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Table S1. Summary of the raw materials and characteristics of Protein- Polysaccharide composite hydrogel. 

Materials Gelling methods Properties and Functions Reference 

Gelatin/Carrageenan Glutaraldehyde 

crosslinking 

 Good gel strength, 

potential barrier for 

microbes 

[1] 

Chitosan/Gelatin EDC crosslinking 
Biodegradability, fast 

gelation, reducing cecum-

abdomen adhesion 

formation 

[2] 

Silk fibroin/ Tyramine-

modified hyaluronic 

acid 

Laccase-catalyzed 
High structural stability, 

improved mechanical 

properties 

[3] 

Diosgenin-

nanocellulose/ 

Gelatin 

Genipin crosslinking 
good swelling capacity, 

high gel yield, excellent 

antibacterial effect 

[4] 

Flammulina 

velutipes polysaccharide/ 
soy protein 

Thermal treatment 
uniform and dense 

microstructure, low 

viscosity, higher water-

binding ability, good 3D 

printing quality 

[5] 

2. Results and Discussions 

2.9. Thermal stability of Sal-SPI composite hydrogel 

The relationship curves of the weight loss of Sal, SPI, and Sal-SPI composite hydrogels as 

a function of temperature are shown in Figure S1(a) and Figure S1(b). All samples show a 

slight weight loss near 100℃, which may be due to water evaporating from the surface of 

the samples. Sal loses roughly 60.4% of its weight in the range of 288~600 °C, which 

corresponds to the break of the depolymerized side chain of the C=O and C=C bonds of 

the sugar ring and the dehydration degradation of the main chain[6]. For SPI, there are 

two stages of decomposition: at 204~383 °C, the weight loss is 50.1%, which can be 

attributed to the breakage of the side chain groups including NH2 and COOH, as well as 

the destruction of the hydrogel network; at 384~583 °C, the weight loss is 12.4% which 



could be due to the breakage of the protein backbone. The thermogravimetric analysis 

curve of Sal-SPI composite hydrogel showed a similar tendency to that of a single SPI 

hydrogel. As shown in Figure S1(b), the maximum mass loss rate temperature (Tmax) of 

Sal-SPI composite hydrogel is 312 °C greater than that of a single SPI hydrogel (302 °C). 

This result demonstrates that the thermal stability of Sal-SPI composite hydrogel improved 

after the introduction of Sal. With the help of hydrogen bonds, electrostatic interactions, 

and other intermolecular interaction forces, SPI and Sal chains could form a denser 

network structure, increasing the thermal stability of the composite hydrogel. 
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Figure S1. (a) Thermogravimetric Analysis (TGA)of Sal, SPI, and Sal-SPI composite 



hydrogel; (b) DTGA of Sal, SPI, and Sal-SPI composite hydrogel. 

3. Materials and Methods 

3.7. Thermogravimetric analysis (TGA) 

   The lyophilized Sal single hydrogel, SPI single hydrogel, and Sal-SPI composite 

samples (about 3 mg) were weighed and placed in a thermogravimetric analyzer 

(METTLER, Switzerland) for detection. The testing temperature were ranging from 25 to 

600℃, the nitrogen purge speed was 100 mL/min, and the heating rate was 10℃/min [7]. 
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