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Abstract: In response to many stresses, such as oncogene activation or DNA damage, cells can
enter cellular senescence, a state of proliferation arrest accompanied by a senescence-associated
secretory phenotype (SASP). Cellular senescence plays a key role in many physiopathological contexts,
including cancer, aging and aging-associated diseases, therefore, it is critical to understand how
senescence is regulated. Calcium ions (Ca2+) recently emerged as pivotal regulators of cellular
senescence. However, how Ca2+ levels are controlled during this process is barely known. Here,
we report that intracellular Ca2+ contents increase in response to many senescence inducers in
immortalized human mammary epithelial cells (HMECs) and that expression of calbindin 1 (CALB1),
a Ca2+-binding protein, is upregulated in this context, through the Ca2+-dependent calcineurin/NFAT
pathway. We further show that overexpression of CALB1 buffers the rise in intracellular Ca2+

levels observed in senescent cells. Finally, we suggest that increased expression of Ca2+-binding
proteins calbindins is a frequent mark of senescent cells. This work thus supports that, together
with Ca2+channels, Ca2+-binding proteins modulate Ca2+ levels and flux during cellular senescence.
This opens potential avenues of research to better understand the role of Ca2+ and of Ca2+-binding
proteins in regulating cellular senescence.
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1. Introduction

Cellular senescence is a cell response to many stresses, such as oncogene activation, ox-
idative stress, telomere shortening, or DNA damage. This response is mainly characterized
by a stable cell proliferation arrest and a senescence-associated secretory phenotype (SASP),
consisting in the secretion of multiple factors, including, among others, pro-inflammatory
cytokines and chemokines, metalloproteases and growth factors. The SASP can activate the
immune system to eliminate senescent cells. Senescence is thus a critical barrier against
abnormal cell proliferation and tumor formation. However, over time and upon chronic ex-
posure to stresses, senescent cells accumulate and contribute to tumor progression through
their SASP, by promoting stemness, epithelial-mesenchymal transition, and migration. Ac-
cumulation of senescent cells also critically promotes aging and aging-associated diseases.
Even though some molecular pathways are already well known to regulate senescence,
such as the p53/p21CIP1 or p16INK4a/Rb axis, which implement the cell cycle arrest or the
NF-κB, Notch, and mTOR pathways which control the SASP, how senescence is regulated
is not yet fully understood [1–3].

Calcium (Ca2+) is a powerful secondary messenger driving multiple cellular processes,
ranging from cell proliferation and secretion to cell death. Ca2+ intracellular concentra-
tions and fluxes need to be tightly controlled to achieve a fine-tune regulation of cellular
responses. A pivotal role of Ca2+ in cellular senescence has recently emerged in the lit-
erature [4,5]. A rise in intracellular Ca2+ contents and activation of calcium-dependent
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signaling pathways, such as the calcineurin/nuclear factor of activated T cells (NFAT)
pathway, have been reported in some senescence contexts. These increased contents and
activity regulate senescence outcomes [6,7]. However, how intracellular Ca2+ levels evolve
and are controlled in response to different senescence inducers, especially in epithelial cells,
is barely known.

Many proteins such as channels, transporters, or pumps can regulate Ca2+ transfers
and levels inside the cells. A few of them have been recently described as key regulators
of cellular senescence. The inositol 1,4,5-trisphosphate receptor type 2 (ITPR2), which
acts as an endoplasmic reticulum (ER) Ca2+ release channel, is shown to promote cellular
senescence and organismal aging by fostering Ca2+ transfers from ER to mitochondria,
through mitochondria-ER contacts (MERCs) [8–10]. Decreased expression of transient
receptor potential cation channel subfamily C member 3 (TRPC3) was observed in response
to many senescence inducers. TRPC3 re-expression promotes escape from oncogene-
induced senescence by decreasing mitochondrial Ca2+ load by inhibiting ITPR3 activity [11].
Beyond these channels, cells also have a calcium-buffering system that shapes intracellular
Ca2+ signals. Calcium-buffering proteins are calcium-binding proteins (CaBP) that tightly
control intracellular free Ca2+ concentrations. Indeed, they sequester free Ca2+ by their EF-
hand domains and thus fine-tune Ca2+ signaling [12]. Whether calcium-buffering proteins
are involved in senescence remains unknown.

In this study, we discovered that the expression of calbindin 1 (CALB1, also called
calbindin-D28K), a well-known calcium-binding protein, is upregulated in response to
many senescence inducers in immortalized human mammary epithelial cells (HMECs) and
that CALB1 buffers the rise of Ca2+ observed in senescent cells. During cellular senescence
in non-epithelial cells, CALB1 is not induced, but CALB2 protein might take over this
Ca2+-buffering role.

2. Results
2.1. A Rise in Intracellular Calcium Content Is a Common Mark of Senescence in HMECT

Regulation of intracellular Ca2+ levels has been recently reported in some contexts
of cellular senescence, and we and others have demonstrated that Ca2+ transfer from
endoplasmic reticulum to mitochondria promotes cellular senescence [8–11]. To know
whether Ca2+ level alterations are a classical mark of senescent cells, we measured Ca2+

levels in HMEC in proliferation versus senescence using different types of senescence
inducers: oncogenes, the chemotherapeutic agent bleomycin, or the p53 stabilizer nutlin-3.
For oncogene-induced senescence (OIS), telomerase-expressing HMEC (HMECT) were
infected with retroviral vectors encoding Mek or Raf oncogenes in fusion with the ligand
binding domain of estrogen receptor (ER) (HMECT-Mek:ER; HMECT-Raf:ER), inducible
with 4-HydroxyTamoxifen (4-OHT). These HMECT expressing inducible oncogenes enter
OIS upon oncogene activation by adding 4-OHT [9,13–15]. Senescence was otherwise
induced by the genotoxic drug bleomycin through activation of a DNA damage response
or by nutlin through stabilization of p53, one of the main effectors of senescence (data
not shown). Using the cytosolic Ca2+ probe Fura2, we assessed Ca2+ contents both in the
cytosol and in the intracellular stores (i.e., mainly Ca2+ stored in endoplasmic reticulum and
mitochondria). The size of intracellular Ca2+ stores was appreciated as the Ca2+ increase in
the cytosolic Ca2+ compartment due to the ionomycin-induced membrane permeabilization
and the subsequent organelles’ depletion obtained in the absence of external Ca2+. All the
senescence inducers provoked an increase in the resting cytosolic Ca2+ concentration and
in the intra-organelle Ca2+ content (Figure 1). Therefore, this global Ca2+ increase appears
to be a mark of cellular senescence in HMECT.
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Figure 1. Intracellular Ca2+ levels are increased in HMECT in response to diverse senescence induc-
ers. Ca2+ levels were measured with the ratiometric probe Fura2-AM in HMECT either overexpress-
ing 4-OHT-inducible oncogenes Mek:ER (A) or Raf:ER (B) or treated with bleomycin (C) or nutlin 
(D). Resting cytosolic Ca2+ concentration was evaluated as stable fluorescent ratio before stimulation 
(left panels) and the size of Ca2+ intracellular stocks was estimated as the Ca2+ peak amplitude ob-
tained after ionomycin stimulation (right panels). Means +/− SEM of three independent experiments 
are presented. Mann–Whitney t-test was performed, and p-values are indicated. Mek:ER cells: Three 
days after 4-OHT treatment (−4-OHT n = 391, +4-OHT n = 271), Raf:ER cells: three days after 4-OHT 
treatment (−4-OHT n = 173, +4-OHT n = 154), bleomycin or nutlin-treated cells: four days after treat-
ment (non-treated n = 231, bleomycin n = 94, nutlin n = 162). 

2.2. CALB1 Expression Is Induced in Senescent HMECT 
Ca2+ homeostasis is crucial within the cell as a high Ca2+ concentration can lead to cell 

death, whereas a low Ca2+ concentration blocks some crucial cellular pathways because 
Ca2+ acts as a cofactor of multiple enzymes and pathways [16]. The fine-tuning of Ca2+ 
concentration in the different cellular compartments relies on various Ca2+ channels, 
pumps, transporters, or calcium-buffering proteins. To identify new Ca2+ regulators dur-
ing oncogene-induced senescence, we explored whole genome transcriptome data that we 
recently obtained in HMECT-Mek:ER [17] and noticed an induced expression of CALB1 
(calbindin 1, also called calbindin-D28K) after Mek activation with 4-OHT (Figure 2A). 
CALB1 is a calcium-binding protein well known to buffer cytosolic Ca2+ contents and thus 
participate in Ca2+ homeostasis [12]. mRNA levels of other Ca2+-buffering proteins such as 
CALB2 or PVALB were not significantly induced by Mek after four days of activation, 

Figure 1. Intracellular Ca2+ levels are increased in HMECT in response to diverse senescence inducers.
Ca2+ levels were measured with the ratiometric probe Fura2-AM in HMECT either overexpressing
4-OHT-inducible oncogenes Mek:ER (A) or Raf:ER (B) or treated with bleomycin (C) or nutlin (D).
Resting cytosolic Ca2+ concentration was evaluated as stable fluorescent ratio before stimulation (left
panels) and the size of Ca2+ intracellular stocks was estimated as the Ca2+ peak amplitude obtained
after ionomycin stimulation (right panels). Means +/− SEM of three independent experiments are
presented. Mann–Whitney t-test was performed, and p-values are indicated. Mek:ER cells: Three
days after 4-OHT treatment (−4-OHT n = 391, +4-OHT n = 271), Raf:ER cells: three days after 4-OHT
treatment (−4-OHT n = 173, +4-OHT n = 154), bleomycin or nutlin-treated cells: four days after
treatment (non-treated n = 231, bleomycin n = 94, nutlin n = 162).

2.2. CALB1 Expression Is Induced in Senescent HMECT

Ca2+ homeostasis is crucial within the cell as a high Ca2+ concentration can lead to
cell death, whereas a low Ca2+ concentration blocks some crucial cellular pathways be-
cause Ca2+ acts as a cofactor of multiple enzymes and pathways [16]. The fine-tuning of
Ca2+ concentration in the different cellular compartments relies on various Ca2+ channels,
pumps, transporters, or calcium-buffering proteins. To identify new Ca2+ regulators during
oncogene-induced senescence, we explored whole genome transcriptome data that we
recently obtained in HMECT-Mek:ER [17] and noticed an induced expression of CALB1
(calbindin 1, also called calbindin-D28K) after Mek activation with 4-OHT (Figure 2A).
CALB1 is a calcium-binding protein well known to buffer cytosolic Ca2+ contents and thus
participate in Ca2+ homeostasis [12]. mRNA levels of other Ca2+-buffering proteins such
as CALB2 or PVALB were not significantly induced by Mek after four days of activation,
and S100G mRNA was not detected in HMECT cells (Figure 2A). We then investigated the
level and localization of CALB1 in HMECT in the different models of senescence described
in Figure 1. We confirmed CALB1 induction by RT-qPCR and immunofluorescence upon
Mek-induced senescence in HMECT (Figure 2B). Interestingly, in the other senescence
contexts, an increase in CALB1 level was also observed by RT-qPCR and immunofluo-
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rescence (Figure 2C–E). CALB1 staining might indicate mainly cytosol localization, as
expected, although we cannot rule out other localization (Figure 2B–E). Altogether these
results support that senescent HMECT cells display increased Ca2+ contents together with
increased expression of a calcium-buffering protein, CALB1.
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Figure 2. CALB1 expression is increased in HMECT in response to diverse senescence inducers. (A) 
Transcriptomics analysis in HMECT-Mek:ER reveals that CALB1 expression is induced after onco-
gene activation by 4-OHT. PVALB, CALB2, and CALB1 mean expression level from a biological 

Figure 2. CALB1 expression is increased in HMECT in response to diverse senescence inducers. (A)
Transcriptomics analysis in HMECT-Mek:ER reveals that CALB1 expression is induced after oncogene
activation by 4-OHT. PVALB, CALB2, and CALB1 mean expression level from a biological triplicate is
indicated at 0 (−4-OHT), 24 and 96 h after 4-OHT treatment. An unpaired t-test with Welch correction
was used. (B–E). CALB1 mRNA level (left panels) and protein level and subcellular localization
(right panels) were assessed in HMECT either overexpressing 4-OHT-inducible oncogenes Mek:ER
(B) or Raf:ER (C) or treated with bleomycin (D) or nutlin (E). CALB1 mRNA level was measured
by RT-qPCR and mean +/- SEM of independent experiments are shown ((B), n = 6; (C), n = 8;
(D), n = 3; (E), n = 4). Unpaired t-test (B,D,E) or Mann–Whitney test (C) were performed, and
p-values are indicated. CALB1 protein level and localization were assessed six days after treatment
by immunofluorescence with CALB1 antibody, nuclei were stained with Hoechst.
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2.3. CALB1 Expression Is Induced by the Calcium-Dependent Calcineurin/NFAT Pathway and Its
Constitutive Expression Limits Intracellular Ca2+ Accumulation upon OIS in HMECT

Ca2+ as a secondary messenger is known to activate different calcium-dependent
signaling pathways. Notably, it binds to calmodulin, activating calcineurin which allows
NFAT transcription factor translocation into the nucleus and activation. NFAT transcription
factors have been described to directly induce CALB1 expression in pancreatic β cells [18].
Moreover, pharmacological inhibition of the calcineurin/NFAT pathway was reported
to counteract p53-dependent cancer cell senescence [7]. We thus investigated whether
the calcium-dependent calcineurin/NFAT pathway could impact CALB1 expression in
OIS. First, we treated HMECT-Mek:ER cells with a commonly used chemical inhibitor of
calcineurin, FK-506. FK-506 treatment impaired the induction of CALB1 expression upon
Mek activation (Figure 3A), indicating the role of NFAT transcription factors in CALB1
induction. This inhibition was not complete, suggesting that other transcription factors than
NFAT can contribute to CALB1 induction during OIS. Still, supporting a role of NAFTc1,
its overexpression led to an increase in CALB1 mRNA level (Figure 3B). This suggests that
upon OIS in HMECT, increased Ca2+ content could induce CALB1 expression through
NFATc1 activation. As CALB1 is a potent calcium-buffering protein, we next investigated
whether CALB1 overexpression could affect Ca2+ levels in OIS. We observed that, indeed,
CALB1 overexpression (Figure 4A) impairs the increase in Ca2+ levels in the cytosol and
intracellular stocks during OIS (Figure 4B). Thus, induction of CALB1 during OIS could
limit the Ca2+ increase in senescent cells.
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Figure 3. The calcium-dependent calcineurin/NFAT pathway induces CALB1 expression upon on-
cogene activation in HMECT. (A) CALB1 mRNA level was measured by RT-qPCR in HMECT over-
expressing 4-OHT-inducible Mek:ER and treated (+) or not (−) with FK-506, a calcineurin inhibitor 
(treated every day with 2 µM during six days), or/and with 4-OHT (100 nM). The first three days, 
cells were co-treated with 4-OHT and FK-506 (first treatment 4 h prior 4-OHT), and the three last 
days only with FK-506. Mean +/− SEM of four independent experiments are shown. An unpaired t-
test was performed and p-value is indicated. (B) NFATc1 (left panel) and CALB1 (right panel) 
mRNA levels were measured by RT-qPCR in HMECT 24 h after infection with a vector encoding 
NFATc1 or control empty vector. Mean +/− SEM of six independent experiments are shown. Un-
paired t-tests were performed, and p-values are indicated. 

Figure 3. The calcium-dependent calcineurin/NFAT pathway induces CALB1 expression upon
oncogene activation in HMECT. (A) CALB1 mRNA level was measured by RT-qPCR in HMECT
overexpressing 4-OHT-inducible Mek:ER and treated (+) or not (−) with FK-506, a calcineurin
inhibitor (treated every day with 2 µM during six days), or/and with 4-OHT (100 nM). The first
three days, cells were co-treated with 4-OHT and FK-506 (first treatment 4 h prior 4-OHT), and
the three last days only with FK-506. Mean +/− SEM of four independent experiments are shown.
An unpaired t-test was performed and p-value is indicated. (B) NFATc1 (left panel) and CALB1
(right panel) mRNA levels were measured by RT-qPCR in HMECT 24 h after infection with a vector
encoding NFATc1 or control empty vector. Mean +/− SEM of six independent experiments are
shown. Unpaired t-tests were performed, and p-values are indicated.
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vector, with or without 4-OHT treatment. Resting cytosolic Ca2+ concentration was evaluated as a 
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estimated as the Ca2+ peak amplitude obtained after ionomycin stimulation (right panel). Means +/− 
SEM of 3 independent experiments are presented. Kruskal–Wallis test was performed, and p-values 
are indicated. Three days after 4-OHT treatment, GFP- 4-OHT n = 85 or + 4-OHT n = 126, CALB1- 4-
OHT n = 99 or + 4-OHT n = 77. 
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Figure 4. CALB1 overexpression buffers increased Ca2+ levels induced by oncogene activation in
HMECT. (A) CALB1 protein level was assessed by Western Blot in HMECT-Mek:ER (without 4-OHT)
infected with a vector encoding CALB1 or the corresponding GFP control vector. α-Tubulin protein
level was assessed as a loading control. (B) Ca2+ levels were measured with the ratiometric probe
Fura2 in HMECT-Mek:ER inducible oncogene and CALB1 or the corresponding GFP control vector,
with or without 4-OHT treatment. Resting cytosolic Ca2+ concentration was evaluated as a stable
fluorescent ratio before stimulation (left panel), and the size of Ca2+ intracellular stocks was estimated
as the Ca2+ peak amplitude obtained after ionomycin stimulation (right panel). Means +/− SEM
of 3 independent experiments are presented. Kruskal–Wallis test was performed, and p-values are
indicated. Three days after 4-OHT treatment, GFP- 4-OHT n = 85 or + 4-OHT n = 126, CALB1- 4-OHT
n = 99 or + 4-OHT n = 77.

2.4. Increased Expression of Calbindins Is a Frequent Mark of Senescent Cells

Finally, as an increase in intracellular Ca2+ contents appears to be a common mark of
senescence based on our data in epithelial cells (Figure 1) and on data in other cell types
according to previous reports [6,7,11], we investigated whether induction of the expression
of calcium-buffering calbindin-type proteins could also be a common mark of senescent
cells. In addition to Raf and Mek oncogenes, bleomycin, and nutlin (Figure 1), other senes-
cence inducers such as Ras oncogene activation, H2O2, TGFβ, or KCl, which are all known
to induce senescence in HMECT [14,19–21], also triggered a rise in CALB1 expression
in HMECT (Figure 5A). We then explored if an induced expression of some calbindins
could also be observed upon senescence in other cell types by interrogating published
transcriptome data as well as performing RT-qPCR. In melanocytes induced in senescence
by B-RafV600E oncogene, no increase in CALB1 expression could be detected (data not
shown), but induction of mRNA levels of CALB2 (calbindin 2, also called calbindin-D29K
or calretinin), another well-known calcium-buffering protein (Figure 5B) [22]. CALB2
expression was also increased in normal human fibroblasts upon Raf activation, as well as
in response to other senescence-inducing stresses such as Ras activation [23] or etoposide
treatment [24] (Figure 5C). Expression of calbindins is thus induced in senescent cells, but
induction of both CALB1 and CALB2 in the same senescence model was not observed,
suggesting cell-type specificity in the calbindin induced during senescence.
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Figure 5. Expression of calbindins is induced in many senescence contexts. (A) Additional contexts
where CALB1 expression is upregulated in HMECT in response to senescence inducers. CALB1
mRNA level was measured by RT-qPCR in HMECT overexpressing 4-OHT-inducible ER:Ras onco-
gene (day 6 after 100 nM 4-OHT treatment, n = 6) or treated with H2O2 (at 250µM for 1 h and RNA
were collected six days later, n = 3), TGFβ (at 0.5 ng/mL for three days, n = 6) or KCl (at 65 mM for
24 h, n = 5). (B,C) CALB2 expression is increased in several senescence contexts. (B) CALB2 mRNA
level measured in melanocytes overexpressing B-RAFV600E oncogene (transcriptome data [22]). (C)
CALB2 mRNA level measured in normal human embryonic lung fibroblasts MRC5 overexpressing
4-OHT-inducible Raf:ER oncogene (RT-qPCR at day 3 after 100 nM 4-OHT treatment, n = 4), IMR90
overexpressing 4-OHT-inducible ER:Ras oncogene (transcriptome data [23]) or WI38 treated with
etoposide (transcriptome data [24]). For RT-qPCR, mean +/− SEM of independent experiments are
shown. Unpaired t-test (for HMECT-ER:Ras, HMEC H2O2, HMEC TGFβ, and MRC5-Raf:ER) or
Mann–Whitney test (for HMECT KCl) were performed and p-values are indicated.

3. Discussion

In this study, we showed that intracellular Ca2+ levels in the cytosol and in the
intracellular stocks rise in HMECT in response to diverse senescence inducers. Moreover,
we discovered that mRNA levels of a calcium-buffering protein, CALB1, are increased in
these contexts. CALB1 expression is induced by the calcineurin/NFAT pathway, which is
activated by Ca2+. We further showed that CALB1 overexpression in oncogene-induced
senescence buffers the rise in Ca2+ levels. Finally, we observed that expression of other
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calcium-buffering calbindin-type proteins can be upregulated in senescence models where
CALB1 is not induced, suggesting that senescent cells have developed strategies to tightly
regulate the rise of Ca2+ during senescence.

Together with other works which reported increased Ca2+ levels in several senescence
contexts [5,8–11], our observations suggest that a rise in intracellular Ca2+ contents could be
a new hallmark of cellular senescence. Although some contributions of Ca2+ in senescence
have already been identified, its precise role in this context is not fully understood yet
[5,8–11]. In our study, we observed an increase in Ca2+ contents both in the cytosol and in
intracellular stocks, which are mainly in the ER and in the mitochondria. Ca2+ contained
in these two organelles plays important roles in diverse cellular processes such as ATP or
reactive oxygen species (ROS) production and contributes to ER stress. We recently showed
that during senescence, mitochondrial Ca2+ concentration increases notably due to Ca2+

transfer from the ER promoted by MERCs. Accumulation of Ca2+ in mitochondria induces
ROS generation and DNA damage, which lead to cell entry into senescence [8–10]. A role
of Ca2+ in the regulation of SASP has also been reported as the precursor of interleukin
1α (IL1α), a key upstream SASP pro-inflammatory cytokine inducing the expression of
other SASP cytokines such as IL6 and IL8, is processed by the calcium-dependent calpain
protease [25]. Ca2+ also activates mTOR and NLRP3 [26,27], which are instrumental for
IL1α translation and processing. Consequently, a rise of Ca2+ in senescent cells might
contribute to many features of senescent cells [5].

This rise of Ca2+ seems to result in the up-regulation of calcium-buffering protein,
CALB1, in senescent HMECT. Indeed, according to our results, chemical inhibition of
the calcium-dependent calcineurin/NFAT pathway largely inhibits the upregulation of
CALB1 in senescent HMECT, whereas constitutive expression of NFATc1 transcription
factor activates CALB1 expression in HMECT. In this latter condition, mRNA level of
overexpressed NAFTc1 is very high compared to the level of induction of CALB1 messenger.
This difference could be explained by a low level of transcriptionally active NFAT protein
and/or CALB1 promoter saturation and/or limitation of cofactors. Our findings are in
accordance with a previous report describing that NFAT pathway upregulates CALB1 in
another context [18]. Importantly, this pathway also induces the expression of ITPR2 ER
Ca2+ release channel by directly binding to its promoter [28], ITPR2 being a key regulator of
cellular senescence [8–10]. The calcineurin/NFAT pathway could thus impact senescence
by regulating Ca2+ signaling at several levels. Up to now, this pathway has been reported
either to promote or suppress senescence depending on the cell type and context [7,29],
and future studies will be required to better understand the role of the calcineurin/NFAT
pathway in regulating Ca2+ signaling during cellular senescence.

The role of CALB1 in senescence remains to be explored. It was recently reported that
a high level of CALB1 could inhibit senescence induction by promoting p53 degradation
through HDM2 activation in cancer cells [30], but Ca2+ contribution was not investigated
in this study. We showed that CALB1 overexpression in HMECT buffers the rise in intra-
cellular Ca2+ contents in oncogene-induced senescence. However, we did not observe in
our preliminary experiments any impact of this overexpression on cell proliferation arrest
induced by Mek activation (data not shown). CALB1 was reported to protect cells from
death by buffering Ca2+ [31]. Moreover, CALB1 does not only act as a calcium-buffering
protein but also as a Ca2+ sensor, interacting in a calcium-dependent manner with other
proteins. Notably, after Ca2+ fixation to its EF-hands, CALB1 interacts with and inhibits
caspase 3, a key effector caspase in the apoptosis process [32]. This inhibition was shown
to suppress apoptosis upon CALB1 overexpression in osteoblastic cells [33]. As a too
high intracellular Ca2+ concentration triggers cell death, one interesting hypothesis would
be that CALB1 expression is upregulated in response to senescence-inducing stresses in
order to buffer the rise in intracellular Ca2+ levels and avoid its cytotoxic effects. This
negative feedback loop would be established by the calcium-dependent calcineurin/NFAT
pathway. The observation of an increased expression of calbindins in response to many
senescence-inducing stresses in several cell types suggests that this could be a general
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mechanism in senescent cells. This idea will need to be explored by investigating the
impact of downregulating the expression of calbindins on senescence.

Altogether, by identifying the induction of the expression of calbindins in senescent
cells, our work points out a new feature of senescent cells and provides a better under-
standing of calcium-related processes in cellular senescence. Here, we focused our work
on normal senescent cells, it will also be interesting to investigate whether these mecha-
nisms are shared by senescent cancer cells, as some molecular features they express are
different [34]. This work paves the way for future studies investigating new potential
molecular basis underlying senescent cell resistance to cell death, which might be exploited
for designing new senolytic approaches.

4. Materials and Methods
4.1. Cell Culture and Reagents

Human mammary epithelial cells (HMEC, CC-2551B, Lonza, Basel, Switzerland) were
cultured in a mammary epithelial cell growth medium (C-21210, Promocell, Heidelberg,
Germany) supplemented with 1% penicillin/streptomycin (Life Technologies, Carlsbad,
CA, USA). Human fetal lung fibroblasts MRC5 (ATCC), 293 GP retrovirus-producing
cells, and 293 T lentivirus-producing cells (Clontech, Mountain View, CA, USA) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM supplemented in GlutaMax, Life
Technologies) with 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA) and
1% penicillin/streptomycin (ThermoFisher Scientific, Waltham, MA, USA). All the cells
were cultured at 37 ◦C with 5% CO2. (Z)-4-hydroxytamoxifen (4-OHT) (Sigma-Aldrich)
was used at 100 nM, bleomycin (Merck, Kenilworth, NJ, USA) at 12 µg/mL, nutlin-3
(Sigma-Aldrich) at 1 µM, H2O2 (Sigma) at 250µM, TGFβ (Peprotech, Rocky Hill, NJ, USA)
at 0.5 ng/mL, KCl (Sigma-Aldrich) at 65 mM and FK-506 (MedChem Express, Monmouth
Junction, NJ, USA) at 2 µM.

4.2. Vectors, Transfection, and Infection

HMEC were first infected with pWZL-Blast-Flag-HA-hTERT retroviral vector [35] (Ad-
dgene_22396) encoding the catalytic subunit of telomerase to generate immortalized HMEC
(HMECT). HMECT or MRC5 were infected with pLNC-Mek:ER (∆MEK1 (∆N3,S218E,
S222D):ER) [9], pBabe-Raf:ER (HA-∆Raf1(S642A):ER) [36] (Addgene_72572) or pLNCX-
ER:Ras (ER1a H-RasG12V) [37] (Addgene_67844) retroviral vectors encoding Mek, Raf or
Ras oncogenes respectively, fused to the ligand binding domain of estrogen receptor (ER).
Upon 4-OHT treatment, these ER-fused oncogenes are stabilized and activated [9,36,37].
A retroviral vector encoding a constitutively active NFATc1 ([38], Addgene_11102) and a
lentiviral vector encoding CALB1 (pLV-CALB1, VectorBuilder) were used, as well as the
corresponding control vectors (empty or encoding the GFP). 293 GP retrovirus-producing
cells and 293 T lentivirus-producing cells were transfected with GeneJuice transfection
reagent (Merck Millipore) according to the manufacturer’s recommendations. Two days af-
ter transfection, the virus-containing supernatant was filtered, diluted with fresh mammary
epithelial cell growth medium (for HMEC and HMECT) or with fresh DMEM (for MRC5)
(1/2 dilution for 293 GP cells and 1/5 dilution for 293 T cells) and hexadimethrine bromide
at 8 µg/mL (Sigma-Aldrich) and used to infect HMEC/HMECT or MRC5. On the following
day, media were changed, and selection of infected cells was started using puromycin
(500 ng/mL; Invivogen) or geneticin (100 µg/mL; Life technologies). HMEC and HMECT
are estrogen-independent cells, and accordingly, they do not respond to 4-OHT at the
concentration used. The generated HMECT expressing inducible oncogenes were used
within the next 2–4 weeks to avoid selection of specific clones or problems of ploidy.

4.3. RNA Extraction, Reverse Transcription and Real-Time Quantitative PCR

Total RNAs were extracted using NucleoZOL (Macherey-Nagel) according to the
manufacturer’s instructions. RNAs were reverse transcribed with First-Strand cDNA
Synthesis Kit (GE Healthcare) following the manufacturer’s recommendations. TaqMan
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real-time quantitative PCR was then run with PCR mixture containing TaqMan mix (Roche),
200 nM of primers, Universal Probe Library probe (100 µM, ThermoFisher Scientific), and
cDNA template. Reactions were performed in triplicate on a FX96 Thermocycler (Bio-
Rad). The comparative Ct (∆∆CT) method and normalization with GAPDH housekeeping
gene were used to calculate the relative amount of mRNA. Sequences of primers are as
follows: CALB1:Sens 5′-aagatccgttcggtacagctt-3′, Anti-sens 5′-ctgaaggatctgtgcgagaa-3′;
CALB2:Sens 5′-tcatttcctttttgtttttctcg-3′, Anti-sens 5′-gcgatcttcacattttacgaca-3′; NFATc1: Sens
5′-ggtcagttttcgcttccatc-3′, Anti-sens 5′-ccaaggtcattttcgtggag-3′; GAPDH: Sens 5′-agccacatcgc
tcagacac-3′, Anti-sens 5′-gcccaatacgaccaaatcc-3′.

4.4. Western Blot

Cells were lysed in 6X Laemmli buffer (Tris 125 mM pH 6.8, 2% SDS, 10% glycerol) with
15% β-mercaptoethanol and boiled for 5 min at 100 ◦C. After measuring protein concentra-
tions with Bio-Rad Protein Assay kit according to the manufacturer’s recommendations,
total cell extracts were separated using 12% acrylamide gel by SDS-PAGE electrophoresis,
and proteins were transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA).
Membranes were blocked for 1 h in Tris buffer saline (TBS, pH 7.5), with 0.05% Tween-20
(TBS-T) and 5% milk and primary antibodies added and incubated overnight at 4 ◦C.
An anti-CALB1 rabbit polyclonal antibody (sc28285, Santa Cruz, Santa Cruz, CA, USA)
and anti-α-tubulin mouse monoclonal antibody (T6199, Sigma-Aldrich) were used. After
washes in TBS-T, membranes were incubated for 1 h at room temperature with anti-rabbit
(711-035-152, Interchim, Montluçon, France) or anti-mouse (715-035-150, Interchim) HRP-
coupled secondary antibody (1/5000 dilution). Peroxidase activity was revealed using
an enhanced chemiluminescence Western Blotting detection reagents (RPN2106V1/2, GE
Healthcare, Chicago, IL, USA) and visualized by luminography.

4.5. Immunofluorescence Staining

Cells plated on Lab-Tek chamber slides (Thermo Fisher) were washed once with
PBS and fixed with ice-cold methanol 10 min at −20 ◦C. Cells were then rinsed once in
TBS-T and incubated in TBS-T-20% FBS for 30 min at room temperature. Cells were then
incubated overnight at 4 ◦C with primary antibody against CALB1 (sc28285, Santa Cruz).
The following day, cells were washed and incubated with anti-rabbit IgG coupled with
Alexa Fluor 488 (A11008, Life Technologies) for 1 h at room temperature. Cells were then
washed with PBS and counterstained with Hoechst (Sigma-Aldrich) for 10 min at room
temperature. Pictures were taken with a Nikon fluorescence microscope (CRCL cellular
imaging platform).

4.6. Calcium Imaging

Cytosolic Ca2+ experiments were achieved as previously described [39]. Briefly, plated
cells were loaded with the Fura2-AM dye (2.5 µM; Molecular Probes) for 30 min at 37 ◦C
in Ca2+-containing buffer (HBSS; Gibco). Live Ca2+ imaging was performed at room
temperature and in the absence of external Ca2+ (Ca2+-free HBSS; Gibco). MetaFluor 6.3
(Universal Imaging) was used for image analysis. After 2 min at resting state, cells were
stimulated with 1 µM ionomycin in order to deplete intracellular Ca2+ stores. Results are
presented as a ratio of fluorescence intensity of 340/380 nm (F340/F380) as this ratio is
strictly related to intracellular free calcium [40,41].

4.7. Statistical Analyses

Graphs show means and SEM obtained with several independent experiments (n indi-
cated in figure legends) or show data extracted from transcriptome analyses as mentioned
in figure legends. Statistical analyses were performed with GraphPad Prism 8 software
and are specified in figure legends. Before proceeding to any analysis, the normality of
the samples was evaluated. Unpaired t-test (for normal distribution) or Mann–Whitney
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test (for non-normal distribution) was used unless stated otherwise in the figure legends.
p-values are indicated in figures.
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