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Abstract: The emergence of phytopathogenic bacteria resistant to antibacterial agents has rendered
previously manageable plant diseases intractable, highlighting the need for safe and environmentally
responsible agrochemicals. Inhibition of bacterial cell division by targeting bacterial cell division
protein FtsZ has been proposed as a promising strategy for developing novel antibacterial agents.
We previously identified 4′-demethylepipodophyllotoxin (DMEP), a naturally occurring substance
isolated from the barberry species Dysosma versipellis, as a novel chemical scaffold for the development
of inhibitors of FtsZ from the rice blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Therefore,
constructing structure−activity relationship (SAR) studies of DMEP is indispensable for new agro-
chemical discovery. In this study, we performed a structure−activity relationship (SAR) study of
DMEP derivatives as potential XooFtsZ inhibitors through introducing the structure-based virtual
screening (SBVS) approach and various biochemical methods. Notably, prepared compound B2, a 4′-
acyloxy DMEP analog, had a 50% inhibitory concentration of 159.4 µm for inhibition of recombinant
XooFtsZ GTPase, which was lower than that of the parent DMEP (278.0 µm). Compound B2 potently
inhibited Xoo growth in vitro (minimum inhibitory concentration 153 mg L−1) and had 54.9% and
48.4% curative and protective control efficiencies against rice blight in vivo. Moreover, compound B2

also showed low toxicity for non-target organisms, including rice plant and mammalian cell. Given
these interesting results, we provide a novel strategy to discover and optimize promising bactericidal
compounds for the management of plant bacterial diseases.

Keywords: natural products (NPs); structure-based virtual screening (SBVS); Xanthomonas oryzae pv.
oryzae (Xoo); FtsZ inhibitors; plant bacterial diseases

1. Introduction

Plant diseases caused by phytopathogenic bacterium represent crucial threats to plant
health and the productivity of agriculture crops [1–3]. The human population is predicted
to increase to 10 billion by the year 2100, which will require a doubling or tripling of cur-
rent agricultural productivity to ensure that adequate food supplies are maintained [4–6].
Modern agriculture has benefited substantially from the use of agrochemicals, but many,
especially traditional agrochemicals, are hazardous to both the environment and human
health [7,8]. For instance, bismerthiazol (BT), a commercial bactericide active against
Xanthomonas oryzae pv. oryzae (Xoo), exhibits subchronic and chronic toxicity in humans
upon oral consumption [9]. These drawbacks have highlighted the urgent need for safer
and more environmentally responsible pesticides.

Natural product-based pesticides have many potential advantages over synthetic
compounds, including lower toxicity and easier and more environmentally friendly degra-
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dation. Consequently, there has been exponential growth in the development of new
agrochemicals originating from natural products and their derivatives, which are seen as
an effective panacea for integrated pest management [10–13]. For instance, some natural
β-methoxyacrylic acid fungicides and their synthetic strobilurin derivatives are exten-
sively used to control fungal pathogens [14]. Similarly, natural pyrethrum and synthetic
pyrethroids are used commercially to control insects [15]. These examples illustrate the
potential for natural products and their derivatives to be developed as new pesticides.

4′-Demethylepipodophyllotoxin (DMEP) is an aryltetralin cyclolignan isolated from
the barberry species Dysosma versipellis and represents a structural framework for many
compounds shown to display various bioactivities [16–18]. For example, structural mod-
ification of DMEP has yielded many anticancer agents, including etoposide and tenipo-
side [16,19], and various DMEP analogs and derivatives with insecticidal activity have
been developed and shown to successfully control insect pests in recent years [20–22]. We
recently employed the framework of DMEP to develop inhibitors of bacterial FtsZ, a tubulin
homolog that possesses GTPase activity, that have bactericidal activity and control bacterial
leaf blight of rice [23]. The results of that study suggested a new drug discovery strategy
and application for DMEP to develop potent FtsZ-targeting compounds for controlling
intractable bacterial diseases of plants.

In the present study, we utilized a structure-based virtual screening strategy to
guide the design of candidate DMEP-derived compounds with bactericidal properties [24].
Structure-based virtual screening is an increasingly common and prominent strategy in
drug discovery and facilitates the design of synthesizable and novel chemical structures
with certain molecular targets and bioactivities. For example, candidate agents targeting
the kinase discoidin domain receptor 1, which has been implicated in many human dis-
eases, were identified using the DrugSpaceX platform (https://drugspacex.simm.ac.cn/,
accessed on 1 October 2021), which catalogs features such as drug-likeness, synthesizability,
diversity, and novelty of compounds within a three-dimensional chemical space [25]. In the
present study, we designed and synthesized a panel of DMEP derivatives and evaluated
their ability to inhibit recombinant XooFtsZ GTPase activity and XooFtsZ assembly, to
induce morphological changes and inhibit Xoo growth in vitro, and to prevent or amelio-
rate rice bacterial leaf blight in vivo. We also summarize and highlight key aspects of the
structure–activity relationship (SAR) of the DMEP scaffold. A summary of the approach is
presented in Figure 1, and the corresponding workflow of virtual screening and bioassay is
outlined in Figure 2.
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2. Results and Discussion
2.1. Design and Synthesis of Target Compounds

Encouraged by our previous work [23], DMEP was currently certified as a promising
scaffold of XooFtsZ inhibitors, but discovering how to guide and prepare higher active
compounds derived from DMEP quickly and with high efficiency is a crucial purpose of
our current work. To maximize the identification of derivatives that would be effective, safe
to non-target organisms, and easily synthesizable, we employed a ligand-based approach
followed by reranking of molecular docking scores using structure-based virtual screening.
Briefly, the structure of DMEP was submitted to DrugSpaceX and 100 drug-like DMEP
analogs were downloaded and docked with reconstructed XooFtsZ using Sybyl-X 2.0
software. The top 10 analogs of DMEP were selected by ranking the docking scores, which
were obtained for each analog in various positions, thereby providing an indication of the
accuracy and stability of the docking simulations. Thus, the higher the score, the more
stable was the predicted interaction. Notably, many of the selected compounds had similar
characteristics, such as substitutions of the para and meta positions of the phenyl ring that
could potentially increase the protein−compound interaction (Figure 3). Overall, these
results predicted that 4′-substituted DMEP analogs would be easily synthesizable and may
have better bactericidal properties than DMEP.
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To evaluate the effects of the 4′-substituted DMEP analogues, a series of title com-
pounds were synthesized, and their synthetic routes were displayed in Schemes 1 and 2. As
shown in Figure 4, the substituent position of monoester derivatives was confirmed based
on the chemical shifts of H-4 and OH-4′. Notably, for DMEP, the chemical shift of OH-4′

was identified at 5.41 ppm, and the chemical shift of H-4 was confirmed at 4.86–4.87 ppm.
By contrast, the OH-4′ group of compounds B1, B2 and B3 were substituted by the acy-
loxy group or sulfuryl group, and the corresponding chemical shifts disappeared in the
spectrum, respectively. Moreover, the chemical shift of H-4 of compounds B1, B2, and B3
remained at 4.83 ppm. Thus, this obviously demonstrated that the compounds B1, B2, and
B3 were substituted by the acyloxy group or sulfuryl group at the OH-4′ group.
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2.2. The Anti-Xoo Bioactivity of Title Compounds

The antibacterial potency of the title compounds was first evaluated by measuring
the growth of Xoo in vitro in the presence of a range of compound concentrations (Table 1).
Most of the compounds had low antibacterial activity and only compound B2 exhibited
moderate activity. Thus, the 50% effective concentration (EC50) for inhibition of Xoo growth
was 153 mg L−1 for compound B2 and >200 mg L−1 for the remaining DMEP derivatives,
which compared with 39.7 mg L−1 for DMEP and 36.3 mg L−1 for the control antibacterial
agent, bismerthiazol. To further examine the inhibitory activity of these compounds, we
measured the GTPase activity of purified recombinant XooFtsZ in vitro in the presence of
compound B2 or the control GTPase inhibitor berberine (Table 2). Compound B2 inhibited
purified XooFtsZ GTPase activity by 54.8% at 200 µm and by 48.6% at 100 µm. Further
screening yielded 50% inhibitory concentrations (IC50s) of 159.4 µm and 225.0 µm for
compound B2 and berberine, respectively. Thus, although compound B2 inhibited XooFtsZ
GTPase activity with slightly higher potency than berberine and DMEP (IC50 = 278.7 µm),
as demonstrated in our previous study [23], compound B2 was less potent than DMEP for
inhibition of Xoo growth. One possible explanation for this apparent discrepancy may be
the relatively poor aqueous solubility of compound B2 compared with DMEP, which may
have restricted the bactericidal activity of compound B2 to a greater extent compared with
its GTPase-inhibiting activity. However, the LogP values of the compounds, as determined
with ChemDraw Professional 17.0, predicted that DMEP would have a lower cLogP value
compared with compound B2 (cLogP = 0.97 and 3.69, respectively). Taken together, these
analyses indicated that compound B2 exerted moderate anti-Xoo activity and outstanding
Xoo GTPase-inhibitory activity. Therefore, we selected compound B2 for further analysis of
its potential bactericidal activity and mechanism of action.

Table 1. The Anti-Xoo activity of target compounds.
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We next examined the effects of compound B2 on the morphology of Xoo cells using 

transmission electron microscopy (TEM) and fluorescence microscopy. Incubation of Xoo 
with 100 mg L−1 compound B2 significantly increased the average Xoo cell length from 2.05 
± 0.27 µM at 0 h to 4.03 ± 2.20 µM and 5.86 ± 3.23 µM at 12 h and 24 h, respectively (Figure 
5A). Similarly, fluorescence microscopy of Xoo cells labeled with the lipophilic dye FM 4-
64 and the DNA-intercalating dye 4′-6-diamidino-2-phenylindole revealed the elongated 
and filamentous appearance of the cells after incubation with compound B2 (Figure 5B), 
which confirmed the TEM results. 
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Table 2. Inhibition effects of compound B2 and berberine on the XooFtsZ GTPase activity.

Compounds
Inhibition Rate (%)

IC50 (µM)
200 µM 100 µM

B2 54.8 ± 5.20 48.6 ± 4.10 159.4 ± 16.7
Berberine hydrochloride 48.7 ± 4.10 34.1 ± 2.60 225.0 ± 18.5

2.3. Investigation of Action Mechanism for Prepared Compound B2 Targeting XooFtsZ

We next examined the effects of compound B2 on the morphology of Xoo cells using
transmission electron microscopy (TEM) and fluorescence microscopy. Incubation of Xoo
with 100 mg L−1 compound B2 significantly increased the average Xoo cell length from
2.05 ± 0.27 µm at 0 h to 4.03 ± 2.20 µm and 5.86 ± 3.23 µm at 12 h and 24 h, respectively
(Figure 5A). Similarly, fluorescence microscopy of Xoo cells labeled with the lipophilic
dye FM 4-64 and the DNA-intercalating dye 4′-6-diamidino-2-phenylindole revealed the
elongated and filamentous appearance of the cells after incubation with compound B2
(Figure 5B), which confirmed the TEM results.

Direct binding between compound B2 and recombinant XooFtsZ was evaluated by
measuring the intrinsic fluorescence intensity of XooFtsZ before and after the addition
of compound B2. As shown in Figure 5C, the emission fluorescence intensity decreased
in the presence of compound B2 in an increasing, concentration-dependent manner. The
KA of XooFtsZ–compound B2 complex formation was calculated as 103.22 M−1, which
was similar to that of XooFtsZ–DMEP at 103.48 M−1 (Table 3). Potential conformational
changes in XooFtsZ triggered by compound B2 binding were investigated using FT-IR. In
the spectra shown in Figure 5D, 1600–1700 cm−1 represents the amide I band, which relates
to the secondary structure of XooFtsZ. Compared with free XooFtsZ, complexes of XooFtsZ
and compound B2 exhibited peaks in the 1600 cm−1 to 1700 cm−1 region, suggesting that
compound B2 binding altered C-N stretching and N-H bending in XooFtsZ. The broader
band at 3400 cm−1 also indicated that XooFtsZ–B2 complexes exhibited O-H and N-H
stretching vibrations compared with free XooFtsZ. These interesting results suggested
that compound B2 binding to XooFtsZ changed the protein conformation, which may be
responsible for the change in the biological activity of XooFtsZ.

Table 3. Binding parameters of different compounds with Xoo–FtsZ.

Compounds
Stern–Volmer Quenching Constants Binding Parameters

Ksv (M−1) Kq (M−1 S−1) R KA (M−1) n R2

B2 3.845 × 103 3.845 × 1011 0.96 103.22 0.92 0.95
DMEP 7.593 × 103 7.593 × 1011 0.98 103.48 0.92 0.98

Berberine 1.789 × 104 1.789 × 1012 0.91 103.44 0.81 0.98

Self-assembly of XooFtsZ was monitored by TEM and showed that, whereas free
XooFtsZ formed single-stranded and uniform protofilaments, addition of compound B2
to XooFtsZ resulted in fewer single-stranded protofilaments and an increase in disordered
and disorganized protein aggregation compared with the control sample. This finding
demonstrated that compound B2 binding disorders the self-assembly of XooFtsZ via reg-
ulation of protein conformation, suggesting a mechanism for the inhibition of XooFtsZ
GTPase activity.
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Figure 5. Mechanism of action for compound B2 targeting XooFtsZ. (A) Statistical data of the lengths
of Xoo cells from TEM images after incubation with 100 mg L−1 compound B2 for different intervals
of time. (B) The fluorescence patterns for the Xoo cells affected by 200 mg L−1 DMEP for 24 h. The
cell membranes were visualized by FMTM 4−64FX and are shown in red; the DNA was visualized by
DAPI and is shown in blue. Shown are control cells (a,b) and overlay (c); in the presence of 200 mg L−1

compound B2 (d,e) and overlay (f). The scale bars are 5 µm. (C) Fluorescence titration experiments
of XooFtsZ (10 µm) with different concentrations (ranging from 0 µm to 20 µm) of compound B2,
λex = 280 nm, λem = 334 nm. (D) FT−IR spectra of pure XooFtsZ (black line, 30 µm) and XooFtsZ-
B2 complex (red line, 30 µm XooFtsZ was incubated with 10 µm compound B2). (E) Transmission
electron micrographs of XooFtsZ polymers after incubation with different concentrations of compound
B2. (a) 0 µm compound B2 + 20 µm XooFtsZ, (b) 100 µm compound B2 + 20 µm XooFtsZ, (c) 200 µm
compound B2 + 20 µm XooFtsZ, (d) 200 µm compound B2 without XooFtsZ. Scale bars are 1 µm.
Asterisks represented significant differences in comparison to control through used SPSS 20.0 software
with Duncan (D) adjustment: (*) p < 0.05 and (**) p < 0.01.

Molecular docking is an increasingly common and effective approach for predicting
possible binding modes of small molecules complexed with proteins [26–28]. Investigation
of XooFtsZ–B2 docking (Figure 6) showed that Asp38 and Arg205 were the main residues
interacting with compound B2 to form hydrogen bonds. Sulfur-X, alkyl, π–δ, and Van der
Waals bonds interaction also appeared crucial for complex formation. π-Alkyl or alkyl
interactions were observed between compound B2 and Met32, Val33, Phe42, and Val40
residues; sulfur-X interaction was observed between compound B2 and Met32; and π–δ
bonding was observed between compound B2 and Val40 (Figure 6). The docking scores
are provided in Table S1. Collectively, these molecular docking results showed that the
docking score for XooFtsZ interaction was higher for compound B2 than DMEP (6.34 vs.
5.92). These results further substantiated the results of our FT-IR spectra analysis.



Int. J. Mol. Sci. 2022, 23, 9119 8 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 16 
 

 

compound B2 binding to XooFtsZ changed the protein conformation, which may be re-
sponsible for the change in the biological activity of XooFtsZ. 

Table 3. Binding parameters of different compounds with Xoo–FtsZ. 

Compounds 
Stern–Volmer Quenching Constants Binding Parameters 

Ksv (M−1) Kq (M−1 S−1) R KA (M−1) n R2 

B2 3.845 × 103 3.845 × 1011 0.96 103.22 0.92 0.95 

DMEP 7.593 × 103 7.593 × 1011 0.98 103.48 0.92 0.98 

Berberine 1.789 × 104 1.789 × 1012 0.91 103.44 0.81 0.98 

Self-assembly of XooFtsZ was monitored by TEM and showed that, whereas free 
XooFtsZ formed single-stranded and uniform protofilaments, addition of compound B2 to 
XooFtsZ resulted in fewer single-stranded protofilaments and an increase in disordered 
and disorganized protein aggregation compared with the control sample. This finding 
demonstrated that compound B2 binding disorders the self-assembly of XooFtsZ via reg-
ulation of protein conformation, suggesting a mechanism for the inhibition of XooFtsZ 
GTPase activity. 

Molecular docking is an increasingly common and effective approach for predicting 
possible binding modes of small molecules complexed with proteins [26–28]. Investigation 
of XooFtsZ–B2 docking (Figure 6) showed that Asp38 and Arg205 were the main residues 
interacting with compound B2 to form hydrogen bonds. Sulfur-X, alkyl, π–δ, and Van der 
Waals bonds interaction also appeared crucial for complex formation. π-Alkyl or alkyl 
interactions were observed between compound B2 and Met32, Val33, Phe42, and Val40 
residues; sulfur-X interaction was observed between compound B2 and Met32; and π–δ 
bonding was observed between compound B2 and Val40 (Figure 6). The docking scores 
are provided in Table S1. Collectively, these molecular docking results showed that the 
docking score for XooFtsZ interaction was higher for compound B2 than DMEP (6.34 vs. 
5.92). These results further substantiated the results of our FT-IR spectra analysis. 

 
Figure 6. Molecular docking studies of XooFtsZ with DMEP or compound B2. (A) The docking 
results of XooFtsZ with DMEP. (B) The docking results of XooFtsZ with compound B2. 

2.4. Potential Mechanism of Action for 4’-Demethylepipodophyllotoxin (DMEP) Analogues 

Figure 6. Molecular docking studies of XooFtsZ with DMEP or compound B2. (A) The docking
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2.4. Potential Mechanism of Action for 4′-Demethylepipodophyllotoxin (DMEP) Analogues

DMEP and its derivatives represent a sustainable natural bioresource with antifun-
gal [29], anticancer [30,31], and antiviral [32] activities, among other biological properties.
To begin the SAR of the DMEP scaffold and XooFtsZ activity, we tested several commercially
available DMEP analogs and found that they all exhibited weak anti-Xoo activity in vitro
compared with the parent compound (Table 4). Determination of the minimum inhibitory
concentrations (MICs), which represent the lowest concentrations that inhibit Xoo growth,
showed that DMEP and bismerthiazol both had MICs of 50 mg L−1, whereas the remaining
analogs tested had much poorer anti-Xoo activities (MICs > 200 mg L−1). Despite this,
examination of the effects of these compounds on Xoo cell morphology showed that several
compounds, including teniposide and etoposide, induced cellular elongation similar to
DMEP and compound B2 (Figure 7). The binding parameters for these compounds and
XooFtsZ were determined (Figure 8 and Table 5) and showed that the quenching mechanism
between XooFtsZ and these compounds could format a weaker noncovalent complex than
compound B2. The KA values for the interactions between XooFtsZ and podophyllotoxin,
picropodophyllotoxin, 4′-demethylpodophyllotoxin (DMEOP), deoxypodophyllotoxin,
teniposide, and etoposide were 101.34 M−1, 101.81 M−1, 102.26 M−1, 101.04 M−1, 101.73 M−1,
and 102.50 M−1, respectively, all of which were lower than the KA of 103.48 M−1 for DMEP–
XooFtsZ. Overall, these results indicated that the hydroxyl group of DMEP was crucial for
its anti-Xoo activity as well as for its interaction with XooFtsZ.
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Picropodophyllotoxin 3.603 × 103 3.603 × 1011 0.95 101.81 0.63 0.96 

DMEOP 1.757 × 103 1.757 × 1011 0.98 102.26 0.79 0.96 
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Teniposide 2.920 × 103 2.920 × 1011 0.98 101.73 0.61 0.97 
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DMEOP
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Table 5. Binding parameters of DMEP and DMEP analogues with XooFtsZ. 

Compounds 
Stern–Volmer Quenching Constants Binding Parameters 

Ksv (M−1) Kq (M−1 S−1) R KA (M−1) n R2 
Podophyllotoxin 2.203 × 103 2.203 × 1011 0.94 101.34 0.54 0.94 

Picropodophyllotoxin 3.603 × 103 3.603 × 1011 0.95 101.81 0.63 0.96 

DMEOP 1.757 × 103 1.757 × 1011 0.98 102.26 0.79 0.96 

Deoxypodophyllotoxin 2.276 × 103 2.276 × 1011 0.98 101.04 0.48 0.97 

Teniposide 2.920 × 103 2.920 × 1011 0.98 101.73 0.61 0.97 

10.3 ± 3.50 12.2 ± 4.80 >200 >400

Teniposide
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Podophyllotoxin 2.203 × 103 2.203 × 1011 0.94 101.34 0.54 0.94 
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DMEP and its derivatives represent a sustainable natural bioresource with antifungal 
[29], anticancer [30,31], and antiviral [32] activities, among other biological properties. To 
begin the SAR of the DMEP scaffold and XooFtsZ activity, we tested several commercially 
available DMEP analogs and found that they all exhibited weak anti-Xoo activity in vitro 
compared with the parent compound (Table 4). Determination of the minimum inhibitory 
concentrations (MICs), which represent the lowest concentrations that inhibit Xoo growth, 
showed that DMEP and bismerthiazol both had MICs of 50 mg L−1, whereas the remaining 
analogs tested had much poorer anti-Xoo activities (MICs >200 mg L−1). Despite this, ex-
amination of the effects of these compounds on Xoo cell morphology showed that several 
compounds, including teniposide and etoposide, induced cellular elongation similar to 
DMEP and compound B2 (Figure 7). The binding parameters for these compounds and 
XooFtsZ were determined (Figure 8 and Table 5) and showed that the quenching mecha-
nism between XooFtsZ and these compounds could format a weaker noncovalent complex 
than compound B2. The KA values for the interactions between XooFtsZ and podophyllo-
toxin, picropodophyllotoxin, 4′-demethylpodophyllotoxin (DMEOP), deoxypodophyllo-
toxin, teniposide, and etoposide were 101.34 M−1, 101.81 M−1, 102.26 M−1, 101.04 M−1, 101.73 M−1, 
and 102.50 M−1, respectively, all of which were lower than the KA of 103.48 M−1 for DMEP–
XooFtsZ. Overall, these results indicated that the hydroxyl group of DMEP was crucial for 
its anti-Xoo activity as well as for its interaction with XooFtsZ. 
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Table 5. Binding parameters of DMEP and DMEP analogues with XooFtsZ. 

Compounds 
Stern–Volmer Quenching Constants Binding Parameters 

Ksv (M−1) Kq (M−1 S−1) R KA (M−1) n R2 
Podophyllotoxin 2.203 × 103 2.203 × 1011 0.94 101.34 0.54 0.94 

Picropodophyllotoxin 3.603 × 103 3.603 × 1011 0.95 101.81 0.63 0.96 

DMEOP 1.757 × 103 1.757 × 1011 0.98 102.26 0.79 0.96 

Deoxypodophyllotoxin 2.276 × 103 2.276 × 1011 0.98 101.04 0.48 0.97 

Teniposide 2.920 × 103 2.920 × 1011 0.98 101.73 0.61 0.97 

20.3 ± 9.21 - >200 >400

Etoposide
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toxin, teniposide, and etoposide were 101.34 M−1, 101.81 M−1, 102.26 M−1, 101.04 M−1, 101.73 M−1, 
and 102.50 M−1, respectively, all of which were lower than the KA of 103.48 M−1 for DMEP–
XooFtsZ. Overall, these results indicated that the hydroxyl group of DMEP was crucial for 
its anti-Xoo activity as well as for its interaction with XooFtsZ. 
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DMEOP 1.757 × 103 1.757 × 1011 0.98 102.26 0.79 0.96 

Deoxypodophyllotoxin 2.276 × 103 2.276 × 1011 0.98 101.04 0.48 0.97 

Teniposide 2.920 × 103 2.920 × 1011 0.98 101.73 0.61 0.97 
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DMEP and its derivatives represent a sustainable natural bioresource with antifungal 
[29], anticancer [30,31], and antiviral [32] activities, among other biological properties. To 
begin the SAR of the DMEP scaffold and XooFtsZ activity, we tested several commercially 
available DMEP analogs and found that they all exhibited weak anti-Xoo activity in vitro 
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showed that DMEP and bismerthiazol both had MICs of 50 mg L−1, whereas the remaining 
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than compound B2. The KA values for the interactions between XooFtsZ and podophyllo-
toxin, picropodophyllotoxin, 4′-demethylpodophyllotoxin (DMEOP), deoxypodophyllo-
toxin, teniposide, and etoposide were 101.34 M−1, 101.81 M−1, 102.26 M−1, 101.04 M−1, 101.73 M−1, 
and 102.50 M−1, respectively, all of which were lower than the KA of 103.48 M−1 for DMEP–
XooFtsZ. Overall, these results indicated that the hydroxyl group of DMEP was crucial for 
its anti-Xoo activity as well as for its interaction with XooFtsZ. 
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Compounds 
Stern–Volmer Quenching Constants Binding Parameters 

Ksv (M−1) Kq (M−1 S−1) R KA (M−1) n R2 
Podophyllotoxin 2.203 × 103 2.203 × 1011 0.94 101.34 0.54 0.94 

Picropodophyllotoxin 3.603 × 103 3.603 × 1011 0.95 101.81 0.63 0.96 

DMEOP 1.757 × 103 1.757 × 1011 0.98 102.26 0.79 0.96 

Deoxypodophyllotoxin 2.276 × 103 2.276 × 1011 0.98 101.04 0.48 0.97 

Teniposide 2.920 × 103 2.920 × 1011 0.98 101.73 0.61 0.97 

18.8 ± 9.60 - >200 >400

DMEP
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toxin, picropodophyllotoxin, 4′-demethylpodophyllotoxin (DMEOP), deoxypodophyllo-
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and 102.50 M−1, respectively, all of which were lower than the KA of 103.48 M−1 for DMEP–
XooFtsZ. Overall, these results indicated that the hydroxyl group of DMEP was crucial for 
its anti-Xoo activity as well as for its interaction with XooFtsZ. 
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2.5. Outcome of SAR Study

To extend the SAR of compounds based on the DMEP, we systematically examined
the antibacterial potency of DMEP analogs based on inhibition of Xoo growth in vitro.
The results can be summarized as follows (Figure 9): (1) when the 4-position is in the
S configuration, a bulky group at the 4-position was unfavorable to anti-Xoo activity:
DMEP (EC50 = 38.7 mg L−1) > teniposide and etoposide (both EC50 > 200 mg L−1);
(2) the S configuration of the hydroxyl group was excellent for anti-Xoo activity: DMEP
(EC50 = 38.7 mg L−1) > deoxypodophyllotoxin and DMEOP (both EC50 > 200 mg L−1),
which was in agreement with the docking results for these compounds (Figure 6); (3) the
R configuration of the H group at the 2-position was beneficial for anti-Xoo activity: A1
(EC50 > 200 mg L−1) < B2 (EC50 = 153 mg L−1); and (4) the hydroxyl group at the 4′-position
increased the anti-Xoo activity: DMEP (EC50 = 39.7 mg L−1) > B1 (EC50 > 200 mg L−1) and
B2 (EC50 > 153 mg L−1).
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2.6. In Vivo Trials against Rice Bacterial Leaf Blight Infected by Xoo

Encouraged by these in vitro results, we asked whether compound B2-mediated inhi-
bition of XooFtsZ might provide an effective approach to controlling bacterial leaf blight
diseases. Using pot experiments, we observed that compound B2 had good curative activity
against rice bacterial leaf blight and gave a control efficiency of 54.9% at 200 mg mL−1,
which was better than both commercial TC (31.2%) and, as previously reported, DMEP
(50.0%) [23]. Similarly, compound B2 had superior protective activity (48.4%) against
bacterial leaf blight compared with either TC (30.4%) or DMEP (46.8%) [23]. Thus, tar-
geting of bacterial FtsZ by compound B2 holds promise for the management of plant
bacterial diseases.

2.7. Assessment of Potential Risk of DMEP and Compound B2 through Phytotoxicity and
Cytotoxicity Testing

Determining the potential off-target toxicity of novel agricultural and pest manage-
ment agents is an important consideration in the development of safer and more envi-
ronmentally responsible toxins. Therefore, we compared the potential phytotoxicity of
DMEP and compound B2 against rice plants, as previously described [33]. Notably, com-
pound B2 was non-toxic to rice plants at a concentration of 200 mg L−1, which was an
effective dose for anti-Xoo activity in vivo. We also examined the cytotoxicity of DMEP and
compound B2 against two representative mammalian cell lines in vitro using a standard
MTT cytotoxicity assay [34,35]. We tested the normal rat kidney cell line NRK-52E and the
human non-small cell lung cancer cell line (A549), which was included because several
DMEP analogs are already in clinical use as anticancer agents. Interestingly, compound
B2 was more cytotoxic than either DMEP or gefitinib, a small molecule clinical used for
the treatment of lung cancer, against A549 cells, but was the least cytotoxic compound
against NRK-52E cells (IC50 60.8 µm compared with 30.8 µm and 21.0 µm for DMEP and
gefitinib, respectively), and corresponding results was showed in Figure S1. Furthermore,
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to illustrate the druggability of compound B2, we submitted the structure of compound B2
into the website http://www.swissadme.ch/index.php (accessed on 1 November 2021),
and the corresponding results showed that compound B2 met the drug-likeness rules,
including Lipinski, Veber, Egan, and Muegge, with a bioavailability score of 0.55 [36].
Notably, these data showed that compound B2 has high anti-Xoo activity, low phytotoxicity,
high antiproliferative activity against the A549 cancer cell line, and low antiproliferative
activity against the normal NRK-52E cell line.

3. Materials and Methods
3.1. Instruments and Chemicals

Instruments: NMR spectra of prepared title compounds were obtained on a Bruker
Biospin AG-400 instrument (Bruker Optics, Ettlingen, Germany) using DMSO-d6/CDCl3 as
solvent and tetramethylsilane as the internal standard; HRMS spectra were achieved using
Waters Xevo G2-S QTOF MS (Waters MS Technologies, Manchester, UK). TEM images of
Xoo’s morphological changes were visualized on a FEI Talos F200C electron microscope
(FEI, Hillsboro, OR, USA) operating at a voltage of 200 kV. Fluorescence spectra data were
performed on a FluoroMax®-4P (HORIBA Scientific, Paris, France). The FT-IR spectra
data were recorded on a Nicolet iS50 instrument (Thermo Fisher Scientific, Waltham, MA,
USA). Fluorescent images of Xoo cells were achieved using an Olympus-BX53-microscope
(Olympus, Tokyo, Japan). The optical values were recorded on Cytation™5 multi-mode
readers (BioTek Instruments, Inc., Winooski, VT, USA). Recombinant XooFtsZ was purified
by a GE ÄKTA pure 25 system (GE Healthcare Bio-Sciences, Piscataway, NJ, USA).

Chemicals: All the chemicals were purchased from Bide Pharmatech Co., Ltd. (Shang-
hai, China) and Energy Chemical of Saen Chemical Technology Co., Ltd. (Shanghai, China).
The Ni-NTA column (1 × 5 mL) and HiTrap desalting column (5 × 5 mL) were acquired
from the GE Healthcare company (USA). IPTG (isopropyl β-D-thiogalactoside), HEPES,
EDTA, disodium hydrogenphosphate, sodium dihydngen phoshate, imidazole, and NaCl
were provided by the Bioengineering Co., Ltd. (Shanghai, China) and Solarbio Life Sciences
& Technology Co., Ltd. (Beijing, China). GTP was ordered from ThermoFisher Scientific
Vendor Co., Ltd. (Shanghai, China).

3.2. Experimental Section

The wild-type Xanthomonas oryzae pv. oryzae (Xoo) strain ZJ173 was kindly provided
by Prof. Ming-Guo Zhou (Nanjing Agricultural University, Nanjing, China). The minimum
inhibitory concentration (MIC) and in vivo of anti-Xoo bioactivity (in vitro and in vivo
assay), and purification of recombinant XooFtsZ. The structures of the title compounds were
characterized by 1H NMR, 13C NMR and HRMS, and corresponding data was provided
as Figures S2–S13. All of the above-mentioned experimental details can be found in
supplementary data.

3.3. The Strategy of Structure-Based Virtual Screening (SBVS)

Initially, the amino acid sequence of XooFtsZ was achieved from the website of the
national center for biotechnology information, and its three-dimensional structure was
reconstructed through using multi-template modeling. Particularly, modeling XooFtsZ’s
protein backbone dihedral angle parameters was further refined through the GROMOS
54A7 force field. These details can be found in our previous work [37].

In the second stage of the virtual screening, a structure-based virtual screening (SBVS)
approach was carried out through using the database of DrugSpaceX [25]. Notably, more
than 100 million chemical products bearing synthesizable and drug-like properties were
provided in the DrugSpaceX database. Briefly, the structure of DMEP was submitted to
the DrugSpaceX website (https://drugspacex.simm.ac.cn/, accessed on 1 October 2021),
and one hundred DMEP analogues were visualized in the website. Thereafter, these DMEP
analogues were downloaded as a subset and further used for the virtual screening. Subse-
quently, the automated protein preparation protocol was used for docking by operating

http://www.swissadme.ch/index.php
https://drugspacex.simm.ac.cn/
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Sybyl-X 2.0 software (Tripos Associates, Saint Louis, MO, USA). Finally, according to the
results of the docking score, the top 10 compounds with the best scores were listed and
ranked in Figure 3.

3.4. Determination of the Binding Constant (KA) of Compounds-XooFtsZ Interaction

The dissociation constants of compounds-XooFtsZ were determined by using typical
fluorometric titration assays [38,39]. Briefly, 10 µm XooFtsZ was co-incubated with vari-
ous concentrations (0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0 µm) of test compounds
in 20 mM phosphate buffer (pH 7.4) containing 150 mM KCl and 1 mM EDTA at 25 ◦C.
Then, these samples were recorded using the FluoroMax®-4P instrument (Ex = 280 nm,
slit widths = 3 nm). The corresponding binding constant (KA) of each sample was cal-
culated by utilizing the Stern–Volmer method (F0/F = 1 + Kq τ0[Q] = 1 + Ksv [Q]) at
334 nm.

3.5. Morphological Studies Using Transmission Electron Microscopy (TEM)

Xoo cells (OD595 = 0.1) were co-incubated without/with 100 mg L−1 of compound
B2 in nutrient broth for 24 h in a shaker (180 rpm, 28 ± 1 ◦C). After that, these samples
were covered with Formvar-carbon-coated copper grids and then negatively stained using
1% phosphotungstic acid. Finally, prepared samples were photographed by operating a
transmission electron microscope (TEM), and the corresponding Xoo length of each sample
was measured using ImageJ software (NIH Image, Bethesda, MD, USA) [40,41].

3.6. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis

The FT-IR spectra analysis was carried out by referring to previously reported meth-
ods [42,43]. Briefly, 30 µm of XooFtsZ was mixed without/with 10 µm compounds in
20 mM phosphate buffer (pH 7.4) containing 150 mM KCl and 1 mM EDTA at 25 ◦C for
10 min. Then, 2 µL of treated sample was covered on the new KBr disc. Finally, the spectra
of each sample were scanned under a certain condition (Scanning area: 500–4000 cm−1,
scans: 32, resolutions: 4 cm−1). Particularly, the background spectrum was pre-recorded.
The FT-IR spectra of each sample were yielded using a Nicolet iS50 instrument (Thermo
Fisher Scientific, Waltham, MA, USA) (n = 2 for every group).

3.7. Fluorescence Patterns for the Xoo Cells Triggered by Compounds

Xoo cells were precultured in the above condition (2.5) and also displayed their
morphological changes through using a BX53 fluorescence microscope. Briefly, the Xoo
cells were fixed with 7% formaldehyde for 10 min and further washed with phosphate-
buffered saline buffer (PBS, 10 mM, pH 7.3). Thereafter, these samples were stained with
FM™ 4-64 dye solution (3 mg L−1) for 20 min and subsequently washed by phosphate-
buffered saline buffer (PBS, 10 mM, pH 7.3). Finally, these samples were spread on a glass
slide and then stained with DAPI solution (2 mg L−1) for fluorescence imaging [44,45].

3.8. Statistical Analysis

Statistical analyses were executed with one-way ANOVA by using SPSS 20.0 software.
The Duncan (D) adjustment was performed to determine the significant difference between
different treatments. Asterisks represented significant differences in comparison to control:
(*) p < 0.05 and (**) p < 0.01. In the section of anti-Xoo bioassay in vivo, different upper-
case letters following the control efficiency values illustrated that there was a significant
difference (p < 0.05) among different treatment groups. The results were presented as
means ± SD.

4. Conclusions

As the cause of rice bacterial leaf blight, the vascular phytopathogenic bacterium Xoo is
a major cause of reduced crop quality and quantity. Based on our previous work identifying
DMEP as a novel chemical scaffold for XooFtsZ inhibitors, we used a combination of in silico,
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in vitro, and in vivo approaches to design and systematically test DMEP derivatives with
potential anti-Xoo activity. Compound B2 was validated as a potential XooFtsZ inhibitor
with an IC50 (159.4 µm) lower than that of the parent DMEP (278.0 µm). We also showed that
compound B2 likely binds to XooFtsZ by interacting with residues Asp38, Arg205, Met32,
Val33, Phe42, and Val40, and that the interaction disrupts FtsZ linear assembly and induces
elongation of Xoo cells. Finally, we showed that compound B2 displayed good curative
and protective activities against rice bacterial leaf blight in pot studies but displayed low
general phytotoxicity against rice plants and low cytotoxicity against mammalian cell lines.
Taken together, our results identify compound B2 as a promising FtsZ-targeting DMEP
derivative that could be developed for the management of plant bacterial diseases.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23169119/s1. References [46–52] are cited in the supplementary materials.
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