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Abstract: MIL-101(Cr) is one of the most well-studied chromium-based metal–organic frameworks,
which consists of metal chromium ion and terephthalic acid ligand. It has an ultra-high specific
surface area, large pore size, good thermal/chemical/water stability, and contains unsaturated Lewis
acid sites in its structure. Due to the physicochemical properties and structural characteristics, MIL-
101(Cr) has a wide range of applications in aqueous phase adsorption, gas storage and separation, and
catalysis. In this review, the latest synthesis of MIL-101(Cr) and its research progress in adsorption
and catalysis are reviewed.
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1. Introduction

Metal–organic frameworks (MOFs) materials, also known as porous coordination
polymers (PCPs), are an emerging and very affluent class of microporous materials [1–3].
In the past 30 years, scientific research reports on the topology and potential applications
of MOF materials have increased almost geometrically (as shown in Figure 1). It is a group
of crystal materials with a three-dimensional pore structure composed of metal atoms and
organic ligands. The spatial pairing of metal atom centers and a wide variety of organic
ligands give the material a controllable pore size and add many unique physicochemical
properties [4,5]. An essential feature of metal–organic framework materials is their ultra-
high porosity (where the free volume can be as high as 90%) and impressive Langmuir
specific surface area (Langmuir specific surface area can even exceed 10,000 m2 g−1) [6–8].
This characteristic makes MOF materials play a crucial role in functional applications such
as in the storage and separation of gases [9,10], sensing [11,12], proton conduction [13,14],
and drug transport [15,16].

Materials of Institute Lavoisier Frameworks (MIL) materials are one of the most stud-
ied materials for MOFs. M(III) terephthalates (M = Cr, Fe, Al, V, Mn, and In in decreasing
order of importance as well as some others) together with terephthalate derivatives and
elongated terephthalate analogs form a particularly important sub-class of MOFs. The four
best-known porous M(III) terephthalates (and terephthalate analogs) are MIL-47/MIL-53,
MIL-88, MIL-100, and MIL-101. They are among the most recognized MOF types, especially
regarding potential uses. Most of the MIL series materials use Cr3+, Fe3+, and Al3+ as metal
ion clusters with terephthalate derivatives and terephthalate analogs as organic ligands
to ligand [5]. The MIL-101 series MOFs all have similar zeolite topology but differ in
surface morphology, density, and pore size. For example, MIL-101(Fe) and MIL-101(Cr)
have the same topology and framework structure, and both of them are well studied.
MIL-101(Fe) is composed of Fe(III) octahedral chains as secondary building units (SBU) and
1,4-benzenedicarboxylic acid [17]. MIL-101(Fe) has good catalytic properties, and under
certain conditions, part of the Fe3+ in MIL-101(Fe) will be converted to Fe2+, which can play
a good activation role in catalytic applications.
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MIL-101(Cr) is one of the most representative materials of the MIL series and one
of the most investigated MOFs today. Scientific research reports on the topology and
potential applications of MIL-101(Cr) materials have continued to grow over the last
30 years (as shown in Figure 1). MIL-101(Cr) is formed by coordination of Cr3O ionic cluster
with terephthalic acid (H2BDC), with the formula [Cr3(O)X(BDC)3(H2O)2] Microwave
Irradiation (where BDC is terephthalic acid and X is OH− or F−) [18], and its structure is
similar to the MTN zeolite topology, as shown in Figure 2a. MIL-101(Cr) possesses two
different sizes of mesoporous cage cavities with diameters of 29 Å and 34 Å (Figure 2b), and
the pore windows can reach 16 Å in diameter, with a Brunauer–Emmet–Teller (BET) specific
surface area of 4100 m2 g−1. MIL-101(Cr) has crystalline water molecules at the end of its
molecular structure, which can be removed under high temperature or vacuum conditions,
causing MIL-101(Cr) to have unsaturated metal sites (i.e., possessing potential Lewis
acidic sites) [19]. MIL-101(Cr) has very high porosity, good physicochemical properties,
and chemical stability; thus, it is widely used in electrocatalysis [20], photocatalysis [21],
pollutant adsorption [22], mixed matrix membranes [23], detection [24], drug transport [25],
and other important fields.

However, reviews on the synthesis and applications of MIL-101(Cr) are still rare.
Hence, in this paper, we review the progress of research on the synthesis and application
of MIL-101(Cr). The rapid development of this field, especially regarding synthetic ap-
proaches, calls for periodic updates and the development of new viewpoints. This review
focuses on synthesis strategies and applications of MIL-101(Cr), especially focusing on
the field of adsorption and catalysis. Additionally, the outlooks of the field, challenges of
industrial preparation, and potential applications are the topics of particular interest.
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Figure 2. (a) Framework structure of MIL-101. (b) small cage with pentagonal windows and large
cage with pentagonal and hexagonal windows with pore diameters (yellow spheres). The yellow
spheres in the mesoporous cages with diameter of 29 or 34 Å, respectively, take into account the
van-der-Waals radii of the framework walls (water-guest molecules are not shown).

2. Synthesis of MIL-101(Cr)

The different synthesis and activation conditions have a significant impact on the
morphology, specific surface area, yield, stability of the structure, and crystallinity of MIL-
101(Cr) materials. Consequently, the synthesis method is an important factor affecting the
characteristics of MIL-101(Cr). At present, the main synthesis methods are hydrothermal
synthesis, the solvothermal method, the microwave-assisted method, and the template
method. Table 1 summarizes some advances in different synthesis methods for MIL-101 (Cr).

Table 1. Summary of studies on the synthesis of MIL-101(Cr) by different synthetic methods.

Method

Synthesis Conditions Textural Properties

Ref.
Medium Time Temp

(◦C)
Yield
(%)

SBET
(m2 g−1)

Vpore

(cm3 g−1)

Particle
Size
(nm)

Hydrothermal

H2O/HF 8 h 220 50 4100 2.02 / [18]
H2O/HNO3 8 h 220 78 3841 1.72 720–2120 [26]
H2O/NaOH 8 h 220 47 4065 2.01 87

[27]H2O/HNO3 8 h 220 81 3187 1.65 1336
H2O/HOAc 8 h 220 53 2894 1.38 141

H2O/HCl 8 h 220 / 3090 1.64 200–1200 [28]
H2O/HCOOH 8 h 210 / 2618 1.36 100–150 [29]
H2O/TMAOH 24 h 160 / 3197 1.73 / [30]

H2O/CH3COONa 12 h 200 40 1710 0.80 0.5–1.4
[31]H2O/CH3COOH 8 h 200 55 2927 1.77 1.3–2.1

H2O/CH3COOLi 12 h 220 / 3401 1.83 480
[32]H2O/CH3COOK 12 h 220 / 3398 1.79 240

Solvothermal H2O/HF 96 h 220 / 3780 1.74 / [33]
Mixed-solvothermal DMF/H2O 24 h 160 83.3 2453.1 1.16 200 [34]
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Table 1. Cont.

Method

Synthesis Conditions Textural Properties

Ref.
Medium Time Temp

(◦C)
Yield
(%)

SBET
(m2 g−1)

Vpore

(cm3 g−1)

Particle
Size
(nm)

Microwave (MW) H2O/HF 1 h 220 / 3054 2.01 70–100 [35]
MW-assisted

solvo/hydrothermal H2O 30 min 220 / 2667 1.37 100–110 [36]

MV
H2O/HF 40 min 210 / 3900 2.3 70–90 [37]

H2O 15 min 210 36 3071 1.51 200

[38]H2O 1 h 210 38 3196 1.55 200

Electric heating (CE) H2O 6 h 210 31 2735 1.43 800
H2O 24 h 210 42 3160 1.54 400

MV H2O 10 min 210 29 1710.1 1.28 100

[39]CE H2O 12 h 210 35 2284.7 1.76 400
MV/CE H2O 4 min/12 h 210 41 1664.9 1.17 135
MV/CE H2O 4 min/3 h 210 37 1747.6 1.35 155

expanded graphite (EG) H2O/HF 2 h 220 43 3751 1.8 400 [40]
cetyltrimethylammonium

bromide (CTAB) H2O/HF 8 h 220 / 638 0.51 3.25 [41]

CTAB H2O/HF 8 h 220 / 1560 / 3.91 [42]CTAB NaAc 12 h 220 / 1144 / 3.47
CTAB H2O/HF 8 h 220 / 846 / 120–250 [43]

2.1. Hydrothermal Synthesis Method
2.1.1. Traditional Hydrothermal Method

Hydrothermal synthesis is a common method for synthesizing nanomaterials, pre-
dominantly using water as the solvent, configuring the reaction materials into a solution,
heating it to a certain temperature in a hydrothermal kettle, and standing the kettle to
retain the synthesis system at a certain pressure. Utilizing the hydrothermal synthesis
method, porous nanomaterials with high crystallinity and excellent properties are often
obtained, which is also the most conventional method in the synthesis of MIL-101(Cr) [18].
It consists of transferring a mixed solution of Cr(NO3)3·9H2O, terephthalic acid (H2BDC),
deionized water, and hydrofluoric acid (HF) into a stainless steel reaction vessel lined
with polytetrafluoroethylene and heating the reaction at 220 ◦C for 8 h. The product is
then purified using ammonium fluoride and ethanol successively, and the final product is
obtained after drying in a vacuum oven (Figure 3). In this reaction system, hydrofluoric
acid was used as an additive to improve the crystallinity of MIL-101(Cr) and increase the
specific surface area and pore volume of the product MIL-101(Cr) during the synthesis
process [18]. As hydrofluoric acid is highly toxic and volatile [44], additional protective
equipment and safety precautions are essential for the synthesis of MIL-101(Cr) using
hydrofluoric acid in large quantities, which undoubtedly increases the cost of the synthesis.
Most importantly, most scientists have duplicated Férey’s method for the synthesis of
MIL-101(Cr) without being able to obtain a high-quality product, such as the one syn-
thesized by Férey et al. [27,31,45–47]. Therefore, several scientists have tried to use some
additives instead of the highly toxic hydrofluoric acid to optimize the synthesis technique
of MIL-101(Cr) and to upgrade the properties of MIL-101(Cr), as shown in Table 1.
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Pan et al. [48] used a hydrothermal method to synthesize MIL-101(Cr) with Tetram-
ethylammonium hydroxide (TMAOH) as an additive, as shown in Figure 4. The effect of
TMAOH on the structure, morphology, and properties of MIL-101(Cr) was investigated by
controlling the addition amount of TMAOH. From the SEM images, it can be seen that the
quantity of TMAOH addition has a great influence on the morphology of MIL-101(Cr). With
the addition of TMAOH, the morphology of the crystals changed from a smooth surface
octahedral structure to a broken octahedral structure slowly, and some of the crystals dis-
solved into small irregular particles. The adsorption capacity of the samples on toluene was
examined, and the results showed that the adsorption capacity of TMAOH-2@MIL-101(Cr)
was significantly higher than that of other MIL-101(Cr) samples.
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Reprinted from ref. [48]. Copyright © 2022, with permission from Elsevier.

Zhao et al. [49] used sodium acetate as an additive to synthesize MIL-101(Cr) and pu-
rified it with DMF and ethanol to obtain regular octahedral MIL-101(Cr) crystals with
the highest adsorption properties after activation at 140 ◦C and excellent cyclability.
Zhao et al. [27] studied the effect of hydrofluoric acid (HF), nitric acid (HNO3), acidic acid
(HOAc), sodium hydroxide (NaOH), and tetramethylammonium hydroxide (TMAOH) on
the synthesis of MIL-101(Cr) via hydrothermal synthesis, and the analysis results revealed
that NaOH as an additive can reduce the particle size of MIL-101(Cr) to nanometer size
with an average particle size of 90 nm and a specific surface area of 4065 m2 g−1.

Jiang et al. [50] used monocarboxylic acid as a modulating agent to synthesize MIL-
101(Cr), the BET surface area of the samples ranging from 2600 to 2900 m2 g−1 and with
the particle size of 19~84 nm. The selectivity of the obtained MIL-101(Cr) towards CO2/N2
was significantly enhanced. The multihole MIL-101(Cr) was synthesized by Hu et al. [28]
by using hydrochloric acid as a modulator, which had superior specific surface area and
pore volume compared to HF-assisted MIL-101(Cr). The removal of hygromycin from an
aqueous solution was improved by 78% for the newly synthesized sample. Frequently used
additives also include acetic acid [31,47,51], nitric acid [26,52], hydrochloric acid [53–55],
sulfuric acid [56], benzoic acid [57], sodium acetate [31,58], tetramethylammonium hydrox-
ide [30], and phenylphosphonic acid [59]. Among them, hierarchical pore MIL-101(Cr)
can also be synthesized using certain concentrations of acetic acid, tetramethylammonium
hydroxide, and phenylphosphonic acid.
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2.1.2. Microwave-Assisted Hydrothermal Method

The microwave-assisted synthesis method refers to the synthesis of MIL-101(Cr) in
a hydrothermal environment under microwave conditions by using rapid microwave
heating. This method can improve the efficiency and reduce the synthesis time of MIL-
101(Cr), which is mainly due to the fact that microwaves heat the solvent and improve
the nucleation rate. Soltanolkottabi et al. [39] synthesized MIL-101(Cr) by the microwave-
assisted method as well as electric heating method in two steps, as shown in Figure 5. This
method not only significantly reduces the synthesis time of MIL-101(Cr) but also controls
the morphology of the product’s crystals. The experimental results showed that increasing
the pH value to 3 during the electric heating stage resulted in octahedral crystals and
possessed a superior CO2 adsorption capacity of 7.6 mmol g−1 at room temperature.
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Khan et al. [38] systematically compared the factors of water concentration and pH
value for the impacts on the synthesis of MIL-101(Cr) via the microwave-assisted (MW)
and electric heating methods. Generally, microwave-assisted MIL-101(Cr) has a smaller
particle size, larger BET surface area, and pore volume compared with electrically-heated
MIL-101(Cr). Meanwhile, a high water concentration and pH value prefer the smaller
particle size of MIL-101(Cr).

Zhao et al. [35] synthesized MIL-101(Cr) at 220 ◦C using 300 W microwave irra-
diation for 60 min. The sample had an octahedral morphology with a particle size of
100 nm, possessing a BET specific surface area of 3054 m2 g−1 and a pore volume of
2.01 cm3 g−1. The synthesized MIL-101(Cr) demonstrated a high benzene adsorption ca-
pacity of 16.5 mmol g−1. Yin et al. [36] successfully synthesized MIL-101(Cr) with standard-
ized and homogeneous crystals by using the microwave-assisted method with a reaction
time of only 30 min at 220 ◦C via 400 W microwave radiation, which greatly reduced the
synthesis time of MIL-101(Cr).

2.1.3. Template Hydrothermal Method

The template method is an important method for controlling the morphology and
dimensions of crystals, and it is classified into hard and soft templates depending on
the characteristics of the template itself and its domain-limiting ability [60]. In general,
the template method enables the synthesis of hierarchically porous MIL-101(Cr) (HP-
MIL-101(Cr)), which improves the properties of MIL-101(Cr) materials and expands their
applications [40]. Using a template to occupy space in the crystal framework of MIL-101(Cr),
removal of the template leads to extra mesoporous or macroporous structures [61].

Yang et al. [40] prepared nanoscale MIL-101(Cr) crystals containing macroporous
structures using expanded graphite (EG) as a template. The synthesized MIL-101(Cr)
has a BET specific surface area of 3751 m2 g−1 with a yield of 43%. More importantly,
the reaction time was only 2 h, which was only one-fourth of the conventional method
(8 h). Huang et al. [43] synthesized MIL-101(Cr) with a hierarchical porous structure by
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using cetyltrimethylammonium bromide (CTAB) as a soft template. Unlike the conven-
tional micron-scale ortho-octahedral morphology, MIL-101(Cr), with the addition of CTAB,
showed irregular nanoparticles (Figure 6). HP-MIL-101(Cr) has a wide distribution of
mesoporous and macroporous structures with a microporous-to-mesoporous ratio of 19:1.
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2.2. Solvothermal Method

The solvothermal method involves the reaction of metal salts, organic ligands, and
solvents (non-aqueous or organic) in a certain ratio to produce MOF crystals. This method
is usually performed at higher temperatures or under steam conditions to make the reaction
occur through intermolecular contact. The presence of high temperatures and pressures
allows for a much higher solubility of the metal salt in the solvent and a faster reaction rate.

High yields of MIL-101(Cr) can be obtained at lower temperatures using the solvother-
mal method. Tan et al. [34] investigated the synthesis of MIL-101(Cr) by a mixed-solvent
thermal method using Cr(NO3)3·9H2O, terephthalic acid (H2BDC), hydrofluoric acid (HF)
as raw materials, and DMF and H2O in different volume ratios as mixed solvents. The
effect of temperature on the synthesis of MIL-101(Cr) was investigated, and the results
showed that MIL-101(Cr) could be synthesized at a low temperature of 140 ◦C using
the mixed-solvent thermal method. Furthermore, the volume ratio of DMF and H2O is
an important factor affecting the formation of MIL-101(Cr). At DMF/H2O = 0.20, the
product possessed a BET specific surface area of 2453 m2 g−1, and the yield was as high
as 83.3%. The static adsorption results showed that the capacity of water absorption of
MIL-101(Cr) synthesized using a mixed-solvent thermal method was also higher than that
of the MIL-101(Cr) synthesized by the conventional method. Fallah et al. [62] synthesized
MIL-101(Cr) and the composite MOR/MIL-101(Cr) with filamentous zeolite (Mordenite Ze-
olite, MOR) by the solvothermal method, and the thermogravimetric analysis test showed
that MOR/MIL-101(Cr) is statistically more stable than MIL-101(Cr).

At present, the hydrothermal method is still the most commonly used strategy for
MIL-101(Cr) synthesis, which possesses a high specific surface area and good crystallinity.
Furthermore, numerous scientists have attempted to use other additives to replace the
originally reported HF during MIL-101(Cr) synthesis. For example, the use of HNO3 could
increase the yield by over 80%, the use of acetic acid could achieve a nano-sized product,
etc. The microwave-assisted method would largely accelerate the reaction process and save
time, while the template method could provide special structural MIL-101(Cr) crystals,
and the solvothermal method could decrease the reaction temperature to as low as 140 ◦C.
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Thus, the researchers could choose the appropriate synthesis method according to their
needs and conditions.

3. Applications

MIL-101(Cr) has an ultra-high specific surface area and good hydrothermal/water
stability, thus, demonstrating a wide range of applications in adsorption and catalysis. This
review mainly focuses on adsorption, catalysis, and other applications of MIL-101(Cr),
which is shown in Figure 7.
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3.1. Adsorption

Due to the characteristics of high specific surface area (4100 m2 g−1), excellent stability,
and a large number of unsaturated metal sites, MIL-101(Cr) is quite suitable for adsorption
of gases, dyes, or water vapor [48,63,64].

3.1.1. Gas Adsorption

H2 is an ideal, safe, and green energy source, but it is extremely unstable and difficult
to store and transport under normal temperature and pressure. Under normal conditions,
the storage and transport of H2 can be achieved by using adsorbents to adsorb H2 [65]. CO2
is a greenhouse gas and a major source of the greenhouse effect, so capturing CO2 is an
inevitable trend [66]. Metal–organic framework materials with large specific surface area
and a high void fraction have great potential in the field of adsorption and storage of gases.
Hong et al. [67] tested and compared the CO2 capture capacity of MIL-101(Cr) with that
of 13× zeolite monomer. The results showed that the adsorption capacity of MIL-101(Cr)
for CO2 was 37% higher than that of a 13× zeolite monomer, and the adsorption efficiency
was 1.5 times higher than that of the 13× zeolite monomer. Moreover, compared with other
metal–organic frameworks, MIL-101(Cr) has a better adsorption capability for gases, such
as CO2, H2, and CH4 [33,68,69].

Yang et al. [68] investigated the adsorption performance of MIL-101(Cr), ZIF-8, and
UiO-66 on N2, CH4, and CO2. It was shown that MIL-101(Cr) had the best adsorption
performance for the above three gases, especially for CO2, where the adsorption of MIL-
101(Cr) (29.4 mmol g−1) was 2.19 and 3.13 times higher than that of UiO-66 (13.4 mmol g−1)
and ZIF-8 (9.4 mmol g−1), respectively (Figure 8).
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Llewellyn et al. [33] comparatively studied the adsorption performance of MIL-101(Cr)
and MIL-100(Cr) on CO2 and CH4. The results showed that the adsorption performance
of MIL-101(Cr) was much higher than that of MIL-100(Cr), and its maximum adsorption
capacity for CO2 could reach 40 mmol g−1, which was over twice that of MIL-100(Cr)
(18 mmol g−1). A similar trend was also detected in the case of H2 adsorption; MIL-101(Cr)
showed a higher adsorption capacity than that of MIL-100(Cr) [69].

MIL-101(Cr) has been studied extensively in the gas adsorption field, and Table 2
shows the various gas adsorption capacities of MIL-101(Cr) in recent years. As early as
2009, the gas adsorption capacity of MIL-101(Cr) was investigated by Chowdhury et al. [70].
They measured the adsorption characteristics of MIL-101(Cr) on CO2, CH4, C3H8, SF6, and
Ar gases at different temperatures by using the weight method. The results showed that
MIL-101(Cr) had good adsorption performance for all five gases, and the best adsorption
performance was achieved at 283 K. Munusamy et al. [71] investigated the adsorption
characteristics of MIL-101(Cr) with different forms for CO2, CO, CH4, and N2 at different
temperatures. For the four gas molecules, MIL-101(Cr) revealed very good adsorption
properties, and the adsorption capacity tended to decrease with the increasing temperature.
Among the four gases, MIL-101(Cr) showed the best adsorption toward CO2, which was
three times or even six times higher than other gases. Meanwhile, the experiments showed
that the adsorption capability of MIL-101(Cr) with the powder type was higher than those of
MIL-101(Cr) with the particle type. Montazerolghaem et al. [72] also investigated the effect
of different forms of MIL-101 (Cr) on its adsorption properties. The results presented that
the powder form of MIL-101(Cr) has higher adsorption performance than the granular form
of MIL-101(Cr), and the adsorption of CO2 at 7.1 bar and 298.2 K reached 9.72 mmol g−1

for the powder form, which was 1.53 times higher than that of granular MIL-101(Cr)
(6.34 mmol g−1). The factors affecting the adsorption performance of MIL-101(Cr) include
not only the temperature, pressure, and sample forms but also the MIL-101(Cr) crystals
structure and the synthesis method. Chong et al. [73] proposed a solvent-free method to
synthesize MIL-101(Cr). It was found that the best adsorption performance of MIL-101(Cr)
was obtained at a Cr:BDC molar ratio of 1:1, with a BET specific surface area of 1110 m2 g−1

and an adsorption capacity of 18.8 mmol g−1 for CO2.
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Table 2. Summary of gas adsorption for MIL-101(Cr) or its composites/derivatives.

Adsorbent Adsorbate Temp.
(K)

Pressure
(bar)

Uptake
(mmol g−1) Ref.

MIL-101(Cr) H2 77.4 45 30.4 [47]
MIL-101(Cr) CO2 298 1 7.7 [39]
MIL-101(Cr) CO2 283 30 29.4

[68]MIL-101(Cr) CH4 283 30 8.6
MIL-101(Cr) N2 283 30 4.5
MIL-101(Cr) CO2 303 50 40

[33]MIL-101(Cr) CH4 303 60 13.6
MIL-101(Cr) H2 77 80 30.5 [69]
MIL-101(Cr) CO2 288 1.13 3.8

[71]
MIL-101(Cr) CO 288 1.13 1.13
MIL-101(Cr) CH4 288 1.13 0.58
MIL-101(Cr) N2 288 1.13 0.31
MIL-101(Cr) CO2 298 7 9.7 [72]
MIL-101(Cr) CO2 298 1 18.8 [73]
MIL-101(Cr) H2 77.3 80 43.5 [74]
MIL-101(Cr) H2 293 1900 36 [75]
MIL-101(Cr) CO2 298 6 2.3 [76]
MIL-101(Cr) CO2 298 0.1 0.49 [77]
MIL-101(Cr) HF 288 1 11.4 [78]
MIL-101(Cr) N2O 298 1 5.5

[79]MIL-101(Cr) CO2 298 1 5.4
MIL-101(Cr) N2 298 1 0.76
MIL-101(Cr) CO2 298 1 1.2

[80]MIL-101(Cr) CO2 298 10 11.2
MIL-101(Cr) CO2 298 25 13.1
MIL-101(Cr) SO2 298 0.01 1.5

[81]Mmen-MIL-101(Cr) SO2 298 0.01 3.0
MIL-101(Cr) CO2 298 25 14.6

[82]GrO@ MIL-101(Cr) CO2 298 25 22.4
MIL-101(Cr) CO2 298 0.15 0.7

[83]
MIL-101(Cr) CO2 298 1 2.6

PANI@MIL-101(Cr) a CO2 298 0.15 1.7
PANI@MIL-101(Cr) CO2 298 1 3.9
MIL-101 (Cr)-PEI b CO2 348 1 3.81 [84]
MIL-101(Cr)-NH2 CO2 278 1 5.4 [85]

MIL-101(Cr)@MCM-41 CO2 297 1 2.1 [86]
PEI/MIL-101(Cr) CO2 273 0.15 4.2 [87]

MIL-101(Cr) CO2 298 0.05 28.65

[88]

MIL-101(Cr) CH4 298 0.02 11.02
MIL-101(Cr) MeSH 298 14.9 24.54

MIL-101(Cr)@CO 5wt% CO2 298 0.05 32.19
MIL-101(Cr)@CO 5wt% CH4 298 0.02 12.59
MIL-101(Cr)@CO 5wt% MeSH 298 9.32 32.3

MIL-101(Cr) NH3 298 1 8.92
[89]IL@MIL-101(Cr) NH3 298 1 24.12

MIL-101(Cr)@M-0.5-0.5 c CO2 298 1 3.16
[90]MIL-101(Cr)@M-0.5-0.5 H2S 298 1 7.63

a PANI: polyaniline. b PEI: polyethyleneimine. c M-0.5-0.5: cluster/ligand molar ratios = 0.5 and modula-
tor/cluster molar ratios = 0.5.

The adsorption capacity of MIL-101(Cr) was usually improved via chemical mod-
ification, such as by using amine functionalization [79,85,91], carbon doping [80,82,92],
and metal doping [93,94]. Darunte et al. [91] investigated the adsorption capacity of
amine-functionalized MIL-101(Cr) and conventional MIL-101(Cr) toward CO2. The results
disclosed that the amine-functionalized MIL-101(Cr) possessed a higher CO2 adsorption
capacity compared with conventional MIL-101(Cr). Zhou et al. [93] successfully synthe-
sized magnesium-doped bimetallic MIL-101 (Cr, Mg) by adding magnesium salts in the
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synthesis process. The effect of the amount of doped Mg2+ on the adsorption properties
of MIL-101(Cr, Mg) are displayed in Figure 9, indicating that the doped Mg2+ largely
improved the adsorption capacity of MIL-101. Under the same condition, MIL-101(Cr, Mg)
presented an uptake of 3.28 mmol g−1 of CO2, which was 40% higher than MIL-101(Cr).
Additionally, MIL-101(Cr, Mg) also showed significantly higher selectivity for CO2/N2
compared with MIL-101(Cr).
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for CO2/N2 (0.15/0.85) mixtures on MIL-101(Cr, Mg)-2# at 298 K [93]. Reprinted from ref. [93].
Copyright © 2022, with permission from Elsevier.

In addition to metal doping, carbon doping was also an important method to enhance
the adsorption properties of the MOFs. Zhou et al. [82] synthesized a novel composite
(GrO@MIL-101(Cr)) by using graphene oxide (GrO) and MIL-101 (Cr). It was found that
the adsorption capacity of GrO@MIL-101(Cr) for CO2 was significantly higher than that of
MIL-101(Cr). Han et al. [89] used ionic liquids combined with MIL-101(Cr) to enhance the
adsorption capacity of MIL-101(Cr) on NH3. At 298 K and 1 bar, the adsorption of NH3 by
the composite was 24.12 mmol g−1, which was 2.7 times higher than that of MIL-101(Cr)
(8.92 mmol g−1). Moreover, the composite revealed better stability and remained stable
under wet NH3 conditions; its excellent adsorption performance in vapor atmosphere near
saturated ammonia solution (23.55 mmol g−1) was reduced by only 2%.

3.1.2. Dye Adsorption

Dyes are widely used in daily applications such as the food industry, packaging, print-
ing, leather industry, etc. Due to the incomplete treatment of industrial wastewater, about
10–15% of the dyes consumed therein are directly discharged into the aqueous environment
every year [95,96]. The discharge of large amounts of organic dyes can be extremely harm-
ful to the environment and ecosystem [97,98]. The adsorption method has the advantages
of having a simple process, high operability, and no secondary pollution and is a very
effective method for dye wastewater treatment [98,99]. MIL-101(Cr) is considered to be an
excellent adsorbent in dye adsorption applications due to its outstanding water/chemical
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stability, high porosity, and its large specific surface area [100,101]. Table 3 summarizes the
studies of MIL-101(Cr) or MIL-101(Cr)-based materials for dyes adsorption.

Table 3. Summary of dyes adsorption for MIL-101(Cr) or MIL-101(Cr)-based materials.

Adsorbent Dyes Uptake (mg g−1) a Ref.

MIL-101(Cr) Methyl orange 369.8 [101]
MIL-101(Cr) Xylenol orange 307 [102]
MIL-101(Cr) Methyl orange 87.5 [103]
MIL-101(Cr) Congo red 1223.6

[104]MIL-101(Cr) Methyl orange 475.3
MIL-101(Cr) Direct red 80 227

[105]MIL-101(Cr) Acid blue 92 185
MIL-101(Cr) Methyl orange 102

[106]MIL-101(Cr) Reactive blue 198 88
MIL-101(Cr) Methylene blue 4.24

[42]
HP-MIL-101(Cr) Methylene blue 11.23

MIL-101(Cr) Methyl orange 217.85
HP-MIL-101(Cr) Methyl orange 205.28
150@MIL-101(Cr) Methyl orange 420.2

[107]
180@MIL-101(Cr) Methyl orange 327.9
220@MIL-101(Cr) Methyl orange 246.9
Meso-MIL-101(Cr) Methyl orange 110.7

Spherical-MIL-101(Cr) Methyl orange 444.3
[108]Spherical-MIL-101(Cr) Rhodamine B 230.3

MIL-101(Cr) Methyl orange 114
[99]ED-MIL-101(Cr) b Methyl orange 160

PED-MIL-101(Cr) b Methyl orange 194
MIL-101(Cr) Fluorescein sodium 297.5

[109]
MIL-101(Cr) Safranine T 113.8

MIL-101(Cr)-SO3H Fluorescein sodium 70.8
MIL-101(Cr)-SO3H Safranine T 425.5

MIL-101(Cr) Direct red 31 382.72

[110]
MIL-101(Cr) Acid blue 92 335.76

AC@MIL-101(Cr) c Direct red 31 397.64
AC@MIL-101(Cr) Acid blue 92 372.0

MIL-101(Cr)-COOH-1 Congo red 2835.7

[111]
MIL-101(Cr)-COOH-1 Methyl orange 473.9
MIL-101(Cr)-COOH-1 Acid chrome blue K 240.8

MIL-101(Cr) Acid chrome blue K 323.1
MIL-101(Cr)-SO3H-1 Methyl orange 688.9

[112]MIL-101(Cr) SO3H-1 Congo red 2592.7
MIL-101(Cr)-SO3H-1 Acid chrome blue K 213.2

MIL-101(Cr)-NH2 Congo red 2967.1
[113]MIL-101(Cr)-NH2 Methyl orange 461.7

MIL-101(Cr)-NH2 Acid chrome blue K 259.8
Ni(II)-doped MIL-101(Cr) Congo red 1607.4

[114]Ni(II)-doped MIL-101(Cr) Methyl orange 651.2
Ni(II)-doped MIL-101(Cr) Acid chrome blue K 161.0

NH2-MIL-101(Cr) Direct blue 80 521

[115]
NH2-MIL-101(Cr) Acid blue 1 455
NH2-MIL-101(Cr) Rhodamine B 232
NH2-MIL-101(Cr) Methylene blue 33
MIL-101(Cr)/GA d Methyl orange 331.5

[116]
MIL-101(Cr)/GA Rhodamine B 345.7

MIL-101(Cr) Methyl orange 143.4
[117]TiO2/MIL-101(Cr) Methyl orange 186.1

a The test temperature is 298 K. b ED: ethylenediamine-grafted, PED: protonated ethylenediamine-grafted. c AC:
Activated carbon. d GA: graphene aerogel.
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Haque et al. [99] compared the removal performance of methyl orange (MO) from
aqueous solutions by using MIL-101(Cr), functionalized MIL-101(Cr), and MIL-53(Cr). The
analyzed results indicated that the functionalized MIL-101(Cr) had the highest removal
ability for MO among the three MOFs. Zhang et al. [104] reported that the charge and size of
MIL-101(Cr) could greatly affect its adsorption capability on different organic dyes such as
methylene blue (MB), congo red (CR), and methyl orange (MO). Mahmoodi et al. [105] used
a DMF-free method to synthesize MIL-101(Cr) and investigated the adsorption capacity
of MIL-101(Cr) on direct red (DR80) and acid blue (AB92). It was found that MIL-101(Cr)
exhibited a good adsorption capacity and cyclic adsorption for both dye solutions, with the
maximum adsorption capacity of 227 mg g−1 for DR80 and 185 mg g−1 for AB92.

Shen et al. [42] reported that methyl orange (MO) and methylene blue (MB) could be
efficiently removed from aqueous solutions by using MIL-101(Cr), which were synthesized
with different mineralizing agents. It is worthy to note that, for the removal of MB, MIL-
101(Cr) containing mesopores had a higher adsorption capacity for dyes than that of the
conventional microporous MIL-101(Cr) and the higher the mesoporous ratio, the better the
adsorption performance. However, the adsorption of MO was mainly dependent on the
electrostatic interaction between the dye and MIL-101(Cr), not the porous structure. Huang
et al. [43] also found that for the adsorption of MB in an aqueous solution, hierarchically
porous MIL-101(Cr) presented with a much higher adsorption capacity than that of the
conventional microporous MIL-101(Cr). Moreover, the crystal morphology of MIL-101(Cr)
also affected the adsorption performance of MIL-101(Cr). Xu et al. [107] prepared MIL-
101(Cr) crystals with different morphologies by varying the reaction temperature and
cooling rate and produced spherical MIL-101(Cr) at 150 ◦C and octahedral MIL-101(Cr) at
other temperatures, as shown in Figure 10a. Figure 10b showed the adsorption performance
of MIL-101(Cr) samples with different temperatures for the dyes (MO and MB). It can be
seen from the figure that the spherical MIL-101(Cr) had the best adsorption capacity among
all of the samples, with a maximum adsorption amount of 420.2 mg g−1 for MO. Similarly,
Zhao et al. [108] prepared spherical MIL-101(Cr) at 160 ◦C without any additives, and it
was also found that the adsorption capacity of the spherical MIL-101(Cr) for methyl orange
and rhodamine was much higher than that of the conventional octahedral MIL-101(Cr).

The introduction of functional groups (e.g., –SO3H [109,112], –COOH [111], –NH2 [113,115],
etc.) into MIL-101(Cr) was a common method to improve the adsorption capacity of MIL-
101(Cr). Yang et al. [112] reported an MIL-101(Cr)-SO3H material, which showed excellent
adsorption performance for organic dyes in an aqueous solution. The -SO3H group increased the
electrostatic interaction and hydrogen bonding between the adsorbent and linear anionic dyes.

Yang et al. [111] conducted adsorption experiments using MIL-101(Cr)-COOH on
three dyes, including Congo Red, Methyl Orange, and Acid Chromium Blue K. Compared
with conventional MIL-101(Cr), the adsorption capacity of MIL-101(Cr)-COOH on Congo
Red and Methyl Orange was significantly higher, while for the adsorption of Acid Chrome
Blue K, MIL-101(Cr)-COOH displayed a decreased adsorption performance. That was
because the –COOH group increased the electrostatic and hydrogen bonding forces between
MIL-101(Cr) and linear anionic dyes, which improved the adsorption capacity toward the
linear anionic dyes. Meanwhile, it also increased the spatial site resistance effect between
MIL-101(Cr) and nonlinear anionic dyes, which caused a decrease in the adsorption of
nonlinear anionic dyes. Zhang et al. [113] found that the –NH2 group could increase the
adsorption capacity of the MIL-101(Cr)-NH2 for linear anionic dyes by modulating the
driving forces (electrostatic, hydrogen π–π stacking interactions, pore volume, and spatial
site resistance) between the adsorbent and the dyes, and its adsorption capacity on congo
red and methyl orange was increased compared to the pristine MIL-101(Cr) by 1.17 and
1.02 times. Yang et al. [112] used sulfonyl modification of MIL-101 to produce MIL-101-
SO3H, which was found to have excellent adsorption properties for organic dyes. The
experimental adsorption capacities of MIL-101-SO3H for methyl orange, congo red, and
acid chromium blue K were 688.9, 2592.7, and 213.2 mg g−1, which were 69.6%, 89.6%, and
51.5% higher than those of unmodified MIL-101, respectively. As can be seen in Table 3, the
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adsorbent had the best dye adsorption performance in MIL-101(Cr) and derivatives. The
uncoordinated –SO3H group increased the electrostatic attraction and hydrogen bonding
between MIL-101-SO3H adsorbent and linear anionic dyes, thus increasing the adsorption
capacity of the linear anionic dyes.

MIL-101(Cr)-based composites usually disclosed significantly higher adsorption per-
formance compared with pure MIL-101(Cr). For instance, Vo et al. [106] prepared a series of
GrO/MIL-101(Cr) composites (GrO = graphite oxide), which were applied to the removal
of contaminants such as methyl orange and reactive blue 198 (RB198) (Figure 11). It was
found that the 6 wt% GrO-loaded GrO/MIL-101(Cr) composites had the best adsorption
capacity for the dyes, with the adsorption amounts of 235 mg g−1 and 175 mg g−1 for MO
and RB198, respectively, which were 2.3 and 1.97 times higher than that of the pure MIL-
101(Cr). Wu et al. [117] reported a TiO2/MIL-101(Cr) composite, which demonstrated good
adsorption performance for MO, and the adsorption capability could reach 242.02 mg g−1

in 70 mg L−1 MO solution.
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Figure 11. Schematic diagram of CrO/MIL-101 synthesis and dye adsorption [106]. Reprinted from
ref. [106]. Copyright © 2022, with permission from Elsevier.

3.1.3. Drug Adsorption

In addition to the dyes, MIL-101 (Cr) or MIL-101(Cr)-based materials also performed
well for the removal of drugs (e.g., antibiotic drugs and pesticide residues). Table 4 lists
the summary of the application of MIL-101(Cr) or MIL-101(Cr)-based materials in the
adsorption and removal of drugs.
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Table 4. Summary of drugs adsorption for MIL-101(Cr) or MIL-101(Cr)-based materials.

Adsorbent Drug Uptake (mg g−1) Ref.

MIL-101(Cr) sulfamethoxazole 181.82 [118]
MIL-101(Cr) propiconazole 89.78 [119]
MIL-101(Cr) diazinon 260.43 [120]
MIL-101(Cr) 4-chloro-2-methylphenoxyacetic acid 233.576 [121]
MIL-101(Cr) 3,6-dichloro-2-methoxy benzoic acid 237.384 [122]

MIL-101 Naproxen 114

[123]
MIL-101-OH Naproxen 185

MIL-101-(OH)2
a Naproxen 136

MIL-101-NH2 Naproxen 147
MIL-101-NO2 Naproxen 66.1
MIL-101(20) b Indomethacin sodium 641 [124]
MIL-101(Cr) Ciprofloxacin 113.2 [125]MIL-101(Cr)-HSO3 Ciprofloxacin 564.9
MIL-101(Cr) Naproxen 112

[126]MIL-101(Cr)-GnO(3%) c Naproxen 155
MIL-101(Cr)-GnO(3%) Naproxen 171

MIL-101(Cr)@GO d Sulfamethoxazole 101.01
[127]MIL-101(Cr)@GO Sulfadiazine 135.14

MIL-101(Cr)@GO Sulfadoxine 119.05
CuCo/MIL-101 Tetracycline 225.179 [128]

MIL-101 Naproxen 131

[129]

AMSA-MIL-101 e Naproxen 93
ED-MIL-101 f Naproxen 154

MIL-101 Clofibric acid 315
AMSA-MIL-101 Clofibric acid 105

ED-MIL-101 Clofibric acid 347
MIL-101(Cr)@AC g Sulfacetamide 166.11 [130]Urea-MIL-101(Cr)@AC Sulfacetamide 231.2

nZVI/MIL-101(Cr) h Tetracycline 625.0 [131]
MIL-101(Cr)/Fe3O4 Ciprofloxacin 63.28 [132]

a MIL-101 with two functional groups capable of H-bonding. b 20: The ratios of NH2–H2BDC was 20% in
two ligands. c GnO: graphene oxide. d GO: graphite oxide. e AMSA: Aminomethanesulfonic acid. f ED:
Ethylenediamine. g AC: activated carbon. h nZVI: Nano zero-valent iron.

Hu et al. [28] studied the adsorptive removal of oxytetracycline (OTC) from an
aqueous solution by MIL-101(Cr) synthesized with different mineralizers. Moreover,
the results showed that MIL-101(Cr) synthesized with HCl as a mineralizer possessed
a higher adsorption capacity than that of MIL-101(Cr) synthesized with HF as a mineralizer.
Huang et al. [118] used MIL-101(Cr) for the adsorptive removal of sulfamethoxazole (SMZ)
from water and discovered that the adsorption of SMZ by MIL-101(Cr) was spontaneous
and exothermic with a fast adsorption rate, reaching saturation adsorption within 180 s.
The largest adsorption capacity of MIL-101(Cr) for SMZ was 181.82 mg g−1. Moreover, it
was also found that MIL-101(Cr) also had a good adsorption capacity for antibiotic drugs
such as sulfamonomethoxine (SCP), sulfamonomethoxine (SMM), and sulfadimethoxine
(SDM). Shadmehr [119] reported the adsorptive removal of propiconazole fungicides from
an aqueous environment using MIL-101(Cr), and the maximum adsorption amount of prop-
iconazole could reach 89.78 mg g−1. Mirsoleimani-azizi et al. [120] employed MIL-101(Cr)
for the removal of diazines from aqueous solutions and found that the removal of diazines
could reach 92.5%, which indicated that MIL-101(Cr) revealed promising application for
agricultural wastewater treatment.

Isiyaka et al. [121] introduced MIL-101(Cr) as an adsorbent for the effective removal of
4-chloro-2-methylphenoxyacetic acid (MCPA) from an aqueous solution. The rapid removal
of MCPA by MIL-101(Cr) was recorded within 25 min, and the maximum adsorption
capacity of MIL-101(Cr) for MCPA was 233.576 mg g−1; the removal rates could be over
90%. Li et al. [125] investigated the adsorptive removal of ciprofloxacin (CIP) from water by
MIL-101(Cr)-HSO3, and the possible adsorption mechanism of CIP on MIL101(Cr)-HSO3
are shown in Figure 12. The results showed that MIL-101(Cr)-HSO3 had a good adsorption
capacity for CIP with a maximum value of 564.9 mg g−1, which was considered to be one
of the best materials for CIP removal.
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Figure 12. Possible adsorption mechanism of CIP on MIL101(Cr)-HSO3 [125]. Reprinted by permis-
sion from ref. [125]. Copyright © 2022, with permission from Springer Nature.

In order to improve the adsorption capacity of MIL-101(Cr), Jin et al. [128] used MIL-
101(Cr) loaded with Cu/Co bimetallic particles to produce a new Cu@Co/MIL-101(Cr)
composite. The adsorption of tetracycline (TC) of Cu@Co/MIL-101(Cr) was much higher
than that of pure MIL-101(Cr), and the maximum adsorption capacity of the composite
could reach 225.179 mg g−1. Cu@Co/MIL-101(Cr) had a stronger adsorption performance
due to the change of electronegativity and the enhanced electrostatic interaction with TC
after doping with Cu/Co metal particles (Figure 13).
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3.1.4. Other Adsorption Applications

Volatile organic compounds (VOCs) are a major source of air pollution, which not
only aggravate ozone layer depletion and the greenhouse effect but also endanger hu-
man health [133,134]. MIL-101(Cr) or MIL-101(Cr)-based materials were also employed
in the field of VOC removal. Bullot et al. [135] investigated the adsorption capacity of
MIL-101(Cr) on (poly)chlorobenzene pollutants. It was found that MIL-101(Cr) had an
excellent adsorption capability toward chlorobenzene pollutants due to the extremely
strong π–π interactions between the MIL-101(Cr) and the chlorobenzene pollutants. Fur-
thermore, the adsorption capacity of nano-sized MIL-101(Cr) for both 1,2-dichlorobenzene
and 1,2,4-trichlorobenzene was significantly higher than that of micron-sized MIL-101(Cr).
Shafiei et al. [136] investigated the adsorption capacity of MIL-101(Cr) for different gaseous
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VOCs. The results revealed that MIL-101(Cr) exhibited an excellent adsorption capacity
toward all of the studied VOCs, especially the absorption rate for gasoline, which could
be up to 90.14 wt%, which was 3.6 times higher than that of commercially available ac-
tivated carbon. Heydari et al. [137] investigated the adsorptive removal of toluene from
aqueous solutions by MIL-101(Cr) via response surface methodology. It was found that the
removal of toluene from an aqueous solution by MIL-101(Cr) could reach 97% under the
selected condition.

MIL-101(Cr) can also be applied to remove heavy metal ion contamination from
water bodies. Josep and his colleagues [138] analytically investigated the adsorption
capacity of MIL-101(Cr) on Cu2+, Cd2+, and Pb2+ in aqueous solutions. The maximum
adsorption amounts of Cu2+, Cd2+, and Pb2+ were 16,099 mg g−1, 15,769 mg g−1, and
19,043 mg g−1, respectively, which were higher than most adsorbents on the market,
especially the adsorption amount of Cu2+ could reach 100 times of the adsorption amount
of prulan/polydopamine hydrogel (100.9 mg g−1) [139]. It revealed that the adsorption
of heavy metals from an aqueous solution using MIL-101(Cr) was mainly attributed to
the electrostatic interaction between them, indicating that MIL-101(Cr) could effectively
remove heavy metals from an aqueous solution. The metal removal ability of MIL-101(Cr)
can be enhanced by functionalization. Rastkari et al. [140] reported that the adsorption
and removal ability of tetraethylenepentamine (TEPA)-grafted MIL-101(Cr) on metals in an
aqueous solution was investigated. It was shown that the grafted TEPA-MIL-101(Cr) had
an excellent adsorption capacity for Pb2+, Cu2+, Cd2+, and Co2+ in an aqueous solution,
and the adsorption capacity exceeded that of the original MIL-101(Cr) by a factor of eight.
When applied to real water, TEPA-MIL-101(Cr) can remove more than 95% of the metals in
the water.

3.2. Catalysis

MIL-101(Cr) and MIL-101(Cr)-based materials can be used as a catalyst in many
reactions due to their high porosity and the potential unsaturated metal sites in the structure
(Table 5). In this section, the applications of MIL-101(Cr) and MIL-101(Cr)-based materials
in various reactions such as oxidation, condensation, C-C coupling, hydrogenation, acid-
base synergy, ring opening, etc. will be reviewed.

Table 5. Application of different MIL-101 and MIL-101(Cr)-based materials in catalytic reactions.

Catalyst Reaction TOF
(min−1) a

Conversion
(%) Ref.

MIL-101(Cr) Cyclohexene Oxidation 1.70 /
[45]MIL-101(Cr) Cyclohexene Oxidation 1.31 /

MIL-101(Cr) Cyclohexene Oxidation 1.29 /
HP-MIL-101(Cr) b Indene oxidation reaction 1.67 83

[100]
HP-MIL-101(Cr) 1-Dodecene oxidation reaction 0.31 92

HP-MIL-101(Cr)@PTA c Methanolysis of styrene oxide 7.59 72
HP-MIL-101(Cr)@PTA Dibenzoxanthene synthesis 18.9 90
HP-MIL-101(Cr)@PTA 1-(N-acetylaminophenylmethyl)-2-naphthole 45.9 91

CuPc@MIL 101(Cr) Styrene epoxidation / 100 [141]
MIL-101(Cr) Cyanosilylation of benzaldehyde / 96 [142]

MIL-101(Cr)-NH2-SF d Henry reaction / 95 [143]
MIL-101(Cr)-NH2 Henry reaction / 79

MIL-101(Cr) Hydroxyalkylation of phenol with formaldehyde / 5.9
[144]MIL-101(Cr/Al) Hydroxyalkylation of phenol with formaldehyde / 88.7

3.0%-Ag@MIL101(Cr) One-pot imine synthesis from alcohols and amines / 99 [145]
S/MIL-101(Cr) e Esterification of acetic acid with n-butano 0.57 /

[146]
S/MIL-101(Cr) Esterification of acetic acid with n-hexanol 1.07 /
S-MIL-101(Cr) f Esterification of acetic acid with n-butano 1.18 /
S-MIL-101(Cr) Esterification of acetic acid with n-hexanol 2.78 /
MIL-101(Cr) Acetaldehyde-Phenol condensation 0.18 /

[147]MIL-101(Cr)/PTA Acetaldehyde-Phenol condensation 17 /
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Table 5. Cont.

Catalyst Reaction TOF
(min−1) a

Conversion
(%) Ref.

50%Ti-MIL-101-550 g oxidative desulfurization reaction of
dibenzothiophene / 90 [148]

1% Pd/PTA-MIL CO oxidation 19 / [149]3% Pd/PTA-MIL CO oxidation 6.34 /
3%Pt3%Co/MIL-101(Cr) Hydrogenation of cinnamaldehyde 9.1 / [150]

MIL-101(Cr/Fe) (4:1) Prins reaction / 85 [151]
Ag20Pd80@MIL-101 formic acid hydrolysis reaction 14.13 / [152]

a TOF: the turnover frequency. TOF of the catalyst = (molar conversion of substrate)/(mass of MIL-101(Cr)
× reaction time) depending on the reactions. b HP: Hierarchical porous. c PTA: phosphotungstic acid.
d Nitro-modified MIL-101(Cr). e S/MIL-101(Cr): sulfoxy acid-functionalized MIL-101. f S-MIL-101: Sulfonic acid
functionalized MIL-101 prepared by one-pot method. g 550: Calcined at 550 ◦C.

3.2.1. Oxidation of Olefins and Aromatic Heterocycles

Maksimchuk [153] prepared a hybrid material, PWx/MIL-101(Cr), containing 5~14 wt%
of tungstate oxide (PWx), which was used as the catalyst in the oxidation of cycloethylene to
epoxycyclohexane. It was found that PWx/MIL-101(Cr) exhibited very good catalytic activ-
ity in the reaction, even close to the pure PWx. Additionally, PWx/MIL-101 showed quite
good catalytic activity in the epoxidation of various olefins, including 1-octene, cyclooctene,
limonene, etc. Furthermore, in the oxidation of substrates with aromatic groups such as
styrene, PWx/MIL-101(Cr) also displayed high catalytic efficiency. Leng [45] investigated
the catalytic activity of MIL-101(Cr) in the oxidation of cyclic ethylene, which disclosed
excellent catalytic activity with a TOF value of 1.70 h−1. Interestingly, it was reported that
the nano-sized MIL-101(Cr) presented higher catalytic activity than that of micro-sized
MIL-101(Cr) in the oxidation of 1-dodecene [100,154].

Yeganeh [141] reported the effect of MIL-101(Cr) and MIL-100(Fe) and their composites
with copper phthalocyanine (CuPc) as catalysts in the styrene oxidation reaction (Scheme 1).
The styrene conversion was significantly improved by the addition of an activated MIL-
101(Cr) catalyst, especially in the presence of CuPc@MIL-101(Cr); the conversion of styrene
could reach 100% with a selectivity of 85% for styrene oxides. Mortazavi et al. [155]
found that MIL-101(Cr)-SO3H was an efficient catalyst in the oxidative styrene cleavage,
the conversion of the reactant reached 99% in 20 min and the selectivity of 2-methoxy-2-
phenylethanol was 100% (Scheme 2). Santiago-Portillo and coworkers [151] investigated
the catalytic property of MIL-101(Cr)-X (X = H, NO2, SO3H, Cl, CH3, and NH2) in the
oxidation of benzylamine to the corresponding n-benzylbenzylamine. MIL-101(Cr)-NO2
exhibited the highest catalytic activity among the above materials, with a catalytic activity
about six times higher than that of the parent MIL-101(Cr). It was disclosed that the
introduction of suitable radicals on the terephthalic acid linker could modulate the electron
density around Cr3+ and enhance the catalytic activity of MIL-101(Cr). MIL-101(Cr)-NO2
can also be used as a catalyst in the oxidation of thiophene or used as a radical initiator
for the oxidative desulfurization of dibenzothiophene (Scheme 3) [156]. Ying et al. [154]
proposed a hydrophobic mesoporous silica-encapsulated MIL-101(Cr) composite, which
demonstrated better catalytic activity in indene oxidation compared with pristine MIL-
101(Cr). Zhao and the coworkers [59] prepared hierarchically porous (HP) MIL-101(Cr) by
using phenylphosphonic acid as a modulating agent, which also presented high catalytic
efficiency toward indene oxidation. That was mainly contributed to the fact of hierarchically
porous structure in MIL-101(Cr) that exposed more active sites and thus exhibited better
catalytic activity. Consequently, Zhao et al. [100] found that the addition of acetic acid in
MIL-101(Cr) synthesis could also cause a hierarchically porous structure, which exhibited
quite good catalytic activity during the oxidation of indene and 1-dodecene.
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3.2.2. Esterification and Acylation Reactions

Functionalized MIL-101(Cr) had good catalytic activity in the esterification and acyla-
tion reactions. Zang and colleagues [146] reported the catalytic activity of MIL101(Cr)-SO3H
applied to the esterification reactions of alcohols and acids. It was found that pristine MIL-
101(Cr) had no catalytic activity in the esterification process; however, MIL101(Cr)-SO3H
showed pretty good catalytic activity in the esterification reaction. Meanwhile, MIL101(Cr)-
SO3H was employed as an efficient catalyst in the esterification of cyclic ethylene with
formic acid (Scheme 4), which presented a high selectivity of 97.61% [157]. Khder et al. [158]
fabricated MIL-101(Cr) that was loaded with 12-phosphotungstic acid (H3PW12O40) to
work as a catalyst in the Pechmann reaction, esterification reaction, and Friedel–Crafts
acylation reaction. The analyzed results demonstrated that the obtained composite revealed
good catalytic activity in all of the above three reactions.
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3.2.3. CO2 Cycloaddition Reaction

Jiang and the coworkers [159] utilized cationic ionic liquids (1,1′-(n-hexane-1,6-diyl)-
bis(3methylimidazolium) dibromide) to synthesize ionic liquid@MIL-101(Cr) composites.
The ionic liquid@MIL-101(Cr) materials exhibited good catalytic properties for the CO2
cycloaddition reaction without any additives and solvents (Scheme 5), and the product
yield could reach 92.5%.
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Bahadori and colleagues [160] synthesized an MIL-101(Cr) composite with carboxylic
acid-based and imidazole-based ionic liquids (TSIL). Furthermore, MIL-101(Cr)-TSIL can
be used as a catalyst in the reaction of CO2 gas with epoxy compounds without solvents.
The conversion of CO2 could reach 95% with a selectivity of 98% within 6 h at 110 ◦C.

3.2.4. Acetal and Condensation Reactions

Bromberg et al. [147] reported a PTA@MIL-101 composite that combined with MIL-
101(Cr) and phosphotungstic acid (PTA), which showed outstanding catalytic activity for
aldehyde–alcohol reactions. At the same time, a PTA/MIL-101 composite was also em-
ployed as a catalysts in the Bayer condensation reaction of benzaldehyde with 2-naphthol
and the three-component condensation reaction of benzaldehyde, 2-naphthol and ac-
etamide (Scheme 6) [161]. Mortazavi and colleagues [56] investigated the catalytic property
of MIL-101(Cr)-SO3H in the acetalization reaction of benzaldehyde with ethylene gly-
col (Scheme 7). The conversion of benzaldehyde catalyzed by MIL-101(Cr)-SO3H could
reach 90%, which was much higher than that of MIL-101(Cr). MIL-101(Cr)-SO3H also
showed pretty good catalytic activity for the acetalization of benzaldehyde with ethylene
glycol, with 91% of yield in 1 h at room temperature [41]. Zhao et al. [162] synthesized
chitosan-coated MIL-101(Cr) nanoparticles, which exhibited excellent catalytic activity
with the yield of 99% during a one-pot tandem deacetylation-knoevenagel condensation
reaction (benzaldehyde dimethyl acetal releases methanol to produce benzaldehyde, and
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benzaldehyde undergoes synergistic dehydration with malononitrile to produce end prod-
uct 2-benzylmethanecarbonitrile, Scheme 7). The catalyst could be reused several times,
and there was no significant catalytic activity loss after five cycles, and the catalyst was
structurally stable and undamaged during the reaction, as confirmed by XRD.
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3.2.5. Coupling Reaction

Recently, Chen et al. [163] reported the catalytic property of MIL-101(Cr)-SO3H for the
aerobic cross-dehydrogenation coupling (CDC) reaction (Scheme 8). MIL-101(Cr)-SO3H
exhibited quite good catalytic activity in CDC reaction with a product yield of 63% and
high selectivity of 98%, which was much higher than that of typical commercial solid
acid catalysts. Li et al. [143] synthesized amino-functionalized MIL-101(Cr) via reducing
MIL-101(Cr)-NO2, which exhibited excellent catalytic performance in the Henry reaction
of benzaldehyde.
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3.2.6. Cyanosilylation and Hydroxyalkylation Reaction

Zhang et al. [142] investigated the catalytic property of four types of MOFs, MIL-
101(Cr), MIL-53(Al), MIL-47(V), and UiO-66(Zr), as catalysts in the cyanosilylation reaction
of aldehydes with trimethylsilyl cyanide (TMSCN). Among the four MOFs, MIL-101(Cr)
revealed the best catalytic activity with a conversion of 96%, which was due to the extremely
strong interaction between the metallic chromium center of MIL-101(Cr) and the carbonyl
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oxygen atom of benzaldehyde. Henschel et al. [164] also found that MIL-101(Cr) exhibited
excellent catalytic activity in the cyanosilylation reaction, and the benzaldehyde conversion
could be up to 98.5%.

Xia and coworkers [144] reported that the Al metal-doped MIL-101(Cr/Al) displayed
good catalytic activity for the hydroxyalkylation reaction of phenol with formaldehyde
(Scheme 9). MIL-101 (Cr/Al) had a large specific surface area and pore volume, which facil-
itates the process of substrate and product expulsion. The well-interconnected nanopores
exposed the high density of active sites; thus MIL-101(Cr/Al) presented a high catalytic
performance for the hydroxyalkylation reaction of phenol with formaldehyde.
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3.3. Other Applications
3.3.1. Drug Delivery

Traditional drug treatments were ineffective, requiring high doses, and having to be
used very frequently. The use of other substances as drug carriers has been found to signifi-
cantly improve the therapeutic effect of drugs [165,166]. For example, nanoparticles [167],
nanofibers [168], hydrogels, and other substances can effectively wrap and release drugs,
thus improving their therapeutic effect. MOFs are structurally-tunable porous materials
with an adjustable pore size and a high specific surface area, hence, they have great poten-
tial in the application of drug delivery. MIL-101(Cr) was also considered to be a candidate
for drug delivery. For instance, Gordon et al. [169] used MIL-101(Cr) as a carrier for the
delivery of acetaminophen, progesterone, and stavudine FV. The results indicated that the
loaded drugs would be slowly released in 30 min, which suggested that MIL-101(Cr) had
great potential in drug delivery applications. Ayvaz Koroglu et al. [170] found that MIL-
101(Cr) has a high storage capacity of 1000 mg L−1 for corticosteroids (i.e., desoximetasone,
clobetasol propionate, methylprednisolone, and trenbolone, hydrocortisone valerate) with
the controlled release of drug molecules. Horcajada’s [171] study compared the adsorption
and release of MIL-101(Cr) on ibuprofen. MIL- 101(Cr) exhibited excellent drug loading
and controlled release, with higher drug doses and a longer delivery time for ibuprofen.
Silva et al. [172] reported that MIL-101(Cr) and MIL-101(Cr)-NH2 presented good loading
and release capacity toward ibuprofen (IBU) and nimesulide (NMS), respectively. Although
MIL-101(Cr) showed good potential for drug delivery application, however, as far as we
know, it cannot be eventually commercially used for clinics yet, due to the presence of Cr
in the framework.

3.3.2. Sensors

The sensors mainly involved electrochemical sensors [173,174], biosensors [175], elec-
trochemical biosensors [176,177], immunosensors [178], fluorescent sensors [179,180], etc.
Sensors have penetrated into a wide range of fields, such as industrial production [181–183],
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environmental protection [184], bioengineering [179,185], medical diagnosis [186–189], marine
exploration, and so on. MIL-101(Cr) also had great application value in sensing due to its
characteristics [190,191]. Haghighi et al. [192] reported a new quartz gas sensor by using
MIL-101(Cr) as a sensing material for the detection of formaldehyde gas in the environment.
When MIL-101 (Cr) adsorbed formaldehyde molecules, the mass of the quartz crystal surface
changed, and its frequency also changed, so formaldehyde gas can be detected by observing
the frequency change in the sensor response. The sensor had a minimum detection limit of
1.79 ppm and had good repeatability and stability in the detection range.

Zhang et al. [193] prepared an immunosensor based on nanoparticle-loaded MIL-
101(Cr) for the detection of microcystin lr in water. The sensor had good stability and
practicality and had an ultra-high recovery for the detection of microcystin lr in water
bodies. The MIL-101(Cr) sensor had a very good recovery with a detection recovery of 102%,
which was higher than that of the nanobiosensor prepared from NiO-rGO/MXene complex
(89–101%) [194]. Yang et al. [195] prepared a composite fluorescent sensor by combining
amino-functionalized carbon quantum dots with MIL-101(Cr)-SO3H. In this system, MIL-
101(Cr)-SO3H wrapped the amino–carbon quantum dots through the hydrogen bond
between SO3H and NO2 groups, acting as a selective adsorbent to capture the target
analyte. The sensor exhibited good selectivity and sensitivity for 2,4-dinitrophenol with a
detection limit of 0.041 µM.

3.3.3. Proton Conduction

Devautour-Vinot et al. [196] investigated the electronic conductivity of MIL-101(Cr)-
NO2 and its propyl sulfonic acid-modified material. The conductivity of the material
reached 4.8 × 10−3 S cm−1 at a temperature of 363 K and relative humidity of 95%. The
proton conduction properties of the material can be further improved by impregnating it
with a strong acid (H2SO4), and the conductivity could be up to 1.3× 10−1 S cm−1. Recently,
Sun et al. [197] reported a new material consisting of MIL-101(Cr) and phosphotungstic
acid (HPW) with an amino acid-base adduct (HPW-SA), which showed high-temperature
proton-conductivity. Since the solid–liquid phase transition of HPW-SA accelerated the
motion of protons, the electron conductivity of the material increased sharply near the phase
transition temperature. At 150 ◦C, the conductivity of the material was 3.1 × 10−5 S cm−1,
while the temperature increased to 190 ◦C, the proton conductivity of HPW-SA@MIL-
101(Cr) reached 1.1 × 10−3 S cm−1, which was higher than most of the reported high-
temperature proton-conducting materials. Meanwhile, the proton conductivity of HPW-
SA@MIL-101(Cr) remained stable after several cycle tests without any significant decrease,
indicating excellent stability and cyclability.

3.3.4. Hybrid Matrix Membranes

The MOF materials were synthesized in functional form due to their inherent porosity
and were most commonly used as a dispersed phase in hybrid matrix membranes [198].
The preparation of hybrid matrix membranes by using MIL-101(Cr) or MIL-101(Cr)-based
materials is another hotspot of research. Rajati et al. [199] combined polyvinylidene fluoride
(PVDF) and MIL-101(Cr) to prepare Matrimid/PVDF/MIL-101(Cr) membranes. This
hybrid matrix membrane had excellent permeability and CO2/CH4 selectivity. Compared
with the original matrimid membrane, the hybrid membrane had a 102% increase in CO2
permeability and a 77% increase in selectivity. This can be attributed to the high polarization
of the MIL-101(Cr) structure and the adsorption of CO2 by MIL-101(Cr), which enhanced
the solubility of CO2 molecules in the membrane and thus improved the permeability
of the hybrid matrix membrane. Subsequently, Rajati and coworkers prepared mixed
matrix membranes containing ionic liquids and NH2-MIL-101(Cr) [23]. Compared with the
original matrix membrane, the prepared hybrid membrane possessed a 162% increase in
CO2 permeability and a 224% increase in selectivity.
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4. Conclusions

In summary, the structural properties of MIL-101(Cr) were significantly influenced by
the synthetic method. At present, the hydrothermal synthesis method is the most commonly
used method, which could produce MIL-101(Cr) with high crystallinity and excellent
properties. Many scientists used other acidic additives (acetic acid, hydrochloric acid, etc.)
instead of hydrofluoric acid to participate in the reaction and successfully synthesized
MIL-101(Cr) with excellent properties and high specific surface area and porosity. Other
methods, including the microwave-assisted method, the solvothermal method, and the
template method, were also fully discussed. Microwave-assisted, high-temperature, and
high-pressure conditions could accelerate the synthesis of MIL-101(Cr). MIL-101(Cr), with
excellent performance and hierarchical pore structure, could be synthesized by using CTAB
and other substances as template agents.

MIL-101(Cr) had high porosity and unsaturated metal sites in its structure, which had
excellent adsorption properties for gases, dye solutions, and volatile compounds. Especially,
MIL-101(Cr) possessed excellent adsorption capacity for CO2 and H2. According to the
literature, MIL-101(Cr) amine functionalization, carbon doping, and metal doping could
greatly improve the adsorption capability of CO2 and increase its CO2/N2 selectivity.
MIL-101(Cr) also exhibited great potential application in wastewater treatment due to
the efficient removal of organic dyes, drug residues, and heavy metal ions, etc., from
aqueous solutions.

The presence of removable water molecules in the structure of MIL-101(Cr) provided
potential unsaturated metal sites, which can be used as catalytic sites in various reactions.
Additionally, grafting functional groups, combined with metal nanoparticles, metal oxides,
or other guests, were common strategies to enhance the catalytic activity of MIL-101(Cr).
Furthermore, MIL-101(Cr) could be used as a substrate for drug delivery, proton conduction,
and hybrid matrix membranes. However, MIL-101(Cr) is a microporous MOF whose
maximum capture window is only ~16 Å. The small pore size is not conducive to the rapid
diffusion and transport of molecules, which affects the adsorption and catalytic rates of
MIL-101(Cr) and greatly hinders the practical application of MIL-101(Cr) in adsorption
and catalysis. Therefore, expanding the pore size of MIL-101(Cr) is the most direct way
to improve the performance of MIL-101(Cr), which is also a hot topic of research today.
Further studies on the functionalization of MIL-101(Cr) by various functional groups and
the combination of MIL-101(Cr) with the guest compound nanomaterials are beneficial for
the preparation of multifunctional hybrid materials.
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