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Abstract: Despite its discovery in the early 1970s, m®A modification within mRNA molecules has
only powerfully entered the oncology field in recent years. This chemical modification can control all
aspects of the maturation of mRNAs, both in the nucleus and in the cytoplasm. Thus, the alteration
in expression levels of writers, erasers, and readers may significantly contribute to the alteration of
gene expression observed in cancer. In particular, the activation of oncogenic pathways can lead to
an alteration of the global rate of mRNA translation or the selective translation of specific mRNAs.
In both cases, m®A can play an important role. In this review, we highlight the role of m®A in the
regulation of translation by focusing on regulatory mechanisms and cancer-related functions of this
novel but still controversial field.
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1. Introduction

Translational regulation plays a central role in the control of gene expression, and it
is often dysregulated in cancer. In particular, oncogenic pathways may act by regulating
the global rate of mRNA translation or the selective translation of specific mRNAs [1].
mRNA translation is a complex process divided into four steps: Initiation, elongation,
termination, and ribosome recycling. Generally, mechanisms that regulate gene expression
at the translational level act on translation initiation [2]. Eukaryotic mRNAs contain the cap
structure at the 5'-end, which is constituted by an N”-methylguanosine (m’G) connected
via a 5’ to 5 triphosphate bond to the first transcribed nucleotide [3]. The cap structure
plays a critical role in translation initiation and is recognized by the eukaryotic translation
initiation factor (elF) 4F, which contains the cap-binding protein elF4E, the scaffold protein
elF4G, and the RNA helicase elF4A. eIF4G also interacts with the poly(A)-binding protein
(PABP), which promotes mRNA circularization and reinitiation efficiency of ribosomes
after translation termination. The AUG start codon is recognized through a scanning
mechanism by the 43S pre-initiation complex (PIC) that is recruited to the cap structure by
elF4F. The PIC is formed by the 40S small ribosomal subunit, different eukaryotic initiation
factors (elF1, eIF1A, elF2, elF3, elF5), and the ternary complex (TC), composed of elF2,
initiator methionyl tRNA, and GTP [2]. AUG start codon recognition by PIC induces GTP
hydrolysis in the ternary complex, the release of the initiation factors, and the joining of
the large 60S ribosomal subunit to form the 80S initiation complex. The 80S complex is
then ready to synthesize the peptide chain [2]. A single mRNA may contain multiple 80S
ribosomes and it is referred to as a polyribosome or polysome. The higher the number
of ribosomes, the higher the translation rate of the mRNA. The initiation of viral mRNAs
and some cellular mRNAs can be cap-independent and rely on internal RNA structures,
referred to as the internal ribosome entry site (IRES), which directly recruits the PIC on the
AUG start codon [2] or an alternative cap-recognition mechanism mediated by elF3d [4].

In addition to the m’G, mRNAs may also contain different internal chemical modifica-
tions. In mammalian cells, the first and second transcribed nucleotides are 2’-O-methylated
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on the ribose moiety [5]. Moreover, if the first nucleotide is A, it can also be methylated at
the N®-position (m®Ay,) [6]. 2/-O ribose methylations do not affect mRNA expression but
are important to discriminate between self and non-self RNA, while the role of méA,, in
mRNA regulation and particularly in translation is still controversial. However, the most
abundant internal modification is the N®-methyladenosine (m®A) [7]. m°®A levels in mRNA
are often deregulated in cancer and, more importantly, it is the only internal modification
in mRNA with an established role in translation regulation.

In this review, we describe the expanding roles of translation regulation by m°®A
modification in cancer. In particular, we highlight regulatory mechanisms and cancer-
related functions of this novel but still controversial field.

2. An Overview of m®A Regulators

The methyltransferase complex responsible for the vast majority of m®A modifications
in mRNAs is composed of METTL3/METTL14 proteins, where METTL3 is the catalytic
subunit and METTL14 is required for RNA binding. The complex recognizes and modifies
A within the DRACH motif (D=A, G, U;R=A, G, H=A, C, U) during RNA transcrip-
tion (reviewed in [7]). However, approximately 20% of DRACH motifs are methylated.
m6A modifications are enriched in the terminal exon, near the STOP codon or in the 3’-
untranslated region (3'-UTR). The U6 snRNA methyltransferase METTL16 is also involved
in the modification of m®A sites in a small number of mRNAs and non-coding RNAs but it
recognizes a different RNA sequence [8]. m®A modification can be removed by ALKBH5
(alkB homolog 5) and FTO (fat mass and obesity-associated protein) demethylases [7].

Even if m®A per se can impact the local RNA structure by altering the Hogsteen
base-pairing, its effects on mRNA expression are generally mediated by specific protein
readers. The YTH protein domain family are the only proteins that specifically recognize
m®A modification, independently from the RNA sequence. In mammals, there are five YTH
readers: YTHDC1, YTHDC2, and the paralogs YTHDF1, YTHDE2, and YTHDE3. YTHDC1
is the only nuclear reader, and it is involved in the regulation of nuclear processes such as
transcription, splicing, and RNA export [9]. YTHDC2 is an RNA helicase that specifically
acts during gametogenesis by degrading mRNAs. However, its function has been recently
shown to be independent of the m®A binding domain [10,11]. Notably, several organisms
have YTHDC2 orthologs in which the YTH is not present [12], thus indicating that YTHDC2
evolved to function in an m®A-independent manner. Cytoplasmic mRNA regulation by
mPA is mainly controlled by the YTHDFs paralogs YTHDF1, YTHDEF2, and YTHDE3. Al-
though these proteins show high amino acid identity and equivalent binding sites in the
transcriptome [9], different functions were initially ascribed to individual YTHDF proteins:
YTHDF1 stimulates mRNA translation [13], YTHDE2 promotes mRNA degradation [14],
and YTHDE3 has both functions [15]. However, recent studies reported that YTHDF pro-
teins function together in a redundant manner only on the degradation of m®A-containing
mRNAs [16,17]. At present, the action of YTHDF proteins is still controversial.

m®A regulators are often deregulated in cancer where they can play both oncogenic
and oncosuppressive roles [18]. In the following sections, we focus on the specific role of
m°A in translation regulation and its impact on cancer.

3. Regulation of mRNA Translation by m°A

The influence of m® A modifications on translation can be both positive and negative.
There are currently many different, often controversial models. The position of m®A in
mRNA influences the functional impact of its translation regulation. Indeed, proteins that
bind within the coding region can be removed by ribosomes during translation elongation.
Thus, m®A readers proteins bound on 5'- and 3'- untranslated regions (5'- and 3'- UTRs)
will mediate cytoplasmic effects, while m® A modifications in coding regions will mainly
affect the binding of tRNAs during the elongation process. Therein, the latter is generally
independent of readers. In several cancer types, m®A modification was shown to be
required for maintaining the high translational rate of oncogenic proteins [18].
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3.1. Translational Requlation by m®A in 5'-UTRs

Although rare, m°A sites were identified in the 5'-UTR of different mRNAs. Further-
more, they were found to change in response to stress [19]. m®A in the 5'-UTR stimulates
cap-independent translation by recruitment of the initiation factor elF3 [20] (Figure 1a).
This mechanism was initially demonstrated to be responsible for the induction of hsp70
(heat shock protein 70) upon heat shock [19,20]. In this condition, the YTHDEF2 reader
translocates in the nucleus protecting specific mRNAs from FTO-mediated demethylation,
among which hsp70 mRNA, thereby enabling their cap-independent translation. However,
the study did not clarify how these transcripts are selected by nuclear YTHDF2, which
recognized only m®A without specificity of the sequence [9], as well as the mechanisms that
translocate YTHDE?2 in the nucleus without affecting the other two paralogs YTHDF1 and
YTHDF3. A later study showed that the m® A-dependent translation of hsp70 requires the
ABCF1 protein (also known as ABC50) [21]. ABCF1 belongs to the ATP-binding cassette
(ABC) transporter family but lacks the transmembrane domains, which are characteristic
of most ABC transporters and are regulators of translation initiation [22]. Conversely to
the initial model, in which hsp70 translation was shown to depend on direct recognition of
m®A by elF3, ABCF1 stimulates cap-independent translation by interacting with the elF4G
and the TC component elF2 in a stress-dependent manner [21] (Figure 1b). Notably, the
mPA methyltransferase METTL3 was also found to be translated by ABCF1 in a positive
feedback loop that could act when the cap-dependent translation is inhibited [21]. Surpris-
ingly, ABCF1 also stimulates the translation of 5-UTR modified mRNAs under normal
growth conditions [21], thus indicating the existence of a cap-independent mechanism that
relies on m® A modification even in the absence of stress. The same study showed that the
YTHDES3 reader, but not YTHDF1 and YTHDF2, was required for cap-independent transla-
tion. However, it is not clear how ABCF1 is recruited to m® A modifications in the 5-UTR
region and whether YTHDF3 is involved in its recruitment. Further studies are needed to
understand how specific m®A sites are maintained in the 5'-UTR of specific mRNAs.

MPA modification in the 5'-UTR was also shown to regulate the translation of ATF4 (Ac-
tivating Transcription Factor 4) during the integrated stress response (ISR) [23] (Figure 1c).
ISR is a prosurvival pathway that is initiated in response to different extrinsic and intrinsic
factors [24]. ATF4 translation is required for the expression of stress-responsive genes [24].
ISR induction results in the phosphorylation of eIlF2 with a consequent reduction in TC
levels and a decrease in translation initiation efficiency. ATF4 mRNA contains two up-
stream open reading frames (UORFs) that precede the ATF4 coding region, uORF1 and
uORF2. uORF2 overlaps with the ATF4 coding region but with a different reading frame.
In normal conditions, with a high level of TC, initiation of the translation from uORFs
is favored over ATF4 translation. Moreover, uORF2 start codon selection also depends
on the presence of m®A modifications in the 5'-UTR of ATF mRNA. Upon stress, ATF4
translation is promoted by the concomitant decrease in TC and demethylation of m°A sites
by ALKBHS5. Global analysis of m°A levels upon nutrient deprivation showed that different
transcripts lost m® A modifications in 5'-UTR, thus indicating that this can be a general
mechanism for translation initiation by m®A from the non-canonical start codon in response
to stress. However, the translational regulation by m®A, in this case, is cap-dependent
and m®A in the 5'-UTR is strictly required for retaining initiating ribosomes in a transcript
with multiple start sites. The mechanism responsible for this regulation has not yet been
elucidated, but it has been suggested that the m®A can be read by specific RNA binding
proteins that will, in turn, decrease the ribosome scanning efficiency [23]. Interestingly,
ISR plays an important role in cancer, and its activation is required for tumor cell survival
under stress and resistance to therapy. Therein, this indicates that the modulation of m°A
levels can be utilized as a novel strategy to reduce ISR activation in tumors.

In tumors, the regulation of translation by m®A sites in the 5-UTR was initially
demonstrated in colorectal cancer [25]. Here, the YTHDC2 RNA helicase promotes the
translation of the HIF-1cx and Twist1 in hypoxia and facilitates the epithelial-mesenchymal
transition (EMT), which plays a relevant role in cancer metastases. YTHDC2 binds to m®A
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sites and unwinds the RNA structures in the 5-UTR, thus facilitating ribosome scanning
during initiation [25] (Figure 1d).

The importance of m®A methylation within 5-UTR in cancer was also shown in
melanoma cells [26]. Melanoma cells that acquire resistance to BRAF (B-Raf Proto-Oncogene
Serine/Threonine-Protein Kinase) and MEKs (Mitogen-Activated Protein Kinases) in-
hibitors, despite a general decrease in translation, showed increased translation of specific
mRNAs that correlated with high m°A levels in their 5'-UTRs. These mRNAs encode for
regulators of epigenetic modifications and signaling pathways that are connected to the
presence of melanoma resistance cells. The effect of m® A modification on their translation
is mediated by eIF4A helicase even if it is still not clear if it is directly recruited by m°®A
sites in the 5’-UTR [26]. This study suggests that the inhibition of METTL3 activity might
be utilized as a novel strategy to overcome drug resistance in melanoma.

In breast cancer, the YTHDEF3 reader was shown to be highly upregulated and bind to
the m®A sites in 5'-UTR of its own transcript, stimulating translation in a positive feedback
loop [27]. However, the molecular mechanism has not been clarified. High levels of
YTHDES3 are then required for the translation of genes involved in brain metastases. A
regulation depends on m®A sites that are not present in the 5'-UTR. Notably, the depletion
of YTHDF3 is sufficient to inhibit brain metastasis and increases mice survival [27], thus
indicating the lack of functional redundancy between YTHDF proteins in this context.
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elF3 ABCF
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Figure 1. Mechanisms of translational regulation mediated by m®A sites in 5'-UTRs. (a) Proposed
mechanism for the cap-independent translational regulation of Hsp70 mRNA by elF3 during heat
shock (see main text for detail); (b) proposed mechanism for the cap-independent translational
regulation of Hsp70 mRNA by ABCF1 during heat shock (see main text for detail); (¢) during ISR, the
decrease i TC levels and loss of removal of m®A from uORF2 of ATF4 mRNA by ALKBHS5 induces
ATF translation; (d) in colorectal cancer cells, m° A sites in the 5'-UTR of HIF-1ae mRNA recruit the
YTHDC?2 helicase that removes secondary RNA structure facilitating 43S scanning.

3.2. Translational Regulation by m°A in Coding Regions

The effect of m® A modifications within coding regions on mRNA translation, as well as
their mechanisms of action, is still controversial. Translation elongation is conserved in all
kingdoms of life, and initial work performed with bacteria showed that the presence of m®A
within codons impairs tRNA accommodation, thus decreasing the translation elongation
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rate [28] (Figure 2a). Similar results were observed in HEK293T cells transfected with
in vitro transcribed mRNAs containing different modifications [29]. This study showed that
in human cells, m®A within coding regions also strongly inhibited translation, especially
when it was present in the first codon position. A negative effect of m®A on elongation
was also reported in the breast cancer cell line MCEF7 in a study performed to correlate
the transcription rate with translation efficiency by using reporter systems containing the
luciferase gene under the control of different human promoters [30]. Additionally, in this
case, the increase in m®A levels within the coding region of reporter transcripts produced a
decrease in the translation rate. Moreover, the study also showed that the deposition of
mPA is inversely proportional to the transcription rate. Notably, in different maize lines
and during Xenopus laevis oogenesis, an inverse correlation between the m°A levels in the
coding regions of mRNAs and their translational efficiency was confirmed [31,32]. The
negative effect of m®A modification on translation elongation was also reported in mouse
embryonic fibroblasts (MEF) [33], where the presence of m®A in highly structured regions
produced ribosome pausing. Surprisingly, deleting m®A from these transcripts resulted
in a further decrease in translation [33]. The authors of this study proposed a model in
which the YTHDC?2 reader, which also contains an RNNA helicase domain, resolves the
RNA structures containing m®A, therein promoting translation elongation by the ribosome
(Figure 2b).

Bacteria, HEK293T, breast cancer cells, X. laevis MEFs

NTHDCZ
.uﬂ n.':sz
ST AN

(a)

AML HeLa, breast cancer, gastrointestinal tumors
YTHDF1
eEF1.2

. fast,
o~ . N{%/‘
SP1

© Snail, KRT7, MRP1
C

Figure 2. Mechanisms of translational regulation mediated by m®A sites in coding regions. (a) In
bacteria, different human cell lines, and in X. laevis, m®A sites in the coding regions were shown
to slow down elongation (indicated by a green arrow); (b) in MEFs m6A in the coding regions
are recognized by the YTHDC?2 reader, which by removing secondary RNA structures facilitates
elongation by the ribosome; (c) in AML the m®A modifications present in GAN codons of specific
mRNAs, such as SP1, increase elongation by reducing ribosome stalling; (d) in different tumor
cell lines, m®A sites in the coding regions of specific mRNAs (such as Snail, KRT, and MRP1) are
bound by the YTHDF1 reader, which stimulates elongation by interacting with the eEF1 and eEF2
elongation factors.

The opposite results were reported in acute myeloid leukemia (AML) cells. In this
blood cell cancer, METTL3 plays an oncogenic role and is required for sustaining AML cell
proliferation [34]. In this case, METTLS3 is recruited to specific promoters, independently
from METTL14, to install m®A modification within the coding region of oncogenic mRNAs
during transcription. However, later crystallographic studies demonstrated that METTL14
is strictly required for METTL3 methyltransferase activity [7]. Therein, it is not clear how
METTL3 can act independently from METTL14 to methylate specific mRNAs. However,
methylation by METTL3 in their coding region results in an increased translation rate. The
proposed mechanism relies on the reduction of ribosome stalling on m®A methylated GAN
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codons, which results in faster elongation speed [34] (Figure 2c). This peculiar mechanism
has only been described in AML to date.

The importance of translation elongation regulation by m®A in coding regions was
also demonstrated in the regulation of EMT [35]. In this case, m®A sites in the coding
region of the Snail transcript, which encodes for a transcription factor that regulates EMT,
promote Snail translation by recruiting the eukaryotic translation elongation factor (eEF)
2 through the YTHDF1 reader [35] (Figure 2d). Interestingly, the study also reported
that Snail mRNA also contains several m®A sites in the 3'-UTR that are not required for
Snail regulation. Moreover, by using cell-line-derived xenograft mice, the authors showed
that the overexpression of Snail can also stimulate lung colonization by HeLa cells in the
absence of the methyltransferase METTL3 [35]. Similar results were reported in breast
cancer and gastrointestinal stromal tumors [36,37]. In the first case, the mPA deposition
in keratin 7 (KRT7), an important mediator of cancer metastases, stimulates its translation
via the YTHDF1/eEF1 axis [36]. In the latter, the YTHDF1/eEF1 interaction stimulates
the translation of the multidrug transporter MRP1 mRNA, also known as ABCC1 (ATP
Binding Cassette Subfamily C Member 1), which is involved in drug resistance [37].

3.3. Translational Requlation by m®A in 3'-UTRs

3’-UTRs contain cis-regulatory elements that are recognized by RNAs and proteins
to regulate translation. This regulation mainly takes place at the level of the translation
initiation phase. Indeed, the interaction between eIFAF and PABP brings 3’-UTR elements
close to the translation initiation complex. m°®A sites in the 3/-UTR were initially shown to
stimulate mRINA circularization via the interaction between the YTHDF1 reader and the
initiation factors elF3A and elF3B [14] (Figure 3a). Moreover, the tethering of YTHDF1 on
reporter constructs was sufficient to stimulate its translation. However, it was reported
that elF3 can also directly recognize m®A in the 5'-UTR to stimulate the cap-independent
translation (see above), so it is not clear how eIF3 would not bind to m°A in the 3’-UTR,
which is close to the 5'-end of mRNA, independently from YTHDF1. Even if the specific
effect of YTHDF paralogue proteins is currently under debate [16,17], many studies reported
the importance of YTHDF]1 in the regulation of translation in cancer [38-51]. Notably, a
strong antitumor response was described in YTHDF1-deficient mice [39]. In dendritic
cells, YTHDF1 stimulates the translation of mRNA encoding for proteases that results in
efficient antigen degradation. The lack of YTHDF1 increases the presentation of tumor
antigens and the activation of CD8" T cells, which are required for containing tumor
infiltration [39]. Therein, these results suggest that inhibition of YTHDF1 activity might be
used in combination with immune checkpoint inhibitors to enhance the killing of cancer
cells by the immune system.

Similarly, YTHDF3 was also shown to stimulate the translation of mRNAs containing
mPA sites in the 3/-UTR. Initial studies indicated that YTHDF3 acts in cooperation with
YTHDF]1 [15,52] (Figure 3b). However, further studies indicated that YTHDE3 can also
function independently from YTHDF1 [26] (Figure 3c). Interestingly, it was shown that
the MYC oncogene, which is a general activator of ribosome biogenesis and translation in
cancer, inhibits the translation of specific transcripts by downregulating their m®A levels
through the transcriptional induction of the demethylase ALKBHS5 [53]. Furthermore, in
this case, YTHDF3 was required for their translational activation, and this effect was lost
upon MYC activation [53].
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Figure 3. Mechanisms of translational regulation mediated by m®A sites in 3’-UTRs. (a) The binding
of YTHDF1 in m®A sites present in the 3/-UTR stimulates translation initiation by recruiting e[F3A
and eIF3B; (b) the YTHDEF3 reader was shown to act in cooperation with YTHDF1 in stimulation of
translation; (c) in some tumors, YTHDEF3 can act independently from YTHDF1 in stimulating translation.

3.4. Direct Translational Regulation by m® A Methyltransferases

Notably, in cancer cells, METTL3 and METTL16 methyltransferases can translocate to
the cytoplasm and act as positive regulators for the translation of oncogenic m®A-modified
mRNAs. This mechanism was initially described for METTL3 in lung cancer [54,55]
and chronic myeloid leukemia (CML) [56,57]. The binding of METTL3 in the 3'-UTR of
these transcripts promotes translation via interaction with the eIlF3 component elF3h [55]
(Figure 4a). The tethering of METTL3 in the 3'-UTR of reported genes is sufficient to
stimulate translation. Notably, the expression of a METTL3 derivative without the elF3h
interacting region is not able to induce tumors in lung cancer cell line xenograft models;
thus, indicating the important role of cytoplasmic regulation of translation by METTL3 in
tumorigenesis [55]. Importantly, the cytoplasmic activity of METTL3 does not require its
catalytic domain. However, m®A installation is apparently required for METTL3 binding to
mRNA in the cytoplasm. It has been proposed that cytoplasmic METTL3 does not require
any readers for the recognition of mP A sites in the 3’-UTR. However, it is not clear how
METTL3 would recognize and bind to modified transcripts in the cytoplasm because, in the
nucleus, it strictly requires METTL14 for binding to consensus DRACH sequences, which
do not contain m® A-modified adenines [7].

More recently, a similar mechanism was described for METTL16 in hepatocellular
carcinoma [58]. The authors reported that METTL16 binds to mPA sites close to the AUG
start codon and promotes translation by facilitating the interaction between elF3a and eIF3b,
and the 18 rRNA component of the 40S small subunit in the PIC [57] (Figure 4b). Conversely
to METTL3, the methyltransferase domain was shown to be strictly required for the activity
of METTL16 as a translational regulator and interaction with the elF3 components. Therein,
this suggests that the use of a catalytic inhibitor would inhibit both catalytic-dependent and
-independent activities of METTL16. Furthermore, in hepatocellular carcinoma cells, the
depletion of METTL16 produced a strong decrease in translation and impaired cell survival.
Notably, METTL16 can bind more than a thousand transcripts, the m®A modification of
which does not, however, depend on METTL16 [58].

For both METTL3 and METTL16, further studies are needed to understand the mech-
anism that promotes their cytoplasmic translocation and how they can discriminate and
bind to specific m® A-modified transcripts.
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Figure 4. Mechanisms of translational regulation mediated by METTL3 and METTL16 methyl-
transferases. (a) The binding of METTL3 in m®A sites present in the 3/-UTR stimulates translation
initiation by recruiting eIF3h; (b) the binding of METTL16 in mPA sites present in the 5'-UTR stimu-
lates translation initiation by facilitating the interaction between the 43S PIC and the elF3 translation
initiation factor.

3.5. Translational Regulation by m®A in Circular RNAs (circRNAs)

circRNAs are covalently closed RNA molecules produced by the back-splicing of
coding transcripts (review in [59]). As many circRNAs are derived from coding exons,
they may still have coding potential but without the cap structure and poly-A tail required
for cap-dependent translation. Notably, many circRNAs contain m®A close to the AUG
start codon, and a single m®A site is sufficient to promote circRNA translation [60,61].
m®A sites within circRNAs are recognized by the YTHDEF3 reader that recruits the non-
canonical elF4G2 (also known as Dap5 and Nat1) translation initiation factor to stimulate
cap-independent translation [60,61]. In hepatocellular carcinoma, an additional mechanism
has been described for circMAP3K4, derived from the MAP3K4 gene (Mitogen-Activated
Protein Kinase 4). This circRNA was found upregulated and translated into a peptide of
455 amino acids that protects cancer cells from apoptosis induced by chemotherapeutic
agents [62]. In this case, circMAP3K4 translation depends on m®A sites that are recognized
by the IGF2BP1 protein (Insulin-Like Growth Factor 2 MRNA Binding Protein 1). This
is a peculiarity of circRNAs because, in linear m®A-modified transcripts, the binding of
IGF2BP1 increases their stability [7]. Several translated circRNAs have been discovered
(reviewed in [63]), and many of the produced proteins play important roles in different
types of cancer [63—-67]. Nevertheless, the mechanism of cap-independent translation has
not yet been identified for most of them. Therein, the role of m°A in the translation of
circRNAs warrants further investigation.

4. Conclusions

Translational regulation is crucial for cancer development [1]. Highly proliferating
cells demand elevated levels of ribosomes and intense translational rates. Moreover, cancer
cells need to adapt their translation under stress conditions, such as hypoxia, derived
from their growth environment. Thus, they require mechanisms that integrate different
steps of gene expression, from transcription to translation, to produce a general increase in
protein synthesis or to enhance the translation of specific mRNAs. The greatly expanding
field of RNA modifications fits precisely in this context. Among the hundreds of different
modifications that RNA can undergo, the one that is most studied in the tumor field is
undoubtedly m®A within mRNA molecules. Inhibitors against writers and erasers of m®A
have been recently developed and have shown promising results in cancer cells and cancer
mouse models [68-70].

However, a major problem in the field is the many different mechanisms identified for
m®A in mRNA metabolism and translation regulation, often with opposite effects, and the
lack of reproducible results between different studies. This could be due, at least partially,
to the lack of specific and quantitative methods for m®A detection, context dependency,



Int. . Mol. Sci. 2022, 23, 8971 9o0f12

and the complexity of gene expression regulation by m®A and, eventually, its indirect
effect on translation. We urgently need mechanistic studies to determine the contribution
of m®A to translation. In this context, targeted m®A editors might be used to install or
remove mPA at desired sites in cancer-related mRNAs to address the specific positional
effects of m®A on translation. Moreover, another critical point to clarify is the redundancy
between cytoplasmic readers of the YTH family and their individual contributions to
translation regulation.

Nevertheless, the identification of specific translational regulations mediated by m®A
in cancer cells might bring the development of novel therapeutic strategies. One of these
might be the interference with the cytoplasmic function of METTL3 and METTL16 as posi-
tive translational regulators of oncogenes. Understanding the mechanisms and signaling
pathways that drive their translocation to the cytoplasm can be useful in the design of
combination therapy with drugs already used in the clinic.

The m°A field is relatively new and it is hoped that, in the future, methodological
advancement and scientific rigor can produce definitive results on its contribution to gene
expression regulation, including translation. This will surely benefit cancer studies.
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