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Abstract: PCSK9 is a candidate locus for low-density lipoprotein cholesterol (LDL-C) levels. The cause–
effect relationship between LDL-C levels and diabetes mellitus (DM) has been suggested to be
mechanism-specific. To identify the role of PCSK9 and genome-wide association study (GWAS)-
significant variants in LDL-C levels and the risk of DM by using Mendelian randomization (MR)
analysis, a total of 75,441 Taiwan Biobank (TWB) participants was enrolled for a GWAS to determine
common and rare PCSK9 variants and their associations with LDL-C levels. MR studies were also
conducted to determine the association of PCSK9 variants and LDL-C GWAS-associated variants
with DM. A regional plot association study with conditional analysis of the PCSK9 locus revealed that
PCSK9 rs10788994, rs557211, rs565436, and rs505151 exhibited genome-wide significant associations
with serum LDL-C levels. Imputation data revealed that three rare nonsynonymous mutations—
namely, rs151193009, rs768846693, and rs757143429—exhibited genome-wide significant association
with LDL-C levels. A stepwise regression analysis indicated that seven variants exhibited independent
associations with LDL-C levels. On the basis of two-stage least squares regression (2SLS), MR analyses
conducted using weighted genetic risk scores (WGRSs) of seven PCSK9 variants or WGRSs of 41
LDL-C GWAS-significant variants revealed significant association with prevalent DM (p = 0.0098
and 5.02 × 10−7, respectively), which became nonsignificant after adjustment for LDL-C levels.
A sensitivity analysis indicated no violation of the exclusion restriction assumption regarding the
influence of LDL-C-level-determining genotypes on the risk of DM. Common and rare PCSK9 variants
are independently associated with LDL-C levels in the Taiwanese population. The results of MR
analyses executed using genetic instruments based on WGRSs derived from PCSK9 variants or LDL-C
GWAS-associated variants demonstrate an inverse association between LDL-C levels and DM.

Keywords: PCSK9 gene; Mendelian randomization; low-density lipoprotein cholesterol level; Taiwan
biobank; diabetes mellitus

1. Introduction

Elevated low-density lipoprotein cholesterol (LDL-C) levels constitute a major risk
factor for atherosclerotic cardiovascular disease, as well as cardiovascular and total mor-
tality [1–3]. A reduction in LDL-C has been consistently associated with a decrease in
major vascular events, with similar effectiveness in men and women, high- and low-risk
subgroups, ethnically diverse populations, patients using statin or non-statin drugs, and
children with familial hypercholesterolemia [2–8]. Mendelian randomization (MR) studies
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have demonstrated a cause–effect relationship between LDL-C levels and cardiovascular
disease and mortality [9–12]. However, clinical trials and meta-analyses have revealed that
statins increase the incidence of new-onset diabetes mellitus (DM) in a dose-dependent
manner, especially in prediabetes [13–16]. Furthermore, MR studies using variants in
HMGCR, NPC1L1, and PCSK9 have reported that decreased LDL-C levels were associated
with an increased incidence of new-onset DM [9,10,17–20], but this finding was not sup-
ported by other studies [11,21]. Whether PCSK9 inhibitors increase the risk of diabetes is
also still under debate [22].

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a multifaceted serine pro-
tease that plays a critical role in the regulation of hepatic LDL receptor (LDLR) function,
and is involved in atherothrombosis and cardiovascular biology in addition to LDL reg-
ulation [23,24]. PCSK9 is primarily produced in the liver. Nevertheless, it is expressed
in other organs, such as the kidneys, pancreas, and brain [25]; in various cell types in-
volved in the development of atherosclerosis, such as endothelial cells, macrophages, and
smooth muscle cells; and in human atherosclerotic plaques [26]. Human PCSK9 is lo-
cated on the chromosome 1p32.3, which comprises 12 exons that encode a 692-amino-acid
proteinase [26]. More than 850 PCSK9 mutations have been reported, and studies have
demonstrated that the more common loss-of-function (LOF) mutations are associated with
hypocholesterolemia and protection against coronary heart disease, but that the disease-
related dominant gain-of-function (GOF) mutations cause familial hypercholesterolemia
and coronary heart disease [23,24]. Both GOF and LOF mutations may occur as com-
mon or rare alternative allele frequencies, and through different mechanisms [23,24,27].
Research has also commonly observed differences in genetic variants in PCSK9 between
Caucasian and East Asian populations, demonstrating the ethnic heterogeneity of such vari-
ants [28–36]. In contrast, noncoding PCSK9 sequence variants are rarely reported [10,37–39].
Therefore, searching for ethnicity-specific variants is crucial for precision medicine for each
population. The Taiwan Biobank (TWB) population-based cohort study enrolled more than
100,000 volunteers aged 30–70 years with no history of cancer [40,41]. The objectives of
the present study were to apply a regional plot association analysis and an MR analysis
to identify the common and rare PCSK9 variants and other candidate variants associated
with LDL-C in participants selected from the TWB cohort, and to test the cause–effect
relationship between LDL-C levels and DM.

2. Results
2.1. Regional Plot Association Analysis for the PCSK9 Region

The selection process of the TWB participants is shown in Figure 1. Baseline charac-
teristics of the study population are shown in Supplementary Table S1. Using genome-
wide association study (GWAS) data obtained from 75,441 TWB participants, we per-
formed a regional plot association study with conditional analysis to determine the as-
sociation of LDL-C levels with 330 single-nucleotide variants (SNVs) located between
55.40 and 55.65 Mb on chromosome 1p32.3 within the PCSK9 region. A total of 66 SNVs
exceeded the genome-wide significance threshold (p < 5 × 10−8), with the lead SNV being
rs10788994 (p = 2.71 × 10−14; Figure 2A). We also performed stepwise analysis to clarify
whether the associations between the other PCSK9 SNVs were independent of the lead
SNV. After adjustment for the rs10788994 genotypes, we observed that rs565436 in the
regional plot near the PCSK9 locus was still significantly associated with LDL-C levels
(p = 3.28 × 10−9, Figure 2B). After further adjustment for both rs10788994 and rs565436
genotypes, we observed that rs505151 and rs12067569 were still associated with LDL-C
levels (p = 1.83 × 10−7; Figure 2C). Because of the complete LD between the rs505151 and
rs12067569 genotypes (Figure 3B), we included the rs505151 genotype in our subsequent
analyses. We continuously adjusted for the rs10788994, rs565436, and rs505151 genotypes;
however, none of the SNVs in the regional plot near the PCSK9 locus exhibited genome-
wide significant associations with LDL-C levels (Figure 2D). Twelve SNVs located within
the PCSK9 region reached genome-wide significance in initial regional association analy-
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sis, and were selected for linkage disequilibrium (LD) analysis. We observed that three
SNVs—namely, rs10788994, rs557211, and rs565436—were strongly associated with LDL-C
levels in low LD (pairwise r2 < 0.3), and all three SNVs together with the rs505151 variant
were subsequently used for PCSK9-weighted genetic risk scores (WGRSs) and MR analysis
(Figure 3, Supplementary Table S2).
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Figure 2. Regional association plots in a region of 200 kb surrounding the PCSK9 locus on chromo-
some 1p32 for low-density lipoprotein cholesterol levels. Regional plot associations are shown without
(A) or with serial conditional analysis after further adjustment for rs10788994 (B), rs565436 (C), and
rs505151 (D) genotypes.
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indicate the value of r2. Seven PCSK9 variants associated with LDL-C levels for weighted genetic risk
scores are highlighted in red font.

2.2. Association between Rare PCSK9 Nonsynonymous Exonic Mutations and LDL-C Levels

From the pre-quality-control (QC) imputation data, we found eight rare (minor allele
frequency < 0.01) exonic nonsynonymous mutations of PCSK9, and analyzed the association
of these mutations with LDL-C levels (Supplementary Table S3). All eight mutations
exhibited a weak LD with the other genotypes (r2 < 0.01) (Figure 3C). After adjustment
for age, sex, body mass index (BMI), and current smoking status, we observed that the
rare alleles of three PCSK9 variants—namely, rs151193009, rs768846693, and rs757143429—
exhibited a genome-wide significant association with lower LDL-C levels (Table 1).

2.3. Stepwise Linear Regression Analysis

We applied additive models to execute a stepwise linear regression analysis using age,
sex, BMI, current smoking status, and seven PCSK9 variants. The analysis revealed that
the rs10788994, rs151193009, rs557211, rs768846693, rs757143429, rs565436, and rs505151
genotypes contributed to 0.07%, 0.13%, 0.01%, 0.06%, 0.04%, 0.05%, and 0.02% of the
variation in total cholesterol levels, respectively, and to 0.09%, 0.14%, 0.01%, 0.11%, 0.05%,
0.05%, and 0.03% of the variation in LDL-C levels, respectively (Table 2).
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Table 1. Association between PCSK9 variants of low-density lipoprotein cholesterol (LDL-C) levels from Axiom Genome-Wide CHB 1 and 2 Array plates with
genotype imputation, including common and rare PCSK9 variants.

PCSK9 Variants Chr Position Ref/Alt Func.refGene Gene.refGene HWE MAF MM Mm mm p Value Beta SE p * Value

rs10788994 1 55,500,976 C/T intergenic BSND;PCSK9 0.7616 0.3475 121.80 ± 31.26
(31,728)

120.41 ± 30.84
(33,743)

119.23 ± 30.86
(9015) 6.44 × 10−13 −0.0047 0.0006 1.99 × 10−14

rs151193009 1 55,509,585 C/T exon2:c.C277T:p.R93C PCSK9 0.4419 0.0027 120.98 ± 30.98
(73,449)

106.76 ± 28.53
(405) – 1.76 × 10−18 −0.0579 0.0057 1.19 × 10−24

rs557211 1 55,514,215 T/G Intron Variant PCSK9 0.8433 0.1916 121.42 ± 31.179
(49,044)

119.81 ± 30.701
(23,300)

119.30 ± 30.654
(2740) 1.69 × 10−11 −0.0052 0.0007 3.75 × 10−12

rs768846693 1 55,518,412 C/A exon5:c.C747A:p.S249R PCSK9 0.9078 0.0004 120.88 ± 31.02
(75,324) 91.73 ± 28.18 (63) – 1.18 × 10−9 −0.1301 0.0143 1.12 × 10−19

rs757143429 1 55,523,828 C/T exon8:c.C1300T:p.R434W PCSK9 0.7454 0.0011 120.89 ± 31.02
(75,239)

107.81 ± 30.25
(175) – 1.47 × 10−7 −0.0509 0.0086 3.46 × 10−9

rs565436 1 55,524,601 G/A Intron Variant PCSK9 0.3577 0.1033 121.22 ± 31.11
(60,123)

119.41 ±30.65
(13,901)

118.19 ± 31.05
(780) 8.08 × 10−10 −0.0067 0.0010 3.81 × 10−12

rs505151 1 55529187 G/A exon12:c.G2009A:p.G670E PCSK9 0.9202 0.0534 119.0 ± 31.00
(67,530)

120.00 ± 31.21
(7603)

121.00 ± 32.37
(215) 6.00 × 10−6 0.0065 0.0013 5.89 × 10−7

p: unadjusted; p *: adjusted for age, sex, BMI, and current smoking status. Abbreviations: SNV, single-nucleotide variation; Chr: chromosome; Ref, reference allele; Alt, alternate allele;
HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency; MM: homozygosity of major allele; Mm: heterozygosity of major and minor alleles; mm: homozygosity of minor
allele; SE, standard error. Data are presented as the mean ± standard deviation (mg/dL) (number). LDL cholesterol values were logarithmically transformed before statistical testing to
produce a normal distribution; however, the untransformed data are shown.

Table 2. Serum total and low-density lipoprotein cholesterol (LDL-C) levels: stepwise linear regression analysis, including PCSK9 genotypes.

Serum Total Cholesterol Level Serum LDL-C Level

Beta r2 p Value Beta r2 p Value

Age (years) 0.0014 0.0362 <10−307 0.0015 0.0186 <10−307

Sex (male vs. female) 0.0154 0.0049 1.15 × 10−131 – – –
Body mass index (kg/m2) 0.0017 0.0066 1.09 × 10−108 0.0051 0.0268 <10−307

Current smoking status (%) 0.0060 0.0004 8.49 × 10−9 – – –
rs10788994 (TT vs.TC vs. CC) −0.0022 0.0007 9.21 × 10−6 −0.0039 0.0009 6.80 × 10−8

rs151193009 (CC vs. CT) −0.0388 0.0013 1.47 × 10−24 −0.0615 0.0014 3.03 × 10−27

rs557211 (TT vs.TG vs. GG) −0.0018 0.0001 0.0024 −0.0024 0.0001 0.0052
rs768846693 (CC vs. CA) −0.0662 0.0006 8.4 × 10−12 −0.1261 0.0011 3.87 × 10−18

rs757143429 (CC vs. CT) −0.0310 0.0004 7.69 × 10−8 −0.0511 0.0005 3.43 × 10−9

rs565436 (AA vs. AG vs. GG) −0.0038 0.0005 7.55 × 10−9 −0.0060 0.0005 1.19 × 10−9

rs505151 (AA vs. AG vs. GG) 0.0036 0.0002 0.0001 0.0065 0.0003 1.23 × 10−6
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2.4. Association between LDL-C Levels and DM Status

The associations between LDL-C levels and DM status are presented in Supplementary
Table S4. After adjustment for age, sex, BMI, and current smoking status, we observed that
circulating LDL-C levels were negatively associated with DM status (OR = 0.99 (95% CI:
0.99, 0.99) per mg/dL unit of LDL-C, or 0.78 (95% CI: 0.75, 0.81) per mmol/L unit of LDL-C;
p = 6.76 × 10−64) (Supplementary Table S4).

2.5. GWAS Analysis for LDL-C Levels

After fitting our linear regression model for genotype trend effects and adjusting
for age, sex, BMI, and current smoking status, we observed that APOE rs7412 located
on chromosome 19q13.32 had the highest −log10 p value for LDL-C levels (p < 10−307),
and that a total of 47 lead SNVs for each peak (the SNV with the lowest p-value for
each locus) exhibited genome-wide significant associations (Supplementary Figure S1 and
Supplementary Table S5). We also assessed the associations of individual LDL-C-level-
determining SNVs with DM after further adjustment for LDL-C levels; the results indicated
that six SNVs–namely, APOE rs7412, PMFBP1 rs3852789, TMEM8A rs375498857, SLC10A1
rs2296651, TRIM5 rs16934050, and MACO1 rs61775184—were significantly associated with
DM (all p < 0.01). These six SNVs were excluded from the calculation of WGRSs for the
analysis of DM status. Thus, 41 SNVs were used as LDL-C GWAS-associated variants for
WGRS calculation, and the resulting association with LDL-C levels increased significantly
(p < 10−307; Table 3).

Table 3. Summary of coefficients used for standard Mendelian randomization analysis: low-density
lipoprotein cholesterol (LDL-C) levels and diabetes mellitus (DM).

TA TB GA TA-TB GA-TA GA-TB IVA-TB

Beta SE p a Beta SE p a Beta SE p a Beta SE p a (p b )

LDL-C DM WGRS_PCSK9_7SNVs −1.9993 0.1185 6.76 × 10−64 0.5599 0.0301 4.66 × 10−77 −2.3685 0.8918 0.0079 −4.2294 1.5926 0.0079 (0.0098 c)
WGRS_LDL-C_41SNVs −1.9993 0.1185 6.76 × 10−64 0.9823 0.0202 <10−307 −1.9743 0.6972 0.0046 −1.9710 0.6961 0.0046 (5.02 × 10−7 c)

WGRS_PCSK9_7SNVs: weighted genetic risk scores (WGRSs) of seven PCSK9 variants; WGRS_LDL-C_41SNVs:
WGRSs of 41 LDL-C genome-wide association study (GWAS)-significant variants; IVA and IVB: instrumental
variables for GA and GB, respectively. a: Adjustment for age, sex, current smoking status, and BMI. b: After further
adjustment of LDL-C levels, the p-values were 0.1256 for WGRS_PCSK9_7SNVs and 0.7606 for WGRS_LDL-
C_41SNVs. c: Adjustment for age, sex, current smoking status, BMI, and other possible confounders, such as
eGFR, platelet counts, hemoglobin, triglyceride, and AST.

2.6. Association between LDL-C-Level-Associated PCSK9 Genotypes and Clinical and
Laboratory Parameters

Over 70,000 volunteers participated in the genotype–phenotype association analysis.
We analyzed the association of the seven aforementioned LDL-C-level-associated PCSK9
genotypes with various clinical phenotypes and laboratory parameters. Using the Bonfer-
roni correction and our additive model, and after adjusting for age, sex, BMI, and current
smoking status, we observed no significant associations (p < 0.001) between the PCSK9
genotypes and phenotypes, apart from LDL-C levels (Supplementary Tables S5–S18).

2.7. MR Analysis along with 2SLS IV Regression for Determining the Association of Genetic
Determinants of LDL-C Levels with DM Status

We performed two-stage least squares regression (2SLS) instrumental variable (IV)
analysis to determine the direction and causality of the association between LDL-C levels
and DM status. In this regression, we used the seven aforementioned PCSK9 variants
associated with LDL-C levels to derive weighted genetic risk scores (WGRSs), and the
scores revealed that LDL-C levels were significantly associated with a lower risk of DM
(p = 0.0079; Table 3). The association of PCSK9-WGRS with DM status remained significant
after adjustment for multiple parameters associated with LDL-C levels (p = 0.0098), but the
association became nonsignificant after adjustment for LDL-C levels (p = 0.1526). From the
GWAS for LDL-C levels, we selected 41 independent SNVs as IVs. All SNVs were signifi-
cantly associated with LDL-C levels at the genome-wide significance level (Supplementary
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Table S19). We further tested the associations of the WGRSs of these 41 LDL-C-determining
variants with DM status. In the 2SLS IV analysis, our data revealed significant associations
between the WGRSs of the 41 gene variants and DM status (p = 0.0046), which remained
significant even after further adjustment for multiple parameters associated with LDL-C
levels (p = 5.02 × 10−7); nevertheless, the associations became nonsignificant after adjust-
ment for LDL-C levels (p = 0.7606). The F statistics derived for the instruments ranged
from 716 to 729 for LDL-C-level-determining genotypes, demonstrating a low risk of weak
instrument bias (Supplementary Table S20).

2.8. Scatter Plots and Test for Heterogeneity

As shown in Supplementary Figure S2, scatterplots of the effect sizes of the associations
between the LDL-C-level-determining alleles and LDL-C levels versus the effect sizes of the
association between the LDL-C-level-determining alleles and DM status in the MR analysis
revealed that independent genetic variants in different gene regions were concordantly
associated with the outcomes, supporting a causal relationship between LDL-C levels and
DM (Supplementary Figure S2). Through visual inspection and by using Cochran’s Q test,
we found no evidence of heterogeneity for causal estimates in each genetic variant during
the various sensitivity analyses (Supplementary Table S21).

2.9. Sensitivity Analysis for Causal Inference from Standard Mendelian Randomization with
Multiple Genetic Variants Determining LDL-C Levels

The causal effects calculated using sensitivity analyses in the standard MR study were
almost identical to the 2SLS estimates (Supplementary Table S22). The symmetric funnel
plots confirmed the absence of a directional pleiotropy effect for each set of IV estimates
and the IV strength (Supplementary Figure S3). Moreover, our data indicated that the
estimates of the effect size in standard MR analysis in the inverse-variance-weighted (IVW),
median-based, and MR–Egger regression (slope) methods were all consistent with the
estimates for the effect of the LDL-C-level-determining allele on DM in the 2SLS method
(Supplementary Table S22). The intercept of all Egger regression analyses was close to zero.
These results indicate the presence of balanced pleiotropy in our standard MR analysis.

3. Discussion

This study analyzed PCSK9 variants associated with LDL-C levels in Taiwanese par-
ticipants. Seven PCSK9 coding and noncoding variants were significantly associated with
both total and LDL-C levels, contributing 0.38% and 0.49% of the variations, respectively.
Our genotype–phenotype association analysis revealed that these variants had no other
pleiotropic effects. This study is the first to report a rare PCSK9 coding-sequence variant—
namely, rs768846693 pS249R—as a possible LOF mutation. We performed an MR analysis
using 2SLS regression and a PCSK9 WRGS genetic instrument, and the analysis results
indicated that genetically determined LDL-C levels were inversely associated with the
prevalence of DM. These results provide further evidence that PCSK9 variants play a crucial
role in determining cardiometabolic outcomes in the Taiwanese population.

3.1. Ethnic Heterogeneity of PCSK9 Gain-of-Function and Loss-of-Function Mutations

As of April 2022, more than 850 unique PCSK9 variants have been listed in the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/?term=PCSK9[gene] (accessed
on 24 May 2022)), of which 643 are from exonic, 128 are from intronic, and 67 are from
either 5′ or 3′ untranslated regions. Of the exonic variants, 384 are missense, 18 are
nonsense, 22 are frame shifts, and 219 are synonymous mutations. A clinical classification
indicated the existence of 34 pathogenic or likely pathogenic variants and 99 conflicting
interpretations of pathogenic variants. In the present study, we observed that three rare
PCSK9 coding variants—namely, rs151193009 pR93C, rs768846693 pS249R, and rs757143429
pR434W—were LOF mutations, and were significantly associated with lower LDL-C levels.
In the ClinVar database, pR93C and pR434W were classified as variants of conflicting

https://www.ncbi.nlm.nih.gov/clinvar/?term=PCSK9[gene]
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interpretations, and S249R was classified as a variant of uncertain significance. This study
is the first to report that pS249R is an LOF mutation and is associated with low LDL-C
levels. Although the three PCSK9 coding variants (rs151193009 pR93C, rs768846693 pS249R,
and rs757143429 pR434W) are rare mutations (minor allele frequencies = 0.004–0.027%),
their LDL-C-lowering effect per allele was noted to be significant, ranging from 13 to 29
mg/dL. A recent study reported that the PCSK9 R93C variant was associated with a 60%
lower risk of premature myocardial infarction in the Chinese Han population [42]. The
ASPirin in Reducing Events in the Elderly trial also demonstrated that PCSK9 pR434W
is a member of lipid-lowering PCSK9 and APOB genetic variants that are carried by
healthy older individuals (aged ≥ 70 years) and contribute to coronary-heart-disease-free
survival [43]. However, PCSK9 pS249R was first identified as an LOF mutation, but its
clinical implications warrant further investigation. In contrast, we found that the common
variant rs505151 (E670G) was a GOF mutation and was significantly associated with higher
LDL-C levels, which is consistent with previous reports [24,29,35,44].

3.2. Role of Noncoding PCSK9 Variants

Previous studies have focused mostly on the role of exonic PCSK9 mutations in LDL-
C levels. Our data reveal that variants in the promoter region, intronic region, and 3′

untranslated region may play a crucial role in and be independently associated with LDL-C
levels. Our study revealed the PCSK9 rs10788994 variant, located in the promoter region of
PCSK9, as the lead SNV for LDL-C levels. However, a case–control study on premature
myocardial infarction in the Italian population reported that this SNV was not associated
with LDL-C levels [38]. Our data also revealed that the PCSK9 intron variants rs557211
and rs565436 were independently associated with LDL-C levels. The rs565436 variant
was reported to be associated with familial hypercholesterolemia in Malaysia [45], but
the association between rs557211 and LDL-C levels has not yet been reported. Additional
functional studies are necessary to elucidate the mechanism underlying the influence of
these noncoding PCSK9 variants on LDL-C levels.

3.3. Mendelian Randomization for LDL-C and DM

Previous studies including GWAS and MR analyses have demonstrated that a ge-
netically induced elevation of circulated LDL-C levels is associated with a lower risk of
DM [12,46], supporting the observation that lowering LDL-C levels with statins slightly
increases the risk of DM [13–16]. However, the mechanism underlying these effects is
still unknown. MR studies using LDL-C-lowering drugs’ target genes—such as HMGCR,
PCSK9, and NPC1L1 variants—as genetic instruments have consistently demonstrated an
inverse association between LDL-C and DM [10,18–20]. However, not all MR and genetic
studies have revealed inverse associations between each LDL-C-level-lowering allele and
an increased risk of DM [11,21,47]. Accordingly, the heterogeneity between genetic and
MR studies suggests that the diabetogenic effect of LDL-C reduction is mechanism-specific,
and may depend on the underlying reduction in LDL-C levels, such as pancreatic ß-cell
dysfunction caused by increased intracellular cholesterol levels due to either increased
LDLR expression or transmembrane cholesterol transport [17,48]. Furthermore, genetic
studies may shed light on the effects of pleiotropy on the association between LDL-C-
level-determining alleles and DM status. For example, some studies have revealed that
LDL-C-lowering alleles of HMGCR and PCSK9 variants increase body weight and waist
circumference [17–19]. GCKR, TM6SF2, and PNPLA3 variants were reported to be as-
sociated with diabetogenic traits such as high liver fat, in addition to being associated
with reductions in LDL-C levels [49]. However, most of the reported MR studies have
included only people of European descent rather than people of Asian descent. Our results
also reveal an inverse association between genetically determined LDL-C levels and the
prevalence of DM, and the corresponding effect size is similar to that reported in previous
studies. According to a WGRS derived using PCSK9, we noted that an LDL-C reduction of 1
mmol/L was associated with an increased risk of DM (OR 1.61, 95% CI: 1.04–2.49), and that
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an LDL-C reduction of 1 mg/dL was associated with an increased risk of DM (OR 1.01, 95%
CI: 1.00–1.02). We obtained a similar estimate (OR 1.32: 1.09–1.60 per 1 mmol/L) when we
applied a WGRS derived using LDL-C GWAS-associated variants. PCSK9 mutations can
increase or reduce LDL-C levels in the blood. If only a single lead SNV rs10788994 in the
PCSK9 gene region was used as genetic instrument for reducing LDL-C, such as HMGCR
rs3064191 alone, the effect size would be insufficient to increase the risk of diabetes. When
we applied a WGRS derived by aggregating several common and rare PCSK9 variants,
we noted that the diabetogenic effect of LDL-C reduction became evident. This finding
was also supported by the association of the WGRS derived by aggregating 41 LDL-C
GWAS-significant variants with DM status. Moreover, PCSK9 variants—both common
and rare—were not linked to any other metabolic traits. Overall, our findings indicate
that lower circulating LDL-C levels constitute a key mediator of increased risk of DM.
The diabetogenic effect can be attributed to reduction in LDL-C levels, and the associa-
tion of individual SNVs with the risk of DM may be proportional to its association with
LDL-C reduction.

3.4. Limitations

The present study has some limitations. Because of the cross-sectional study design,
we could not investigate the association of circulating LDL-C at baseline with the incidence
of DM; thus, we could not avoid survival bias. Second, genetic association studies revealed
ethnic genetic heterogeneity; therefore, our findings may not be applicable to other ethnic
groups. Third, our study did not have a second cohort; the inclusion of a second cohort—
particularly one with a larger sample size and longitudinal follow-up—would strengthen
the validity of our findings.

4. Methods and Materials
4.1. TWB Participants

The TWB population-based cohort study recruited participants from centers across
Taiwan between 2008 and 2020. A total of 107,494 participants who were genotyped using
the Axiom Genome-Wide CHB 1 or 2 Array and had no history of cancer were enrolled.
Of these participants, 32,053 were excluded from the analysis because 12,289 participants
did not have imputation data; 10,956 participants exhibited second-degree relatedness, as
indicated by an identity with descent PI_HAT of >0.187, which was determined from a
QC analysis conducted in a GWAS; 2862 participants fasted for less than 6 h; and 5946
participants had a history of hyperlipidemia. Moreover, participants with a history of DM,
hypertension, hyperlipidemia, or gout—as determined from an examination of glucose
metabolism parameters, blood pressure status, lipid profiles, and serum uric acid levels,
respectively—were excluded. Figure 1 illustrates the flowchart of participant enrollment.
The definitions of DM, hypertension, hyperlipidemia, and current smoking status are
provided in Supplementary Method S1. Ethical approval was received from the Research
Ethics Committee of Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
(approval number: 08-XD-005), and Ethics and Governance Council of the Taiwan Biobank
(approval number: TWBR10908-01). Each participant provided written informed consent.

4.2. Genomic DNA Extraction and Genotyping

After blood samples were collected, DNA was extracted using a PerkinElmer Chemagic
360 instrument, in accordance with the manufacturer’s instructions (PerkinElmer, Waltham,
MA, USA). Custom TWB chips were used to execute single-nucleotide variation genotyping
on an Axiom Genome-Wide Array Plate system (Affymetrix, Santa Clara, CA, USA).

4.3. Clinical Phenotypes and Laboratory Examinations

The following clinical phenotypes were used in this study: BMI; waist circumference;
waist–hip ratio; and systolic, mean, and diastolic blood pressure. Additionally, the follow-
ing biochemical and hematological parameters were used: glucose metabolism parameters
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such as hemoglobin A1c (HbA1c) and fasting plasma glucose levels; liver and renal func-
tion parameters such as serum creatinine, blood urea nitrogen, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), γ-glutamyl transferase (γ-GT), albumin, total biliru-
bin, and uric acid levels; lipid profiles such as total cholesterol, high-density lipoprotein
cholesterol (HDL-C), and LDL-C and triglyceride levels; and platelet counts, white and
red blood cell counts, and hemoglobin and hematocrit levels. The BMI and estimated
glomerular filtration rate (eGFR) were calculated as reported previously [50]. Because of
the absence of data related to urine creatinine levels, only spot urine albumin levels were
used to evaluate albuminuria.

4.4. Regional Plot Analysis and GWAS

A regional plot association analysis was conducted with LocusZoom.js [51] to deter-
mine the lead SNVs providing genome-wide significant evidence of association within the
PCSK9 region for LDL-C levels. First, we performed a QC analysis in the GWAS to assess
the participants who were enrolled after the application of the exclusion criteria (Figure 1).
In the analysis, we used Axiom Genome-Wide CHB 1 and 2 Array plates (Affymetrix, Santa
Clara, CA, USA) with 24,927 and 69,529 participants and comprising 611,656 and 640,160
SNVs, respectively, for genome-wide genotype imputation. The reference panel for this
imputation process was the East Asian population from the 1000 Genome Project Phase
3 study, and the imputation tools were SHAPEIT and IMPUTE2. After the imputation
process, the QC analysis was performed by filtering SNVs with an IMPUTE2 imputation
quality score of >0.3. Indels were removed using VCF tools. All samples included in the
analysis had a call rate of ≥97%. In the SNV QC analysis, SNVs with a call rate of <97%,
a minor allele frequency of <0.01, and a violation of the Hardy–Weinberg equilibrium
(p < 10−6) were excluded from subsequent analyses. Thus, after the QC analysis, we in-
cluded 75,441 participants as well as 330 SNVs located at positions between 55.40 and 55.65
Mb on chromosome 1p32.3 for the regional plot association analysis. Subsequently, we
extended the analysis to execute a whole-genome genotyping and imputation. After the
execution of the QC analysis and application of other exclusion criteria, the same 75,441
participants and 3,639,888 SNVs were included for the GWAS of LDL-C levels. A p-value
of <5 × 10−8 was considered to be a genome-wide significant association.

4.5. Statistical Analysis

Continuous variables are presented herein as means± standard deviations or medians
and interquartile ranges. The Mann–Whitney U test was used to compare differences in
the distribution of linear parameters between the sexes. Lipid profiles and urine albumin
levels were transformed logarithmically when examined using an analysis of variance and
regression. Categorical data are presented herein as percentages, and their distributions
were compared using the chi-squared test. Under the assumption of an additive genetic
effect, we used a general linear regression model to analyze the correlation between the
studied phenotypes, genotypes, and confounders after adjustment for age, sex, BMI, and
current smoking status. We also applied a multiple logistic regression analysis to evaluate
the independent effects of the investigated genotypes on lifestyle risks and atherosclerotic
risk factors. Moreover, a linear stepwise regression analysis was conducted to determine
the independent correlates of LDL-C levels. Genome-wide scans were performed using the
PLINK software package. A p-value of <5× 10−8 was considered to indicate a genome-wide
significant association. In our genotype–phenotype analysis, we applied the Bonferroni
correction. Statistical significance was defined as p < 0.0015, which was calculated as
0.05/33 according to 33 traits analyzed. LD was calculated using LDmatrix software
(https://analysistools.nci.nih.gov/LDlink/?tab=ldmatrix (accessed on on 25 May 2022)).
All statistical analyses were performed using SPSS (version 22; SPSS, Chicago, IL, USA).

https://analysistools.nci.nih.gov/LDlink/?tab=ldmatrix
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4.6. MR Analysis

2SLS regression with IVs was performed to examine whether the LDL-C-determining
SNVs and WGRSs were associated with the risk of DM through their associations with
LDL-C levels. During the first stage of the regression, LDL-C-determining SNVs and
WGRSs were regressed to generate predicted LDL-C levels. During the second stage of the
regression, the study parameters were regressed on LDL-C-determining SNVs and WGRSs
to generate the predicted risk of DM. To create WGRSs, SNVs were weighted according to
each allele score by using the β coefficients from our GWAS analysis, and the risk allele
exhibiting directionally concordant associations with the target parameters was selected.
The F statistic was used to assess the strength of the instruments, and was calculated using
the following equation: F = R2(n− 2)/(1− R2), where R2 is the proportion of the variability
in genetically determined LDL-C levels accounted for by the SNVs, and n is the sample
size [52]. An F statistic of >10 indicates a relatively low risk of weak instrumental bias in
MR analyses [52].

4.7. Scatterplots and Testing for Heterogeneity

The concordance of IV effects in the generalized linear models was tested using
scatterplots [53]. In general, a causal conclusion may seem reasonable if several independent
genetic variants in different gene regions are concordantly associated with the outcome. In
this study, heterogeneity was assessed either visually in the scatterplot or through Cochran’s
Q test on the causal estimate from each genetic variant with the outcome against the genetic
association of the exposure of interest, in addition to their confidence intervals [54,55].

4.8. Sensitivity Analysis

Details of the sensitivity analysis are provided in Supplementary Method S2, including
a multivariate analysis, funnel plots, IVW methods, simple and weighted median methods,
and MR–Egger regression, which were reported previously [50].

5. Conclusions

Common and rare PSCK9 variants are independently associated with LDL-C levels
in the Taiwanese population. The results of MR analyses executed using genetic instru-
ments based on WGRSs derived from PCSK9 variants or LDL-C GWAS-associated variants
demonstrate a causally inverse association between LDL-C levels and DM. These results
provide further evidence that PCSK9 variants and other LDL-C GWAS-associated variants
may play a crucial role in determining cardiometabolic outcomes.
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