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Abstract: N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses
tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review,
we summarize information on the clinicopathological characteristics of tumor patients according to
NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-
related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor
that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient
survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-,
and TGF-β-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3β which
has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction
between kinases and phosphatases, which is essential in regulating cell signaling related to tumor
metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully
elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor
protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the
prognosis in tumor patients.
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1. Introduction

N-myc downstream-regulated gene 2 (NDRG2) belongs to the NDRG family along
with NDRG1, -3, and -4, forms a homologous cluster in several species, and is characterized
by an NDR protein domain consisting of an esterase-/lipase-/thioesterase-active-site serine
and an α/β-hydrolase fold of approximately 220 amino acids. However, NDRG proteins
have no enzymatic activity [1–3]. NDRG2 has been proposed as a functional gene in
response to cellular stresses in cellular metabolic processes [4–6], hypoxia [7], and lipotoxic-
ity [8]. Additionally, the functions of NDRG2 as a tumor suppressor contribute to tumor
growth inhibition and anti-metastasis in various tumors. Tumor metastasis is known to be
the main cause of death in cancer patients [9]. Metastasis is the process of moving from the
primary tumor to other organs due to the limited supply of oxygen and nutrients and the
epithelial–mesenchymal transition (EMT) step is a key step for metastasis [10–13]. In this
review, we aim to provide useful information for tumor control studies by summarizing
clinicopathological properties in various tumors and presenting the function of NDRG2 as
a modulator of cell signaling for EMT.

2. Anti-Tumor Function of NDRG2 Based on Clinicopathological Characteristics of
Various Tumor Patients

The expression of NDRG2 seems more reasonable to be suggested as a prognostic
marker related to the reduction in pathological symptoms of the tumor rather than a
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diagnostic marker related to tumor development. NDRG2 expression is regulated at
the transcriptional or the post-transcriptional step. Hypermethylation of the NDRG2
promoter region is a representative mechanism of NDRG2 transcriptional repression in
various tumors [14–19]. Another mechanism regulating NDRG2 expression is mediated
by microRNAs (miRNAs); miRNA-181c [20], miR-454 [21], miR-483 [22], miR-650 [23],
and et al. NDRG2 expression level is positively correlated with tumor differentiation and
overall survivals, but negatively correlated with tumor invasion, tumor recurrence, lymph
node metastasis, and TNM staging in various tumor patients (Table 1).

Table 1. Clinicopathological role of NDRG2 in tumors.

Tumor Reported Findings Refs.

Astrocytoma • NDRG2 expression was negatively correlated with pathological grading but positively with
the life span of astrocytoma patients.

[24,25]

Bladder
cancer

• The NDRG2 level was negatively correlated with TNM grade, pathologic stage, and
increased c-myc level.

[26]

Breast cancer

• Basal-like tumors more frequently maintained abundant NDRG2 expression consistent with
lower CpG-hypermethylation, and NDRG2 expression was associated with a relatively
good prognosis for patients.

[27]

• NDRG2 expression is negatively correlated with favorable recurrence-free survival in breast
cancer patients.

[28]

• Patients with high NDRG2 expression have higher disease-free survival and overall
survival than patients with low NDRG expression, and NDRG2 expression was negatively
correlated with GLUT1 expression.

[4]

Colorectal
cancer

• NDRG2 was downregulated in colorectal cancer compared to benign colorectal tissues. The
NDRG2 expression is regulated by promoter methylation and miR-650.

[23]

• Methylation of NDRG2 promoter is methylated in 89% of human CRC tissues compared to
the adjacent normal colonic mucosa. Higher levels of the promoter methylation are more
prevalent in proximal CRC and advanced T stage.

[29]

• Low NDRG2 expression presents a significantly poorer 3-year overall survival rate in
patients with stage IV, liver metastasis, and those receiving liver resection.

[30]

• NDRG2 expression levels were significantly decreased in both adenomas (p < 0.001) and
colorectal cancer, and NDRG2 levels tend to decrease with increasing stages of Dukes.

[31]

Esophageal
cancer

• Low expression of NDRG2 in ESCC patients is inversely associated with clinical stage, TNM
classification, histologic differentiation, and patient vital status. During the 5-year follow-up
period, the survival period of ESCC patients with high NDRG2 expression was longer than
that of patients with low expression.

[32–34]

Gallbladder
cancer

• Loss of NDRG2 expression is an independent predictor of decreased survival, is associated
with severe progressive T stage, lymphatic invasion, and induces expression of MMP-19,
which regulates Slug expression at the transcriptional level.

[35]

• Downregulation of NDRG2 and upregulation of CD24 show more frequent lymph node
metastasis and lymphovascular invasion in gallbladder cancer patients.

[36]
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Table 1. Cont.

Tumor Reported Findings Refs.

Gastric
cancer

• NDRG2 expression is regulated by DNA methylation and the downregulation of NRG2
expression is related to lymph node metastasis, tumor invasion, Borrmann classification and
TNM stage in gastric cancer patients.

[37]

• Loss of NDRG2 expression is an important and independent prognostic indicator by
multivariate analysis, which affects survival rate in gastric cancer patients.

[38]

• NDRG2 promoter methylation is triggered by H. pylori infection and downregulation of
NDRG2 expression is associated with worse prognosis, which is an independent prognostic
factor for the disease-free survival of gastric tumor patients.

[15]

Glioma

• A Kaplan–Meier analysis of glioma patients showed improved survival time in the patients
with mRNA and protein expression, and NDRG2 downregulation may affect glioma tumor
progression to be higher malignancy.

[19]

• NDRG2 gene transcript is expressed in normal bran and low-grade glioma but is very low
in glioblastoma, the most severe form of brain glioma.

[39]

• NDRG2 expression is inversely associated with lower survival rates and is an independent
prognostic factor for overall survival in glioma patients.

[40]

Liver cancer

• Reduction of NDRG2 is associated with its promoter hypermethylation and significantly
correlated with tumor-node-metastasis stage, differentiation grade, portal vein thrombi,
infiltrative growth pattern, nodal/distant metastasis, recurrent tumor, and shorter survival
rates in liver cancer patients.

[41]

• Low expression of NDRG2 is strongly associated with tumor metastasis and high
expression of NDRG2 is correlated with higher survival rates of hepatoblastoma patients.

[17]

• Downregulation of NDRG2 is strongly correlated with CD24 overexpression and is
observed in hepatocarcinoma patients with elevated AFP serum level, late TNM stage, poor
differentiation grade, tumor invasion, and recurrence.

[42]

• NDRG2 inhibits cholangiocarcinoma cell proliferation, chemoresistance, and metastasis,
NDRG2 is a target of miR-181c which can be activated by leukemia inhibitory factor.

[20]

Lung cancer
• Lung adenocarcinoma patients showing NDRG2-low/CD24-high expression have the

lowest survival rate, and NDRG2-high/CD24-low and NDRG2-low/CD24-high expression
patterns are independent prognostic indicators of lung adenocarcinoma.

[43]

Renal cancer

• Loss of NDRG2 expression is an independent poor prognostic factor for renal cell
carcinoma patients.

[44]

• NDRG2 expression is downregulated in clear cell renal cell carcinoma, which is negatively
associated with aggressive tumor behaviors such as TNM stage, Fuhrman grade, tumor
invasion, shorter patient survival, and tumor recurrence. In addition, NDRG2 can inhibit
cancer cell invasion by regulating MMP-9 expression and activity.

[45]

3. Anti-Metastatic Role of NDRG2
3.1. Epithelial–Mesenchymal Transition (EMT) and NDRG2

Cancers have the potential to metastasize and most cancer patients die from uncon-
trolled metastasis [46,47]. Therefore, establishing a strategy to control or inhibit tumor
metastasis is very important for increasing the survival rate and treatment of tumor patients.
Metastasis is a multi-step process initiated by the escape of tumor cells from primary tumor
tissue and ending with the colonization of secondary tumors at distant tissues from the
primary site. The steps of metastasis can be subdivided into the escape of cancer cells
from the primary tumor, intravascular invasion, survival, extravasation, and coloniza-
tion [48–51]. EMT is a key mechanism for promoting cancer metastasis, whereby cell types
with a mesenchymal phenotype generally become invasive [52]. EMT is regulated by acti-
vation of the SNAI, ZEB, and TWIST transcription factor network (EMT-TF) families, which
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directly repress epithelial marker genes involved in cell adhesion, polarity, and cytoskeletal
organization [53]. Various cellular signaling pathways, such as TGF-β signaling and AKT,
NF-κB, and STAT3 activation, can induce the expression of EMT-TFs and metastatic effector
proteins [54–59]. NDRG2 expression correlates inversely with TNM grade and metastasis in
tumor patients (Table 1) and inhibits invasion and metastasis of tumor cells by modulating
metastatic cell signaling pathways.

3.2. AKT and NDRG2

Bone is a common metastasis site in various cancer patients [60–62]. The phospho-
inositide 3-kinase (PI3K)/AKT signaling pathway has been implicated in bone metastasis
in several tumors. pAKT levels are elevated in 81.8% of primary HER2-positive breast
cancers with bone metastasis, suggesting that the HER2/CXCR4/AKT pathway plays
a role in bone metastasis [57]. The function of the CXCL12/CXCR4 axis in promoting
metastasis is mediated in part by AKT activation [63,64]. In addition, bone metastasis is
more frequently induced by breast cancer cells with hypoxia-inducing factor 1α (HIF-1α),
which responds to hypoxia and is stabilized by AKT, resulting in CXCR4 upregulation [65].
Further, overexpression of AKT1 in prostate cancers upregulates CXCR4 expression and
loss of PTEN in the cells enhances AKT-mediated expression of CXCL12 and CXCR4 [66].
Low NDRG2 expression is associated with pAKT and XIAP upregulation, while overexpres-
sion of NDRG2 suppresses AKT/XIAP signaling pathway and EMT in esophageal cancer
cells [34]. NDRG2 is considered a PTEN-binding protein recruiting protein phosphatase 2A
(PP2A) to PTEN, which inhibits PI3K-AKT pathway via PTEN activation by PP2A in adult
T-cell leukemia-lymphoma (ATLL) (Figure 1) [67]. Therefore, it is possible NDRG2 inhibits
metastasis mediated by AKT activation pathway by acting as a bridge between PP2A and
PTEN to inhibit PI3K activation.

Figure 1. AKT inhibition by the NDRG2–PP2A complex. HER2 activates PI3K/AKT signaling.
PTEN is a dual protein/lipid phosphatase using phosphatidylinositol, 3,4,5 triphosphate (PIP3), a
product of PI3K, as a substrate. An increase in PIP3 recruits AKT to the membrane, which is activated
by other PIP3-dependent kinases. NDRG2 acts as a bridge mediating the interaction between PP2A
and PTEN, thus the NDRG2–PP2A complex recruits PTEN and triggers its activation. PTEN can
inhibit AKT activity by inducing dephosphorylation of PIP3, thereby inhibiting AKT-dependent
tumor cell metastasis.
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3.3. Nuclear Factor-κB (NF-κB) and NDRG2

NF-κB is a key transcription factor contributing to pathogenesis of inflammation and
cancer [68]. NF-κB forms a complex with IκB in the cytoplasm, and when IκBα is ubiquiti-
nated and subsequently degraded by the 26S proteasome, NF-κB is released and migrates
to the nucleus to act as a transcription factor. Specifically, NF-κB activation is a potential
mechanism explaining the relationship between inflammation and tumors [69]. Metastatic
breast cancer cells overexpress the chemokine receptor CXCR4, and metastatic tissues
express a large amount of CXCL12, a ligand of CXCR4 [48]. Further, NF-κB activation
induces expression of matrix metalloproteinases, urokinase-type plasminogen activators,
and cytokines in metastatic breast cancer cell lines [58]. NF-κB p65 (RelA) is constitutively
activated in gastric cancer, which correlated with cancer invasion-associated clinicopatho-
logical features, lymphoid invasion, depth of invasion, and peritoneal metastasis [70].
Activation of NF-κB induces osteolytic bone metastasis by inducing CSF2 (GM-CSF) expres-
sion [71]. Loss of NDRG2 expression is associated with tumor metastasis by inducing EMT
via NF-κB activation [72]. NDRG2 attenuated NF-κB activation in PMA-treated human
breast cancer cell (MDA-MB-231), which suppresses migration and invasion by inhibiting
COX-2 expression [73]. Furthermore, NDRG2 suppresses tumor invasion by attenuating
matrix metalloproteinase 9 (MMP9) expression via NF-κB inhibition [74].

Although NDRG2 expression likely inhibits NF-κB-mediated tumor metastasis, how
NDRG2 inhibits NF-κB activity remains unclear. Recently, Ichikawa et al. proposed NDRG2
inhibits NF-κB in canonical and non-canonical pathways [75]. In the canonical pathway,
the PI3K-AKT signaling pathway enhances the activation of canonical NF-κB [76,77] and
NDRG2-mediated PTEN activation may inhibit canonical NF-κB by attenuating the PI3K-
AKT activation pathway. In the non-canonical NF-κB pathway, activated NF-κB-inducing
kinase (NIK) phosphorylates IKKα, which leads to phosphorylation of p100 to partially
degrade p52 formation. RelB-bound p52 translocates into the nucleus to induce target
genes (Figure 2) [78–80]. NDRG2 inhibits non-canonical NF-κB by interacting with NIK,
followed by dephosphorylation of NIK via the NDRG2–PP2A complex.

3.4. Signal Transducer and Activator of Transcription 3 (STAT3) and NDRG2

Activation of STAT proteins is typically induced by Janus-Kinase (JAK) family proteins
which are receptor-associated tyrosine kinases [81]. Activation of STAT3 occurs in a variety
of tumors and aberrant STAT3 activation is associated with tumorigenesis and invasion
promotion [82–85]. Metastatic spread of tumor cells requires cell motility, extracellular
matrix infiltration, and angiogenesis. STAT3 activation contributes to enhancement of
integrin 6 expression that promotes tumor cell motility, acquisition of invasive traits such as
MUC1, Bcl6, cathepsins, and UPA, and increases expression of MMPs [86–88]. Furthermore,
expression of E-cadherin, a representative anti-metastatic phenotype, is inhibited by STAT3
activation. STAT3 regulates ZEB1 expression, which can participate in STAT3-induced cell
invasion and E-cadherin downregulation in colorectal cancer [89]. TWIST, an EMT-TF, is
transcriptionally induced by STAT3 activation and plays a role as a transcriptional repressor
of E-cadherin [59,90]. STAT3 also contributes to angiogenesis through the action of a
transcription factor inducing vascular endothelial growth factor (VEGF) expression [91,92].
In unstimulated cells, STAT3 is regulated by negative regulators, protein inhibitors of
activated STATs (PIAS), members of the cytokine signaling inhibitor (SOCS) family, protein
tyrosine phosphatases (SHP1, SHP2, PTPN1, PTPN2 PTPRD, and PTPRT), and ubiquitin
enzymes, to remain inactive in the cytoplasm [93,94]. SOCS expression can be induced by
STAT3 activation, after which SOCS becomes a STAT3 regulator [95]. Overexpression of
NDRG2 can inhibit STAT3 activation by inducing SOCS1 [96] and inhibition of STAT3 by
NDRG2 suppresses EMT by reducing SNAIL expression (Figure 3) [97]. The transcription
factor MYB activates STAT3 and AKT pathways by inhibiting NDRG2 expression via miR-
130a expression in salivary adenoid cystic carcinoma [98]. Although NDRG2 regulates on
STAT3 and SOCS1 induction in NDRG2-expressed cells, which is considered a mechanism
for NDRG2-mediated STAT3 inhibition, the molecular mechanism is still unclear. Further
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analysis into the molecular mechanisms is needed, such as (1) how does NDRG2 induce
SOCS1 expression, and (2) can NDRG2 play a role as a bridge to allow JAKs or STAT3 to
interact with protein tyrosine phosphatases?

Figure 2. Inhibition of NF-κB-dependent tumor cell metastasis by NDRG2. The PI3K/AKT/
IKKα/NF-κB pathway contributes to tumor cell metastasis by inducing related genes, such as CSF2,
COX-2, and MMP9. IKKα is also a substrate of NIK. NDRG2 inhibits the canonical NF-κB pathway via
AKT inhibition to inhibit IKKα activation. Activated NIK induces phosphorylation of IKKα, which
phosphorylates p100 to process p100 to p52 in a proteasome-dependent manner. The NDRG2–PP2A
complex dephosphorylates NIK to inhibit the non-canonical NF-κB pathway.

3.5. TGF-β and NDRG2

Although TGF-β plays a tumor-suppressor function, in the later stages of cancer
progression, cancer cells remain responsive to TGF-β but become resistant to the cell prolif-
eration inhibitory effects by TGF-β. Here, TGF-β acts directly on the cancer cells, leading
to EMT through induction of E-cadherin transcriptional repressors, such as SNAIL, ZEB,
and TWIST [99,100]. TGF-β binds to the receptor and induces formation of a complex with
Smad2, Smad3, and Smad4, which regulates the expression of various target genes [101].
Further, TGF-β-induced EMT is closely related to proteolytic activity of MMPs [102].
Among the MMP family, MMP2 plays an important role in basement membrane remodel-
ing by degrading collagen I, IV, V, plasminogen, and laminin-5 [103–105]. Further, NDRG2
can antagonize TGF-β-mediated liver cancer cell invasion by downregulating expression
of MMP2 and laminin 332 pathway components [41]. Meanwhile, integrin complexes,
integrin αν and integrin β6, induce conversion from latent TGF-β into its active form [106].
In a mouse breast cancer cell model, overexpression of NDRG2 disrupts TGF-β-mediated
gene expression and inhibits conversion from latent TGF-β by reducing of integrin β6 ex-
pression, which inhibits tumor cell invasion (Figure 4) [28]. Despite growing cell biological
and clinical evidence on the relationship between NDRG2 expression and inhibition of
TGF-β-mediated tumor metastasis, its molecular mechanism is yet to be identified.
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Figure 3. Inhibition of STAT3 activation pathway by NDRG2. JAK is activated upon cytokine
or growth factors, resulting in dimerization through phosphorylation and nuclear translocation of
STAT3 to induce transcription of metastasis-related genes, such as ZEB1, TWIST, SNAIL, and VEGF.
Cytokine signaling inhibitory factor (SOCS) protein is a representative negative regulator on JAK.
NDRG2 induces SOCS1 expression through an unknown mechanism (dash line) and SOCS1 inhibits
STAT3-mediated tumor cell metastasis by inhibiting JAK activation.

Figure 4. NDRG2-mediated inhibition of TGF-β signaling. αvβ6 activates TGF-β by binding to
tripeptide Arg-Gly-Asp (RGD) motif of the latency-associated peptide (LAP). When integrins bind to
the RGD motif of LAP, their binding to the actin cytoskeleton triggers a conformational change that
releases active TGF-β. TGF-β via SMAD signaling can induce expression of EMT-TFs, such as SNAIL,
TWIST, and ZEB, and MMP2. NDRG2 inhibits the conversion of latent TGF-β to active TGF-β by
inhibiting expression of integrin β6 through an unknown mechanism (dash line).
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3.6. GSK-3β and NDRG2

Overexpression of constitutively active GSK-3β mutants increases chemosensitivity,
cell cycle arrest, and decreases tumorigenicity [107,108]. GSK-3 can inhibit the Wnt/β-
catenin pathway by phosphorylating β-catenin, leading to ubiquitin/proteasome-dependent
degradation of β-catenin that serves as a transactivator for TCF/LEFs. Therefore, GSK-3
acts as a tumor suppressor by inhibiting β-catenin-mediated tumorigenic characteristics
including EMT [109,110]. AKT induces inactivation of GSK-3β, which in turn inhibits
SNAIL phosphorylation, leading to SNAIL translocation into the nucleus and its stabiliza-
tion leading to EMT [111,112]. Phosphoinositide 3-kinase (PI3K)-mediated AKT activation
signaling is inhibited by phosphatase and tensin homolog (PTEN) which dephosphorylates
the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate [113]. The GSK-3β
mechanism activation resulting in EMT inhibition in NDRG2-overexpressed cells can be
considered as follows: (1) NDRG2 as a PTEN-binding protein recruits PP2A to PTEN,
which activates PTEN and inhibits PI3K-AKT signaling [67]; (2) NDRG2 forms a complex
with PP2A and GSK-3β, then induces the activation of GSK-3β by removing inhibitory
phosphorylation of GSK-3 β by PP2A (Figure 5) [114].

Figure 5. NDRG2–PP2A-mediated GSK-3β activation. AKT induces inhibitory phosphorylation
of glycogen synthase kinase-3 beta (GSK-3β). The NDRG2–PP2A complex recruits PTEN, which
dephosphorylates PIP3 to inhibit AKT activation. Further, the NDRG2–PP2A complex releases the
inhibitory phosphate of GSK-3β to activate it. Active GSK-3β phosphorylates SNAIL to induce
β-Trcp-mediated ubiquitination and degradation, which controls its subcellular localization. GSK-3β
activation downregulates EMT phenotypes, such as E-cadherin upregulation and fibronectin and
vitronectin downregulation.

4. Conclusions and Outlook

Although expression of NDRG2 is not abolished in all carcinomas and tumor tissues,
low expression of NDRG2 is closely related to poor prognosis, such as increased metastasis,
higher TNM stage, and reduced survival. specifically, metastasis of tumor cells can worsen
patient prognosis. Therefore, tumor metastasis inhibition may be a therapeutic strategy
to improve prognosis and improve patient survival rate. Studies on NDRG2-mediated
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inhibition of tumor metastasis can provide useful scientific information on development of
tumor therapeutics.

Although NDRG2 is a protein without enzymatic activity, it is involved in many cellu-
lar signaling pathways. We propose the role of NDRG2 bridging in mediating interactions
between different proteins is crucial in modulating NDRG2-mediated cellular signaling. As
an adapter protein, NDRG2 is already known to mediate AKT inhibition, NF-κB inhibition,
and GSK3 activation by mediating PP2A/PTEN, PP2A/NIK and PP2A/GSK3 interac-
tions, respectively. However, to clarify the molecular mechanism of NDRG2 related to the
anti-tumor phenotype, further analysis of the interactions between kinase and NDRG2
located upstream of cell signaling, as well as interaction between NDRG2 and various
phosphatases, such as serine/threonine phosphatases and tyrosine phosphatases, is needed.
In particular, although a direct inhibitory mechanism for receptor tyrosine kinases (RTK)
by NDRG2 has not been reported so far, we suggest research on the NDRG2–tyrosine
phosphatase complex is necessary as a regulatory mechanism for RTK.
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