-5p,
and overexpressing miR-195-4p inhibited tumor development by decreasing IRS2 expres-
sion [85]. In total, the knockdown of hsa_circ_0020850 suppressed lung adenocarcinoma
cell proliferation, migration and invasion, and facilitated apoptosis, which was mediated
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by decreasing IRS2 expression by sponging miR-195-4p. In addition, hsa_circ_0020850
might be considered a new target for the treatment of lung adenocarcinoma.

4.1.3. Hsa_circ_0023409

The expression levels of hsa_circ_0023409 were higher in gastric cancer (GC) tissues
than in adjacent normal tissues. GC patients with high hsa_circ_0023409 expression showed
poorer survival rates than those with low hsa_circ_0023409 expression. Hsa_circ_0023409
overexpression promoted the growth, migration, and invasion of GC cells by functioning
as a miR-542-3p sponge. Furthermore, the targeting relationship between miR-542-3p
and IRS4 was identified by dual-luciferase reporter assays. When hsa_circ_0023409 was
overexpressed, the protein expression level of IRS4 was increased, and this effect could be
reversed by miR-542-3p and vice versa. The increased expression of IRS4 further activated
the downstream PI3K/AKT pathway [86]. In summary, hsa_circ_0023409 promotes GC
progression by sponging miR-542-3p and elevating the expression of IRS4, thus activating
the downstream PI3K/AKT pathway.

4.2. PI3K/AKT Signaling Pathway

Numerous studies have shown that the dysregulation or mutation of the PI3K/Akt
pathway is one of the most frequent reasons for some age-related diseases, such as various
cancers [93]. Herein, we discuss the regulatory roles of circRNAs in multiple cancers
through the PI3K/AKT signaling pathway. Most circRNAs function by acting as competing
endogenous RNAs (ceRNAs) (Table 1), which indicates that circRNAs have great potential
as cancer diagnostic and treatment biomarkers.

Table 1. CircRNAs that regulate age-related diseases via the PI3K/Akt signaling pathway.

Disease CircRNA Functional Mechanism Targets References

Pancreatic cancer CircEIF6 miRNA sponge miR-557/SLC7A11 [94]
PDAC CircNFIB1 miRNA sponge miR-486-5p/PIK3R1 [95]
PDAC CircBFAR miRNA sponge miR-34b-5p/MET [96]
Glioma CircPIP5K1A miRNA sponge miR-515-5p/TCF12 [97]
Glioma Circ_0000215 miRNA sponge miR-495-3p/CXCR2 [98]
Glioma Circ_0037655 miRNA sponge miR-214 [99]
Glioma Hsa-circ-0014359 miRNA sponge miR-153 [100]
GBM Circ-AKT3 translation to protein PDK1 [101]
GC CircPIP5K1A miRNA sponge miR-671-5p [102]
GC CircMAN2B2 miRNA sponge miR-145 [103]
GC CircRAB31 miRNA sponge miR-885-5p [104]
GC Hsa_circRNA_100269 unclear [105]

NSCLC CircFARSA interact with protein PTEN [106]
NSCLC Circ-PLCD1 miRNA sponge miR-375/miR-1179/PTEN [107]
NSCLC Circ-PITX1 miRNA sponge miR-30E-5p/ITGA6 [108]

CRC CircPTEN miRNA sponge miR-4470/PTEN [109]
CRC Circ_0008285 miRNA sponge miR-382-5p/PTEN [110]
CRC CircCDYL2 interact with protein Ezrin [111]
BC Hsa_circ_001569 unclear [112]

HCC CircETFA miRNA sponge hsa-miR-612/CCL5 [113]
HCC CircIGF1R unclear [114]
OC CircRNA-9119 miRNA sponge miR-21-5p/PTEN [115]
PCa CircNOLC1 miRNA sponge miR-647/PAQR4 [116]

Bladder cancer CircZNF139 unclear [117]

Note: PDAC, pancreatic ductal adenocarcinoma; GBM, glioblastoma; GC, gastric cancer; NSCLC, non-small
cell lung cancer; CRC, colorectal cancer; BC, breast cancer; HCC, hepatocellular carcinoma; OC, ovarian cancer;
PCa, prostate cancer.

4.2.1. Pancreatic Cancer

Pancreatic cancer is a common digestive tract cancer that ranks fourth in cancer-
associated mortality around the world. CircRNA eukaryotic translation initiation factor 6
(circEIF6) is significantly increased in pancreatic tumor tissues/cells compared with normal
tissues/cells. CircEIF6 promotes pancreatic cancer development by interacting with and
decreasing the expression level of miR-557. The downregulation of miR-557 activates the
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PI3K/Akt signaling pathway by targeting the solute carrier family 7 member 11 (SLC7A11)
mRNA [94]. The circEIF6/miR-557/SLC7A11/PI3K/AKT signaling axis might provide
novel therapeutic targets for pancreatic cancer.

Pancreatic ductal adenocarcinoma (PDAC) is the most common subtype of pancreatic
cancer, accounting for approximately 85% of all pancreatic cancer cases [118]. PDAC has a
very poor prognosis, and the five-year survival rate for pancreatic cancer patients is less
than 5%. CircNFIB1 is formed from exons 16 to 18 of the nuclear factor I B (NFIB) gene, and
it is differentially downregulated in PDAC tissues. CircNFIB1 acts as a miR-486-5p sponge
and antagonizes the miR-486-5p-mediated suppression of PIK3R1, which is a regulatory
subunit of PI3K, and inhibits the activation of the PI3K/AKT signaling pathway. The
inactivation of the PI3K/AKT signaling pathway further suppresses vascular endothelial
growth factor-C (VEGF-C) and ultimately suppresses lymphangiogenesis and lymphatic
metastasis in PDAC [95].

Another circRNA, circBFAR, is derived from exon 2 of the bifunctional apoptosis
regulator (BFAR) gene with a length of 336 nt, and is highly expressed in PDAC tissues.
CircBFAR promotes the progression of PDAC by sponging miR-34b-5p and upregulating
mesenchymal-epithelial transition factor (MET) expression levels. MET overexpression
activates downstream Akt-Ser473 phosphorylation and further activates the PI3K/AKT
signaling pathway [96]. CircNFIB1 and circBFAR might be potential biomarkers and
therapeutic targets for PDAC therapies.

4.2.2. Glioma

Glioma is a prevailing fatal malignancy of the central nervous system that lacks specific
treatment targets, and the age-related alterations in neural progenitor cells (NPCs) con-
tribute to both decreased regenerative capacity in the brain and an increased risk of glioma
tumorigenesis [119,120]. CircPIP5K1A originates from the phosphatidylinositol-4-phosphate
5-kinase type 1 alpha (PIP5K1A) gene, which is highly expressed in glioma tissues compared
with normal adjacent tissues. Functionally, it could promote the progression of glioma by
elevating the expression level of transcription factor 12 (TCF12) by sponging miR-515-5p,
thereby activating the PI3K/AKT pathway [97]. In addition to circPIP5K1A, circ_0000215 [98],
circ_0037655 [99], and hsa_circ_0014359 [100] also promote glioma progression by acting as
miRNA sponges by activating the PI3K/AKT signaling pathway.

One more-aggressive type of glioma is glioblastoma (GBM), which can occur at any
age, but tends to occur more often in older adults. According to extensive investigations,
88% of GBM patients die from the disease within 3 years. GBM remains one of the most
challenging malignancies worldwide [121]. Circ-AKT3 is cyclized from exon 3 to exon 7 of
the AKT3 gene and is expressed at lower levels in GBM tissues than in adjacent normal brain
tissues. Circ-AKT3 encodes a 174 amino acid novel protein named AKT3-174aa, which is
overexpressed and inhibits the GBM malignant phenotype. Importantly, AKT3-174aa, but
not circ-AKT3, could function as a tumor suppressor. Mechanistically, AKT3-174aa inhibits
GBM tumorigenicity by competitively interacting with phosphorylated 3-phosphoinositide-
dependent protein kinase-1 (PDK1) and reducing the phosphorylation of AKT at Thr308,
thus negatively regulating the PI3K/AKT signaling pathway [101]. AKT3-174aa, encoded
by circ-AKT3, is a potential prognostic marker for GBM patients, and might have future
potential clinical uses.

4.2.3. Gastric Cancer

Gastric cancer (GC), one of the most common malignant tumors worldwide, has a low
rate of early diagnosis because of lacking and non-specific symptoms [122]. CircRAB31 is
derived from exon 2 to exon 5 of the Ras-related protein Rab-31 (RAB31) gene, which is
downregulated in GC tissues and cells compared with normal tissues and cells. CircRAB31
overexpression inhibits GC proliferation and metastasis in vitro and in vivo, whereas
silencing circRAB31 has the opposite effect. Mechanistically, circRAB31 suppresses GC
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progression by acting as a miR-885-5p sponge and targeting its downstream target, the
phosphatase and tensin homolog (PTEN), to further inactive PI3K/AKT signaling [104].

Additionally, the previously discussed circPIP5K1A that promoted the progression
of glioma could also promote GC development by binding to miR-671-5p to activate
the PI3K/AKT pathway [102]. CircRNA mannosidase alpha class 2B member 2 (circ-
MAN2B2) regulates miR-145 [103], while the mechanism of hsa_circRNA_100269 remains
unclear [105], though it is known to modulate GC development through the PI3K/AKT
pathway. In summary, circRAB31, circPIP5K1A, circMAN2B2, and hsa_circRNA_100269
might be potential targets for the diagnosis and treatment of GC.

4.2.4. Non-Small Cell Lung Cancer

Over the past two decades, important advances have been made in the treatment of non-
small cell lung cancer (NSCLC); however, the overall cure and survival rates of NSCLC remain
low [123]. We herein discuss three circRNAs, circFARSA, circ-PLCD1, and circ-PITX1, which
might be promising biomarkers for the diagnosis and treatment of NSCLC.

CircFARSA is 338 nucleotides long and includes exons 5–7 of the phenylalanyl-tRNA
synthetase subunit alpha (FARSA) mRNA, which is highly expressed in NSCLC tissues
and cells compared with normal tissues and cells. Functionally, circFARSA promotes
NSCLC progression and macrophage differentiation. Mechanistically, circFARSA accel-
erates macrophage polarization to the immunosuppressive M2 phenotype by promoting
the ubiquitination and degradation of PTEN and activating the PI3K/AKT pathway to
accelerate NSCLC metastasis. In addition, circFARSA could be combined with eukary-
otic translation initiation factor 4A3 (EIF4A3), which promotes circRNA biogenesis and
cyclization, at the flanking sequences to mediate circRNA circularization and expression in
NSCLC cells [106].

Based on the results of circRNA high-throughput sequencing in NSCLC tissues and
normal tissues, circ-PLCD1, which is circularized from exon 14 to exon 15 of the phos-
pholipase C delta 1 (PLCD1) gene, was found to have the largest differential expression.
Circ-PLCD1 is significantly downregulated in NSCLC tissues and cell lines, and the overex-
pression of circ-PLCD1 inhibits the malignant phenotype of NSCLC cells. Mechanistically,
circ-PLCD1 acts as a sponge to interact with miR-375 and miR-1179 and elevate PTEN ex-
pression to suppress PI3K/AKT signaling, thereby repressing NSCLC tumorigenesis [107].

CircRNA-paired like homeodomain 1 (circ-PITX1) is substantially upregulated in
NSCLC tissues and cells. Functionally, the overexpression of circ-PITX1 promotes NSCLC
development, whereas its silencing results in the opposite effect. Similar to circ-PLCD1,
circ-PITX1 facilitates NSCLC proliferation and metastasis by sponging miR-30E-5p, which
then targets the 3′ untranslated region (UTR) of integrin subunit alpha 6 (ITGA6) and
ultimately activates the PI3K/AKT pathway [108].

4.2.5. Colorectal Cancer

Colorectal cancer (CRC) is the third most common cause of cancer-related death
throughout the world, and originates as a result of alterations in the normal colon or rectum
epitheliums [124]. CircPTEN is derived from the line mRNA PTEN, which is notably
expressed at low levels in CRC tissues and cells. Upregulated circPTEN inhibits CRC cell
proliferation, migration, and invasion, whereas silencing circPTEN results in the opposite
effect. Mechanistically, on the one hand, circPTEN sponges miR-4470 and elevates PTEN
expression to suppress AKT; on the other hand, circPTEN competitively interacts with the
ring-finger domain of TNF receptor-associated factor 6 (TRAF6) to inhibit K63-linked AKT
ubiquitination and AKT phosphorylation at Thr308 and Ser473 [109]. Overall, circPTEN
modifies CRC progression by regulating AKT through two molecular functions, which
provides new insights for CRC therapies.

Hsa_circ_0008285 is derived from exon 2 of the chromodomain Y like (CDYL) gene,
and has a mature sequence length of 667 nucleotides. Circ_0008285 is downregulated in
CRC tissues and cells and is associated with CRC growth and metastasis. Circ_0008285 acts
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as a CRC suppressor by interacting with miR-382-5p to elevate PTEN expression, which
inactivates PI3K/Akt signaling [110].

Another circRNA, circCDYL2, generated from exon 2 of the CDYL2 gene, was found
based on high-throughput sequencing data, and is upregulated in a highly migratory CRC
cell subline. CircCDYL2 increases CRC cell migration in vitro by binding to the Ezrin
protein, which is a cytoskeletal organizer that promotes tumor metastasis by reorganizing
the cytoskeleton or controlling signal transduction and preventing its degradation to
enhance AKT phosphorylation [111]. circRNAs originating from both the CDYL and
CDYL2 genes have been indicated as potential therapeutic targets for CRC treatment.

4.2.6. Breast Cancer

Breast cancer (BC) is the most common cancer leading to mortality among females world-
wide. It has been determined that hsa_circ_001569 is upregulated in both BC tissues and cells.
Previous studies have demonstrated that hsa_circ_001569 plays functional roles in osteosar-
coma (OS) [125], HCC [126], and CRC [127] by acting as a miRNA sponge. In BC, silencing
hsa_circ_001569 results in the suppression of BC cell growth and metastatic potential, and this
effect is due to the impediment of the PI3K-AKT signaling pathway. However, the mechanism
by which hsa_circ_001569 modulates the PI3K-AKT pathway needs to be further studied [112].
Hsa_circ_001569 might have potential as a target for BC therapy.

4.2.7. Other Cancers

CircRNA electron-transfer flavoprotein subunit alpha (circETFA) promotes HCC de-
velopment by upregulating the C-C motif chemokine ligand 5 (CCL5) expression level to
further regulate the PI3K/AKT signaling pathway and other key downstream effectors.
The mechanisms involve sponging hsa-miR-612 to block the inhibitory role of hsa-miR-612
on CCL5 on the one hand and recruiting EIF4A3 to prolong the half-life of CCL5 mRNA
on the other hand [113]. In addition, circIGF1R regulates PI3K/p-AKT levels to promote
the progression of HCC, while the detailed mechanism by which circIGF1R affects the
PI3K/AKT pathway requires further investigation [114].

The mechanisms are similar to those of circETFA; circRNA-9119 suppresses ovarian
cancer (OC) cell viability via the miR-21-5p/PTEN axis [115], and circRNA coiled-body
phosphoprotein 1 (circNOLC1) promotes prostate cancer (Pca) cell proliferation and mi-
gration in vitro and in vivo through the miR-647/progestin and adipoQ receptor family
member 4 (PAQR4) axis [116]. In bladder cancer, circZNF139 promotes cell proliferation,
migration, and invasion by activating the PI3K/AKT pathway, but the detailed mechanisms
are still unknown [117].

4.3. mTOR Signaling Pathway

mTOR is a central factor in the signal transduction network, and can be activated by
AKT but is inhibited by AMPK. We divided the circRNAs involved in the mTOR signaling
pathway into three parts, namely, those involved in the AKT-mTOR axis, those involved
in the AMPK-mTOR axis, and those that directly target mTOR. Among them, circRNAs
mainly function as miRNA sponges.

4.3.1. AKT-mTOR Axis

mTOR is extensively corroborated as a crucial downstream molecule of AKT, and nu-
merous studies have indicated that circRNAs can regulate age-related diseases through the
AKT-mTOR axis. CircHIPK3 is derived from exons 7–11 of homeodomain-interacting pro-
tein kinase 3 (HIPK3), which is highly expressed in lung cancer tissues and cells. CircHIPK3
knockdown suppresses lung cancer cell proliferation, migration, and glycolysis, while
facilitating apoptosis. This effect is mediated by blocking the AKT-mTOR axis via targeting
miR-381-3p [128].

Similarly, hsa_circ0001666 [129], circRNA membrane bound O-acyltransferase do-
main containing 2 (circMBOAT2) [130], and circRNA nuclear factor of activated T cells 3
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(circNFATC3) [131] could also act as ceRNAs to regulate tumor progression via the AKT-
mTOR axis (Figure 3). Some circRNAs, such as hsa_circ_0079929 [132], function as tumor
regulatory factors through the Akt-mTOR axis, but the detailed mechanisms are unclear.

4.3.2. AMPK-mTOR Axis

mTOR activity can be inhibited by AMPK. We herein discuss two circRNAs, cir-
cRNA_002581 and circWHSC1, that act as miRNA sponges to regulate age-related diseases
through the AMPK-mTOR axis. In nonalcoholic steatohepatitis (NASH), circRNA_002581
acts as a miR-122 sponge and then upregulates the expression of its target gene, cyto-
plasmic polyadenylation element-binding protein 1 (CPEB1), which subsequently impairs
autophagy via the PTEN–AMPK–mTOR regulatory pathway, thereby exacerbating NASH
progression. Conversely, the antagonizing circRNA_002581 shows the opposite effect [133].
Another circRNA derived from the wolf-hirschhorn syndrome candidate gene-1 (WHSC1)
gene, circWHSC1, is highly expressed in BC tissues. The overexpression of circWHSC1
promotes BC development and boosts xenograft tumor growth in nude mice, which is
mediated by sponging miR-195-5p. FASN is considered a target of miR-195-5p, and can
modulate the downstream AMPK-mTOR pathway. Overall, circWHSC1 expedites BC
progression by acting as a miR-195-5p sponge to target FASN and inactivate AMPK while
activating mTOR [134].

4.3.3. Targeting mTOR

In addition to cocrossing with other signaling pathways, circRNAs can directly target
the mTOR signaling pathway, mainly by acting as miRNA sponges. CircMYLK is derived
from exons 25–29 of myosin light chain kinase (MYLK), and has been reported to be an
oncogenic factor in several cancer types. Silencing circMYLK inhibits cervical cancer (CC)
cell growth, and this effect is mediated by impaired mTORC signaling. Mechanistically,
circMYLK sponges miR-1301-3p elevate the expression of Ras homolog enriched in brain
(RHEB), which is an essential upstream modulator of mTOR signaling activity, and further
results in mTOR signaling activation and the CC cell malignant phenotype [135].

Similar to circMYLK, circRNA-100338 [136], hsa_circ_0011324 [137], and hsa_circ
_0037251 [138] could also function by acting as miRNA sponges to target mTOR signaling
(Figure 3).

4.4. AMPK Signaling Pathway

In addition to the above-discussed circRNAs functioning through the AMPK-mTOR
axis, we observed that circACC1, which is derived from exons 2–4 of the human acetyl-CoA
carboxylase 1 (ACC1) gene, could regulate CRC progression by activating AMPK. CircACC1
plays a critical role in cellular responses to metabolic stress, and has been reported to
function as a tumor regulator in GC [139] and NSCLC [140] by acting as a ceRNA. In
CRC, circACC1 silencing or overexpression results in growth inhibition or promotion,
respectively. Mechanistically, circACC1 binds to the regulatory β and γ subunits of AMPK
and forms a ternary complex to stabilize and promote AMPK holoenzyme activity. The
activation of AMPK mediated by circACC1 regulates glycolysis and fatty acid β-oxidation
in cells, and might play a pathological role in CRC [141].

4.5. p53 Signaling Pathway

In the p53 signaling pathway, we summarize three circRNAs, circ-PGAP3 [142],
circ_0021977 [143], and circ_100395 [144], that function as miRNA sponges; three circR-
NAs, CDR1as [145], circ-Sirt1 [146], and circSCAP [147], that directly interact with proteins
(Figure 3); and one circRNA, circ-MDM2 [148], that does not have a defined mechanism.

Among them, CDR1as has been discussed before, and functions as a CRC promoter
by binding to miR-7 in the IIS pathway, while in the p53 signaling pathway, it can directly
bind to the DNA-binding domain (DBD) region of p53 to restrict its interaction with MDM2
and prevent p53 degradation to inhibit GBM [145].
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4.5.1. Circ-PGAP3

Circ-PGAP3 is derived from the post-GPI attachment to the proteins phospholipase
3 (PGAP3) gene. In CC tissues and cells, circ-PGAP3 is significantly downregulated. The
overexpression of circ-PGAP3 improves the poor prognosis of CC and significantly inhibits
cell proliferation in vitro and tumor growth in vivo. This tumor-suppressive effect of circ-
PGAP3 is mediated by sponging miR-769-5p and further increasing the expression levels
of p53 and its downstream targets [142].

4.5.2. Circ-Sirt1

Circ-Sirt1 is derived from the well-known longevity gene SIRT1, and was previously
reported to inhibit GC development by sponging miR-132-3p/miR-212-3p [149] and to
inhibit VSMC proliferation by regulating the oncogene c-Myc [150]. Furthermore, the
activated circ-Sirt1/SIRT1 axis has been confirmed to function in a manner which inhibits
oxidative stress and inflammation both in vivo and in vitro [151].

Vascular smooth muscle cells (VSMCs) are the major components of the blood vessel
wall, and are closely associated with age-related vascular diseases. It was demonstrated
that VSMC senescence could promote neointima formation by increasing intimal migration,
oxidative stress, inflammation, and collagen deposition following vascular injury [152].
Circ-Sirt1 is highly expressed in young and healthy arteries, but is downregulated in the
aged arteries and neointima of humans and mice. The overexpression of circ-Sirt1 delays
Ang II-induced VSMC senescence in vitro and ameliorates neointimal hyperplasia in vivo.
Mechanistically, circ-Sirt1 decelerates VSMC senescence and ameliorates neointimal forma-
tion by repressing p53 activity, not only by binding to and blocking p53 nuclear transloca-
tion but also by promoting SIRT1-mediated p53 deacetylation and inactivation [146].

4.5.3. CircSCAP

CircSCAP is derived from exons 3–5 of the SREBF chaperone (SCAP) gene, and is
significantly downregulated in lung cancer tissues and negatively associated with poor
prognosis. In vitro, circSCAP inhibits proliferation and migration but promotes apoptosis
in NSCLC, while in vivo, the ectopic expression of circSCAP suppresses tumor growth.
CircSCAP interacts with the splicing factor 3a subunit 3 (SF3A3) protein and facilitates the
degradation of SF3A3 by promoting its ubiquitination. SF3A3 directly binds to protein
arginine methyltransferase 5 (PRMT5), and the degradation of SF3A3 weakens the forma-
tion of the SF3A3/PRMT5 complex, enhances the expression level of MDM4-S, and further
activates downstream p53 signaling to inhibit the malignancy of NSCLC [147].

4.5.4. Circ-MDM2

Based on the sequencing data of CRC cell lines (HCT116, RKO and SW48) that were
untreated or treated with a DNA-damaging agent, circ-MDM2 was selected as the target
circRNA, the expression of which was altered upon DNA damage and dependent on p53.
Circ-MDM2 is formed from exons 4–8 of the p53-inducible gene MDM2, and is upregulated
after DNA damage treatment. Silencing circ-MDM2 impairs CRC growth in vivo, and
this effect is dependent on p53. However, the molecular mechanisms that govern the
circ-MDM2/p53 axis remain to be thoroughly investigated [148].

4.6. NF-κB Signaling Pathway

Circ-TPGS2 is generated from the tubulin polyglutamylase complex subunit 2 (TPGS2)
gene, which is upregulated in metastatic BC tissues compared with nonmetastatic tissues.
The overexpression of circ-TPGS2 promotes BC cell migration, while silencing circ-TPGS2
results in the opposite effect. Mechanistically, circ-TPGS2 sponges miR-7 and elevates
TRAF6 expression levels, resulting in p65 phosphorylation and nuclear translocation,
ultimately dysregulating the tumor microenvironment and promoting BC cell-motility by
activating NF-κB signaling. Moreover, p65 activates circ-TPGS2 transcription, forming a
positive feedback loop and amplifying the prometastatic effect of circ-TPGS2 [153]. Similar
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to circ-TPGS2, circRNA GLIS family zinc finger 2 (circGLIS2) [154] also function by acting
as miRNA sponges through the NF-κB pathway.

In addition to acting as miRNA sponges, circRNAs can also function by interacting
with proteins. CircCORO1C is generated from coronin 1C (CORO1C), which is signifi-
cantly upregulated in HCC. Silencing circCORO1C inhibits the tumorigenesis of HCC
cells in vivo and in vitro, while overexpressing circCORO1C leads to proliferation and
metastasis. Mechanistically, circCORO1C activates the NF-κB signaling pathway, promotes
P65 phosphorylation, and upregulates c-Myc and COX-2, further leading to increased
programmed death-ligand 1 (PD-L1) expression and ultimately regulating HCC progres-
sion [155]. In addition, circRNA cMras could inhibit lung adenocarcinoma progression by
interacting with alpha-beta hydrolase domain 5 (ABHD5) and adipose triglyceride lipase
(ATGL) through the NF-κB signaling pathway [156].

5. Summary and Prospects

Aging is a complex process, with gradual degenerative changes in the body increasing
the risk of occurrence of aging-related diseases, such as cancers, diabetes, autoimmune
diseases, infections, and cardiovascular and cerebrovascular diseases. Similar to many other
biological processes, the aging process is also regulated by canonical signaling pathways
and transcription factors, including the IIS pathway, PI3K/Akt pathway, AMPK pathway,
mTOR pathway, FOXO pathway, p53 pathway, and NF-κB pathway. CircRNAs are a class
of circular noncoding RNAs without a 5′- cap or 3′- poly(A) tail that can act as miRNA
sponges, bind with proteins, regulate transcription, and/or directly translate proteins
to exert their biological functions. In recent years, numerous studies have shown that
circRNAs are differentially expressed in various tumor tissues/cells compared with normal
tissues/cells and play a regulatory role in diverse age-related diseases.

In this review, we described seven classic age-related pathways, focusing on the
research progress of circRNAs in these pathways. Numerous studies have suggested that
circRNAs play a regulatory role in aging and age-related diseases via these pathways, which
indicates that circRNAs might have the potential to become diagnostic and therapeutic
biomarkers for age-related diseases. However, research on circRNAs in the FOXO signaling
pathway is lacking. With the advancement of biotechnology, this pathway may soon be
better understood.
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