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Abstract: The interleukin-1 (IL-1) family is involved in the correct functioning and regulation of
the innate immune system, linking innate and adaptative immune responses. This complex family
is composed by several cytokines, receptors, and co-receptors, all working in a balanced way to
maintain homeostasis. Dysregulation of these processes results in tissue inflammation and is involved
in the pathogenesis of common inflammatory dermatoses such as psoriasis, hidradenitis suppurativa,
and atopic dermatitis. Therefore, therapeutic targeting of IL-1 pathways has been studied, and several
monoclonal antibodies are currently being assessed in clinical trials. So far, promising results have
been obtained with anti-IL-36R spesolimab and imsidolimab in pustular psoriasis, and their efficacy
is being tested in other conditions.

Keywords: psoriasis; pustular psoriasis; hidradenitis suppurativa; atopic dermatitis; imsidolimab;
spesolimab; bermekimab; etokimab; IL-36; IL-36R; IL-1; IL-33; pathogenesis

1. Introduction

IL-1 family members are central players of the immune system. They are especially
involved in the regulation of innate immune responses, maintaining endogenous hemosta-
sis, and linking innate and adaptive responses. Several cytokines, receptors, and accessory
proteins constitute this complex family; their activation and expression are balanced by
different regulatory mechanisms, and their disturbance results in pathologic inflammatory
responses. Disruption of IL-1-related pathways is involved in several inflammatory der-
matoses such as psoriasis, hidradenitis suppurativa (HS), atopic dermatitis (AD), as well as
several neutrophilic dermatoses. In this comprehensive narrative review, we will discuss
the biological particularities of IL-1 family members, their involvement in cutaneous inflam-
matory diseases, and the current therapeutic strategies targeting this complex pathway.

2. IL-1 Family Cytokines, Receptors and Co-Receptors

The IL-1 family of cytokines is composed of 11 cytokine members, with seven agonists
(IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ) and four antagonists (IL-1 receptor
antagonist (Ra), IL-36Ra, IL-37, and IL-38) [1]. According to their structural and functional
characteristics, these cytokines are further classified into four subfamilies (IL-1, IL-18, IL-33,
and IL-36), each one having a cognate receptor (IL-1R1, IL-18Rα, IL-33R (suppression of
tumorigenicity 2 or ST2), and IL-36R, respectively). Furthermore, IL-1RAcP is an accessory
protein shared by all these cytokines, with the exception of IL-18 (IL-18RAcP or IL-18Rβ
chain) (Table 1) [2].
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Table 1. IL-1 family cytokine members.

Cytokines Receptors (Other
Names)

Co-Receptors (Other
Names) Function

IL-1
IL-1α IL-1R1

IL-1RAcP (IL1-R3) Pro-inflammatory
IL-1β IL-1R2
IL-1Ra IL-1R1 N/A Antagonist

IL-18 IL-18Rα (IL1-R5) IL-18Rβ (IL-18RAcP
or IL1R7) Pro-inflammatory

IL-33 ST2 (IL-33R or IL1-R4) IL-1RAcP Pro-inflammatory Th2
responses

IL-36

IL-36α
IL-36R (IL-1Rrp2 or
IL-R6)

IL-1RAcP (IL1-R3) Pro-inflammatoryIL-36β
IL-36γ

IL-36Ra IL-36R (IL-1Rrp2 or
IL-R6) N/A Antagonist

IL-37 IL-18Rα (IL1-R5) IL-1R8 (SIGIRR or
TIR8) Antagonist

IL-38 IL-36R (IL-1Rrp2 or
IL1-R6) IL-R9

IL1RAPL1 (TIGIRR-2)
IL1RAPL2 (TIGIRR-1)

Antagonist/anti-
inflammatory

SIGIRR: single immunoglobulin IL-1R-related molecule; TIR: toll-IL1R; IL1RAPL1 and IL1RAPL2: IL-1 receptor
accessory protein like 1 and 2; TIGIRR 1 and 2: three immunoglobulin domain-containing IL-1 receptor-related 1
and 2.

To produce their pro-inflammatory functions, IL-1 cytokines form complexes with
their respective receptor and a co-receptor (Figure 1). All of them except IL-1Ra are syn-
thesized as precursors and require N-terminal processing in order to acquire their full
function [3,4]. They can be activated both extracellularly by proteolytic cleavage and in-
tracellularly via inflammasome-mediated cleavage [5]. Binding of cleaved IL-1α/β to the
extracellular domain of IL-1R1 leads to recruitment of IL-1RAcP, resulting in the initiation
of a signaling cascade with the recruitment of the myeloid differentiation primary response
88 (MyD88) accessory protein and Interleukin 1 receptor-associated kinases (IRAKs). This
in turn results in activation of the nuclear factor κB (NF-κB) and mitogen-activated protein
kinases (MAPKs), ultimately resulting in pro-inflammatory gene expression [6]. Further-
more, IL-1 signaling also induces activation of defense mechanisms (antigen recognition,
phagocytosis, degranulation, and nitric oxide production) and activates lymphocyte func-
tions implicated in adaptive immunity, thus acting as a link between innate and adaptive
immune responses [7]. The other IL-1 family cytokines IL-33, IL-18, and IL-36α/β/γ form
similar ternary complexes with their respective receptors and co-receptors and also act
through Myd88 to induce pro-inflammatory gene expression.

Regulatory mechanisms are necessary to maintain homeostasis; they include decoy
receptors, receptor antagonists, and anti-inflammatory cytokines (Figure 1). IL-1R2 is
a cytoplasmic soluble receptor without a functional TIR domain that binds to IL-1α/β
precursors, preventing their processing and secretion. Under proinflammatory conditions,
IL-1R2 is cleaved by an inflammasome-dependent mechanism [8,9]. Likewise, the solu-
ble ST2 receptor (sST2) and the soluble protein IL-18 binding protein (IL-18BP) bind to
IL-33 and IL-18, respectively, neutralizing their activities [10,11]. Furthermore, receptor
antagonists IL-1Ra, IL-36Ra, and IL-38 compete with IL-1α/β and IL-36α/β/γ [4]. Lastly,
IL-37 binding to IL-18Rα leads to recruitment of the IL-1R8 co-receptor (also called single
immunoglobulin IL-1R-related molecule (SIGIRR), with activation of the inhibitory STAT3
signaling pathway [12].
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Figure 1. Signaling pathways and regulatory mechanisms involved in the IL-1 family. (A). Upon
binding of IL-1α and IL-β to their receptor IL-1R1 altogether with co-receptor IL-1RAcP, induction
of signal transduction with recruitment of myeloid differentiation primary response 88 (MyD88)
accessory protein and IL-1R associated kinase (IRAK) proteins, ultimately ending in the activation
of the transcription factor nuclear factor κB (NF- κB) and the transcription of proinflammatory
genes. Regulatory mechanisms include IL-1R2 and IL-1Ra: IL-1R2 can exist as a soluble receptor or
membrane bound, acting as a decoy receptor as it is unable to recruit the co-receptor to induce signal
transduction. Finally, IL-1Ra acts as a competitive inhibitor by binding to IL-1R1. (B). Likewise, IL-33
binds to the receptor ST2, inducing the recruitment of co-receptor IL-1RAcP and resulting in signal
transduction into the nucleus with transcription of proinflammatory genes. In this family, the soluble
form of ST2 also acts as a decoy receptor. IL-18 binds to IL-18Rα and recruits the co-receptor IL-18Rβ
resulting in pro-inflammatory signaling. IL-18 binds to the soluble protein IL-18BP preventing
binding to the receptor. IL-37 is an anti-inflammatory cytokine and upon binding to IL-18Rα induces
recruitment of the Single Ig and TIR Domain Containing (SIGIRR or IL-1R8), ultimately producing
inhibitory signaling. (C). IL-36 cytokines also induce pro-inflammatory gene transcription by binding
to the receptor IL-36R and recruiting co-receptor IL-1RAcP. IL-36Ra is the competitive antagonist
of IL-36 cytokines. The anti-inflammatory cytokine IL-38 forms a complex with IL-36R and three
immunoglobulin domain-containing IL-1 receptor-related 2 (TIGIRR-2 or IL1RAPL1), also inducing
inhibitory signaling to regulate the pro-inflammatory gene activation.
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2.1. IL-1 Subfamily

IL-1α and IL-β are both pro-inflammatory cytokines with some distinctive charac-
teristics. IL-1α is constitutively expressed in hematopoietic immune cells and other cell
types such as intestinal epithelial cells and cutaneous keratinocytes (KCs) [13]. Although
non-processed full-length IL-1α has some functional activity, cleavage by calpain and extra-
cellular proteases such as neutrophil elastase, granzyme B, and mast cell chymase enhances
its pro-inflammatory activity [14,15]. Its major role is played locally, since IL-1α is mostly
found bound to membranes. It is also expressed intracellularly in the cytosol—acting as an
alarmin upon release from necrotic cell death—and in the nucleus—activating transcription
of pro-inflammatory genes or tissue homeostasis and repair genes [16]. In addition, IL-1α
expression can be induced by proinflammatory stimuli, leading to IL-1R1 binding and pro-
inflammatory gene expression targeting type 1 or type 17 immune responses. In turn, this
produces recruitment and activation of T cells, dendritic cells (DCs), neutrophils, and mono-
cytes/macrophages that will release further pro-inflammatory cytokines and chemokines,
leading to an autoinflammatory amplification loop [17]. On the contrary, IL-1β is the
primary circulating form, and its expression is inducible only in monocytes, macrophages,
and DCs [17]. Full-length IL-1β precursor protein (pro-IL-1β) is stored in the cytoplasm
and is cleaved by caspase-1 to its active form in response to activation of pattern recognition
receptors (PPR) by pathogen-associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) in an inflammasome-dependent process [18]. In addition, pro-
IL-1β can also be activated in the extracellular space by neutrophils and mast cells-derived
proteases or by microbial proteases [19]. The antagonist IL-1Ra exerts its anti-inflammatory
properties by binding to the IL-1R1 receptor and competing with IL-1α and IL-β [20].

2.2. IL-18 Subfamily

IL-18 is also a pro-inflammatory cytokine and is constitutively expressed in its inactive
form in several cell types, mainly KCs, epithelial, and endothelial cells [21]. Its activation
can be produced intracellularly by caspase-1-mediated cleavage or extracellularly by neu-
trophil or cytotoxic cell-derived proteases [21,22]. IL-18 pro-inflammatory activity is mainly
mediated through IFNγ, but it can induce both Th1 and Th2 cellular responses [23]. In
combination with IL-12 and IL-15, IL-18 stimulates Th1 cells and induces NK cell effector
function and IFNγ expression [24,25]; in the absence of these cytokines, IL-18 induces a
Th2 response with mast cell and basophil activation, ultimately ending in IL-4 and IL-13
production [26]. Moreover, when combined with IL-23, IL-18 activates Th17 cells and in-
duces IL-17 production [27]. IL-18-BP regulates IL-18 pro-inflammatory activity by binding
and sequestering the cytokine. IL-18-BP expression is induced by IFNγ, thus creating a
negative feedback mechanism and decreasing inflammation [11].

2.3. IL-33 Subfamily

IL-33 is also constitutively expressed in many organs, mainly by fibroblasts, endothelial
cells, and epithelial cells; its expression can also be induced in mast cells and DCs in the
context of inflammation. Similar to IL-1α, IL-33 requires cleavage to increase its activity
and has a dual role: intracellular gene expression regulating homeostasis and extracellular
recruitment and activation of immune cells upon cell necrosis and inflammation (alarmin
function) [28,29]. Th2 cells, mast cells, and eosinophils express the IL-33 receptor, ST2,
or IL1-1RL1 [28]. IL-33 is a promoter of Th2 immunity and allergic responses, inducing
production of IL-4, IL-5, and IL-13, polarization of macrophages and degranulation of mast
cells, basophils, and eosinophils with cytokine and chemokine release [30]. Finally, IL-33
also acts on T-reg cells, DCs, and NK cells [31].

2.4. IL-36 Subfamily

The IL-36 subfamily is a key regulator of the innate immune system and includes three
agonists with pro-inflammatory activity (IL-36α, IL-36β, and IL-36γ) and two antagonists
(IL-36RN or IL-36Ra and IL-38) [32]. They are normally expressed in epithelial and immune



Int. J. Mol. Sci. 2022, 23, 9479 5 of 17

cells; after binding to receptor complex IL-36R, agonists induce activation of nuclear factor-
kB (NF-kB) and mitogen-activated protein kinases, leading to T-cell proliferation, expression
of pro-inflammatory cytokines, chemokines, and co-stimulatory molecules by DCs and
Th1 lymphocytes, as well as autocrine KCs signaling. The resulting pro-inflammatory
milieu is composed of IL-1β, IL-12, IL-23, IL-6, TNF-α, CCL1, CXCL1, CXCL2, CXCL8, and
GM-CSF, among others [32]. IL-36α and IL-36γ are mainly produced by KCs but also by
dermal fibroblasts, endothelial cells, macrophages, LCs, and DCs. As opposed to other
IL-1 family cytokines, IL-36 cytokines are also produced as precursors but do not contain
a caspase cleavage site. Following secretion, they are activated by neutrophil-derived
proteases present at neutrophil extracellular traps (NETs)—such as elastase, cathepsin G,
and proteinase 3—and by cathepsin S, produced by KCs and fibroblasts [33–35]. In addition,
KCs secrete the protease inhibitors alpha-1-antitrypsin and alpha-1-antichymotrypsin
(encoded by SERPINA1 and SERPINA3 genes), which inhibit processing of IL-36 cytokines
by neutrophil proteases and thus regulate the inflammatory loop [36].

2.5. IL-37 and IL-38: Antagonist Cytokines

IL-37 acts as an anti-inflammatory cytokine and is constitutively expressed mainly
in KCs, but can be induced in monocytes/macrophages, T cells, and B cells. It has a dual
action, depending on extracellular or intracellular signaling. Extracellularly, IL-37 binds
IL-18Rα and recruits IL-1R8 to form the IL-37/IL-1R8/IL-18Rα complex, restricting IL-18R-
dependent inflammation and inhibiting innate immunity [12]. In the cytosol, IL-37 cleaved
by caspase-1 translocates to the nucleus to bind Smad transcription factors, ultimately
decreasing pro-inflammatory cytokine production. The precursor exhibits activity, but
cleaved IL-37 binds more effectively to its receptor [37].

IL-38 also acts as an anti-inflammatory cytokine and is expressed in skin and various
immune cells, such as B cells. It specifically binds to IL-36R and inhibits human mononu-
clear cells stimulated with IL-36 in vitro [38]. IL-38 expression is inhibited by IL-17, IL-22,
and IL-36γ [4]. Furthermore, IL-38 is able to suppress the production of IL-17A by γδ

T-cells through IL-1RAcP antagonism [39].

3. Involvement of IL-1 Family Cytokines in Inflammatory Dermatoses
3.1. Psoriasis

Psoriasis is a chronic inflammatory multisystem disorder with an immunogenetic
basis and a pathogenesis characterized by unbalanced interactions between the innate and
the adaptive immune systems. The clinical presentation of psoriasis is morphologically
and topographically heterogeneous; the main variants are plaque psoriasis—also known as
psoriasis vulgaris—and pustular psoriasis (PP). Although there is frequent clinical overlap,
their clinical, genetic, and pathogenetic distinguishing features suggest that they are in fact
distinct entities [36,40,41]. In the pathogenesis of plaque psoriasis, there is a predominant
involvement of the adaptive immune system, with a critical role of the IL-17/23 axis. Th1
and Th17 lymphocytes release TNF, IL-17, and IL-22, promoting proliferation of KCs and
secretion of proinflammatory chemokines that lead to a self-amplification loop [42]. In
contrast, autoinflammation and innate immune system activation are the main drivers of
PP, with neutrophil infiltration of the epidermis and IL-36 and IL-1 cytokines acting as key
pathogenic orchestrators of the disease [43].

The effects of several members of the IL-1 cytokine family have been studied in both
animal and human models of psoriasis. Murine models have shown that IL-1α is able
to initiate spontaneous cutaneous inflammation with histological similarities to psoriasis
lesions and to stimulate KCs to induce potent proinflammatory responses [44,45]. IL-
1β also stimulates epidermal KCs to secrete inflammatory chemokines and has proven
to be critical in inducing Th17 and γδT17 cell differentiation and effector functions [45].
Moreover, IL-1 cytokines can stimulate mast cells to produce IL-6, tumor necrosis factor
(TNF), and IL-33 without degranulation [38]. Overexpression of IL-18 has been detected
in both skin lesions and peripheral blood of psoriasis patients, with IL-18 serum levels
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directly correlating with psoriasis severity [46]. In a mouse model, IL-18 also induced
prominent inflammation, with increased expression of IFNγ and enhancement of psoriasis-
like epidermal hyperplasia [47]. IL-33 also appears to be involved in the pathogenesis of
psoriasis, participating in the crosstalk between innate and adaptive responses. In KCs,
IL-33 works in an autocrine loop; it is produced by KCs following psoriatic inflammatory
stimuli and induces KCs transcription of pro-inflammatory genes (CCL2, CXCL1, CXCL2,
CXCL15, and vascular endothelial growth factor) [48]. Increased IL-33 serum levels have
been found in patients with psoriasis, and they were significantly reduced after treatment
with TNF inhibitors [30,49].

The discovery of deficiency of IL-36 receptor antagonist (DITRA), a recessive autoin-
flammatory syndrome due to loss-of-function mutations in the gene IL36RN (encoding
IL-36Ra), highlighted the role of IL-36 cytokines in PP. In DITRA, unopposed signaling of
IL-36 cytokines results in a severe PP phenotype with repeated flares of multiple pustules
and fever, leukocytosis, and elevated serum levels of C-reactive protein [50]. Moreover, in
murine and human models, KCs surrounding neutrophilic pustules have shown elevated
expression of IL-36 [36]. However, IL-36 cytokines are also involved in plaque psoriasis,
with increased expression of IL-36α, IL-36β, and IL-36γ in skin and serum of psoriasis
patients, and a positive correlation between disease severity and cytokine levels [18,51].

Regarding inhibitory cytokines, several studies have found decreased expression of
IL-38 in both skin and blood of psoriasis patients, whereas its expression was increased in
normal skin and upregulated in lesional psoriasis following treatment with anti-IL-17A
biologic agents [52–54]. Lastly, IL-37 is able to inhibit IL-1β, IL-6, TNF, and chemokines
such as CCL2, all involved in psoriasis [55]. Therefore, IL-38 and IL-37 are probably also
involved in the pathogenic pathways of psoriasis.

3.2. Atopic Dermatitis

AD is a heterogeneous, chronic inflammatory dermatosis with a relapsing and remit-
ting course. Its complex pathogenesis involves skin barrier dysfunction, transepidermal
water loss, immune system abnormalities with increased predisposition to infection, mi-
crobial dysbiosis, and neurosensory abnormalities [56,57]. Activation of type 2 immune
response is of paramount importance, with variable participation of Th1 and Th17/IL-23
pathways in some phenotypes [58,59]. Most cases of AD can be classified as extrinsic AD,
with elevated IgE levels, filaggrin mutations, and a deficient skin barrier. On the contrary,
intrinsic AD is associated with increased activation of Th1 and Th17 cells [60,61]. Increased
Th2 cell responses with overexpression of IL-4, IL-5, IL-13, and IL-31 are consistently found
in both intrinsic and extrinsic AD patients [62].

Regarding IL-1 family cytokines, increased expression of IL-36α and IL-36γ in both
serum and skin has been found in patients with AD in comparison with healthy controls [63].
In mouse models of AD-like skin inflammation induced by epicutaneous exposure to
Staphylococcus aureus, treatment with anti-IL-36R-blocking antibodies suppressed release
of IL-36α by KCs, IL-4 triggered B cell IgE class-switching, plasma cell differentiation,
and increased serum IgE levels [63]. DITRA patients (increased IL-36 signaling) also have
elevated serum IgE levels [64]. IL-33 levels have been found to be elevated in the serum
of AD patients, and transgenic mice with enhanced expression of the IL-33 gene show an
AD-like phenotype [65]. Moreover, IL-33 is able to induce Th2 cell differentiation and to
promote the expression of IL-31 by Th2 cells [66].

Furthermore, progression from acute to chronic AD is associated with enhanced
dysregulation of Th1, Th2, and Th17 responses, along with increased IL-36 expression,
suggesting that IL-36 might play a role in lesion progression [67]. Finally, upregulation
of IL-36α was found in both intrinsic AD and psoriasis patients, as opposed to healthy
controls [68]. These data point towards a predominant role of IL-36 in AD subtypes with
enhanced Th1 and Th17 inflammation [43]. Finally, treatment of KCs with IL-36 led to
decreased expression of filaggrin, suggesting a possible involvement of IL-36 cytokines in
barrier deficiencies in AD [69].
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3.3. Hidradenitis Suppurativa

HS is another heterogeneous, chronic, and relapsing skin disease characterized by
the inflammation of hair follicles in apocrine gland-bearing areas [70]. Its pathogenesis is
complex, implying immune dysregulation, environmental factors, and genetic predisposi-
tion. A simplistic description of the immunological factors involved in HS include release
of DAMPs and PAMPs, activation of Th1 (IL-12 and TNFα) and Th17 (IL-23 and IL-17)
pathways, activation of macrophages through TLR with induction of TNFα, and activation
of the inflammasome with subsequent IL-1β production [70–72].

Hyperactivation of the IL-1 pathways is of paramount importance in the pathogenesis
of HS. IL-1β produced by KCs and macrophages/monocytes induces a strong production
of chemokines, contributing to neutrophile infiltration and purulent discharge. In addition,
IL-1β enhances the secretion of matrix-degrading enzymes, ultimately resulting in tissue
destruction [73]. Furthermore, a study found that IL-1β mRNA and protein levels were
strongly elevated in lesional HS skin compared with healthy skin, as opposed to IL-1RA
levels; this results in an increased IL-1 β/IL-Ra ratio. Overexpression of these cytokines
is more pronounced in HS than in lesional psoriatic skin [73]. Expression of granulocyte
colony-stimulating factor (G-CSF), a key regulator of neutrophil survival and function, is
increased in both skin lesions and blood of HS patients, and blood levels were positively
correlated with severity of HS [74]. In cellular models, G-CSF expression in fibroblasts and
KCs is induced by IL-1β, IL-17, and IL-36 [74].

Significant upregulation of IL-36 family cytokines has also been found in lesional HS
skin (IL-36α, IL-36β, IL-36γ, and IL-36Ra) and in perilesional HS skin (IL-36β and IL-36Ra)
compared to skin of healthy controls [75,76]. However, when comparing the expression of
IL-36 cytokines in HS lesional skin vs. psoriasis lesional skin, higher levels are found in the
latter [77]. Finally, increased serum levels of IL-36α, IL-36β, and IL-36γ were detected in
HS patients, and they were also higher in smoking patients [78]. In fact, increased levels of
IL-36 cytokines were found to be associated with increased risk of HS, even after controlling
for HS comorbidities (smoking, obesity, and metabolic syndrome) [78].

3.4. Other Dermatoses

Allergic contact dermatitis (ACD) is an inflammatory dermatosis caused by skin
contact with allergens. Increased levels of IL-36 cytokines have been found in lesional skin
of ACD patients, compared to healthy skin from the same patients and normal controls.
A strong upregulation of IL-36 cytokine expression was observed after ex vivo allergen
challenge of uninvolved skin from ACD patients (in skin cultures). Injection of recombinant
IL-36Ra suppressed the expression of these cytokines [79].

Neutrophilic dermatoses are characterized by sterile cutaneous inflammation with
neutrophilic infiltrates. Examples include Sweet syndrome (SS), pyoderma gangrenosum
(PG), and acute generalized exanthematous pustulosis (AGEP). SS is characterized by sud-
den development of erythematous, edematous, and painful cutaneous lesions accompanied
by fever and leukocytosis. PG presents with painful skin ulcers with undermined borders
and peripheral erythema and can be idiopathic or appear in the context of intestinal bowel
disease. AGEP is a severe cutaneous adverse drug reaction with clinical and histological
features shared with PP [40]. Although the pathogenesis of neutrophilic dermatoses is
not completely understood, dysregulation of the innate immune system appears to be one
of the main mechanisms involved [80]. Increased levels of IL-1b gene expression have
been found in SS and PG [81,82]. Furthermore, expression of IL-36γ has been found to
be increased in the epidermis during AGEP; culprit drugs can stimulate KCs to secrete
IL-36γ, with subsequent IL-8 production by macrophages and T cells and chemotaxis of
neutrophils in skin lesions of AGEP [83].
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4. Therapeutic Targeting of IL-1 Family Cytokines
4.1. IL-1

Several IL-1 blocking agents have been developed to treat different diseases; the
corresponding indications have been approved in some cases, and there are several ongoing
clinical trials, with variable results.

Anakinra is a recombinant IL-1 receptor antagonist that competitively inhibits the
interaction of both IL-1α and IL-1β with their receptor. It is currently approved for the
treatment of rheumatoid arthritis and cryopyrin-associated periodic syndromes. Anakinra
has shown efficacy in deficiency of interleukin-1 receptor antagonist (DIRA) and variable
responses have been obtained in PP patients [84,85]. The results of the APRICOT trial—a
double-blind, multicenter, 8-week placebo-controlled trial to determine the efficacy of
anakinra for the treatment of adults with palmoplantar pustulosis (PPP)—have shown
futility of anakinra in 64 patients [86]. However, poor adherence due to the daily injection
schedule, short duration of the intervention, and a different pathogenesis in PPP could be
confounding factors influencing the poor response to anakinra in this trial [86]. Anakinra
has been used in HS with controversial results. Case reports and small series have shown
variable degrees of efficacy, with an open-label study of five patients finding reductions in
disease activity [87]. A double-blind, randomized, placebo-controlled trial had promising
results (78% of treated patients achieved at least a 50% reduction in the inflammatory
lesions vs. 30% in the placebo group) [88]. However, long-term results from a more recent
small study showed eventual relapse and class switching from anakinra to other therapeutic
strategies [89]. Anakinra was assessed in a phase II clinical trial in inflammatory pustular
skin diseases including Sneddon–Wilkinson disease, acrodermatitis continua of Hallopeau,
PP, and PPP. Fifty percent of participants achieved 50% disease improvement by the end of
week 12 [90].

Bermekimab, an inhibitor of IL1α, has yielded good results in phase II open-label
studies in HS patients—even after failure to anti-TNF therapy—with significant reductions
in inflammatory lesions and no significant drug-related adverse events [91–93]. Currently,
there is one ongoing trial with bermekimab (NCT04988308) in HS [94]. Furthermore,
it was used in 11 patients with acne vulgaris, with rapid improvements and no severe
adverse events [95]. In an open-label trial, bermekimab also showed encouraging results in
psoriasis [96]. Two phase 2 studies of bermekimab for the treatment of adult patients with
moderate-to-severe AD were terminated due to lack of efficacy [97,98].

Canakinumab is a human monoclonal antibody targeting IL-1β and has shown con-
tradictory efficacy results in case reports in HS [99,100]. In psoriasis, canakinumab has
been reported to be efficacious in a patient with a severe form of PP [101], but not in two
patients with severe PPP [102]. In an open-label prospective study of steroid-refractory PG,
canakinumab provided complete remission in 3/5 patients [82].

Gevokizumab is a novel IL-β inhibitor that has shown efficacy in PP patients without
prior history of plaque psoriasis [91].

4.2. IL-18

Tadekinig alfa is a human recombinant IL-18-binding protein that is being investigated
in a phase II open-label clinical trial on 23 patients with adult onset Still disease, a systemic
inflammatory auto-inflammatory disorder characterized by fever, arthralgia, cutaneous
eruption, and leukocytosis. A favorable safety profile with a clinical and biochemical
response rate of 50% has been reported [103].

4.3. IL-33

Etokimab (ANB020) is an anti-IL-33 humanized monoclonal antibody being currently
assessed in AD patients, with an ongoing phase IIb trial. A Phase IIa proof-of-concept clini-
cal trial showed improvement in clinical score and reduced skin neutrophil infiltration as
well as peripheral eosinophil counts after a single systemic administration of etokimab [104].
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Results from a phase II study in adults with chronic rhinosinusitis with nasal polyps have
already been posted [105].

REGN3500 is another monoclonal antibody targeting IL-33 that was under investiga-
tion in patients with AD, but development was terminated due to lack of efficacy [106,107].

PF-06817024 is an anti-IL-33 monoclonal antibody; a phase I placebo-controlled trial
in healthy subjects, patients with chronic nasal sinusitis, and patients with AD has been
recently completed, with no evidence of serious adverse events [108].

A monoclonal antibody targeting IL-33R (CNTO7160) is being investigated in AD.
In a phase I clinical trial in patients with asthma, AD, and healthy individuals, effective
inhibition of the IL-33R signaling pathway was observed, although this did not translate
into significant clinical improvement [109].

4.4. IL-36

Monoclonal antibodies targeting IL-36R are currently being assessed in several dis-
eases, with promising results in PP (Table 2).

Table 2. Ongoing clinical trials of anti-IL36R inhibitors.

Drug (Mechanism of Action) Disease Clinical Trial Number

Spesolimab (Effiyasil™) (BI655130)
Humanized
monoclonal antibody targeting IL-36R

GPP NCT02978690
PPP NCT03100903
PPP NCT03135548
Ulcerative colitis NCT03482635
GPP NCT03782792
PPP NCT04015518
Crohn’s disease NCT04362254
GPP NCT04399837
PPP NCT04493424
HS NCT04762277
HS NCT04876391
Crohn’s disease NCT05013385
GPP NCT05200247
GPP NCT05239039

Imsidolimab (ANB019)
Humanized
monoclonal antibody targeting IL-36R

PPP NCT03633396
Acne vulgaris NCT04856917
HS NCT04856930
GPP NCT05352893
GPP NCT05366855

GPP: generalized pustular psoriasis; PPP: palmoplantar pustulosis; HS: hidradenitis suppurativa.

Spesolimab (BI655130, Boehringer Ingelheim, 900 Ridgebury Road P.O. Box 368, Ridge-
field, CT, USA), demonstrated efficacy in a phase I study of seven patients with moderate
generalized PP (GPP), with all patients treated showing rapid skin improvement within
4 weeks after administration of a single dose [110]. In Effiyasil 1—a phase 2 trial—53 patients
with GPP were randomized to receive either spesolimab (n = 35) or placebo (n = 18). At the
end of week 1, 54% in the spesolimab group had a pustulation subscore of 0, as compared
with 6% in the placebo group (p < 0.001). Infections occurred in 17% of the patients receiving
spesolimab through the first week and in 47% at week 12 [111]. A phase IIa, multicenter,
double-blind, randomized, placebo-controlled pilot study assessed the efficacy of different
intravenous doses of spesolimab in 12 patients with PPP. At week 12, the primary endpoint
was not met, although there was a faster decline in severity in the spesolimab groups [112].
Additional phase II and III studies of spesolimab are currently being performed in patients
with PPP, GPP, HS, ulcerative colitis, and Crohn’s disease [113–121].

Results from a phase II study to evaluate the efficacy and safety of Imsidolimab
(ANB019, AnaptysBio, 10770 Wateridge Circle Suite 210, San Diego, CA, USA) in PPP
patients (POPLAR) have been recently posted; no severe adverse events were identified,
but the primary outcome (change from baseline in PPP psoriasis area severity index) was
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not met [122,123]. Nevertheless, results from a phase II in six patients with GPP treated
with imsidolimab seem more interesting [124]. Currently, there are ongoing phase II and III
studies in HS and GPP [125–127].

Blockade of the IL-36 pathway using other mechanisms has been assessed in preclinical
studies of several drugs such as short peptide IL-1R inhibitors [128] and small molecule
blockers of IL-36y [129].

Potentiation of IL-38 by administering recombinant full-length IL-38 has shown anti-
inflammatory action in murine models [39].

Finally, blockade of IL-1RAcP (also called IL-1R3) with a humanized monoclonal
antibody (MAB-hR3) has been investigated, demonstrating reduction of proinflammatory
cytokines both in vitro and in vivo [20]. Treatment with a chimeric mouse monoclonal
antibody (MAB-mR3) in murine models of inflammatory diseases driven by IL-1β, IL-33,
and IL-36 showed significant disease improvement [20].

5. Conclusions

The IL-1 family is a complex group of cytokines, receptors, and co-receptors with
pro-inflammatory and anti-inflammatory properties, especially involved in maintaining
endogenous homeostasis, activating the innate immune system, and providing links to
switching on the adaptive response. Disruption of this equilibrium is involved in the patho-
genesis of several inflammatory skin diseases, some of which have been reviewed herein.

Increasing knowledge of the IL-1 family cytokines and their regulatory mechanisms
has allowed to develop different therapeutic strategies. Current and future trials will
determine if these targets are useful in several inflammatory dermatoses, but preliminary
results in psoriasis, AD, and HS are interesting. Targeting of IL-1 cytokines has been long
studied, with mixed results of isolated experiences in GPP and HS, but the results of the
APRICOT trial with anakinra in PPP have been disappointing. A subanalysis on patients
with plaque psoriasis could provide more answers on the usefulness of IL-1 blockade in
psoriasis [130]. The focus is now on anti-IL36R inhibitors, with an assortment of trials in
PPP, GPP, HS, ulcerative colitis, and Crohn disease ongoing. IL-36R blockade has provided
good results in phase I and II studies in GPP, but the primary endpoints have not been met
in phase II studies on PPP [112,122]. The potential efficacy of IL-18 blockade in adult-onset
Still disease and of IL-33 blockade in AD are being assessed in clinical trials. Finally, novel
therapeutic approaches are underway, and future studies will provide more information
on therapeutic targeting of IL-38 and IL-1RAcP.
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Abbreviations

ACD allergic contact dermatitis
AD atopic dermatitis
AGEP acute generalized exanthematous pustulosis
DAMPs damage-associated molecular patterns
DCs dendritic cells
DIRA deficiency of interleukin-1 receptor antagonist
DITRA deficiency of IL-36 receptor antagonist
G-CSF granulocyte colony-stimulating factor
GPP generalized pustular psoriasis
HS hidradenitis supurativa
IL-1RAcP interleukin 1 receptor accessory protein
IL-36Ra Interleukin 1 receptor antagonist
IL interleukin
IL1RAPL1 and IL1RAPL2 IL-1 receptor accessory protein like 1 and 2
IRAK Interleukin 1 receptor associated kinases
KCs keratinocytes
MAPKs mitogen-activated protein kinases
Myd88 myeloid differentiation primary response 88
NF-kB nuclear factor κB
PAMPs pathogen-associated molecular patterns
PG pyoderma gangrenosum
PP pustulas psoriasis
PPP palmoplantar pustulosis
PPR pattern recognition receptors
SIGIRR single immunoglobulin IL-1R-related molecule
SS Sweet syndrome
ST2 suppression of tumorigenicity 2
TIGIRR 1 and 2 three immunoglobulin domain-containing IL-1 receptor-related 1 and 2
TIR toll-IL1R
TNF tumor necrosis factor
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