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Abstract: Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder, of the
so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track
of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to
aggregation. Many pathways of clearance of badly-folded proteins are disrupted in neurons of
patients with HD. In this work, we show that one Mn(II) quinone complex (4QMn), designed to work
as an artificial superoxide dismutase, is able to activate both the ubiquitin-proteasome system and
the autophagy pathway in vitro and in vivo models of HD. Activation of these pathways degrades
mHtt and other protein-containing polyQs, which restores proteostasis in these models. Hence, we
propose 4QMn as a potential drug to develop a therapy to treat HD.

Keywords: Mn(II) complexes; Huntington’s disease; polyQ toxicity; autophagy; proteasome;
Caenorhabditis elegans

1. Introduction

Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormally
long expansion of CAG repeats, in exon 1, in the gene encoding for the huntingtin protein
(Htt). This expansion encodes a track of glutamines (polyQs) that, when it equals or exceeds
36, makes Htt mutant (mHtt). These abnormally expanded polyQs induce erroneous
folding of the protein, making mHtt prone to aggregation due to the cytoplasmic exposure
of some hydrophobic domains [1]. mHtt aggregates sequester other proteins, disrupting
their function and further exacerbating cellular toxicity. Although mHtt is expressed
ubiquitously [2], toxicity affects primarily the striatum and the cortex in the brain of
patients and murine animal models of HD, in which neurons are impaired and eventually
die [3]. This neuronal toxicity disrupts the striatum and causes HD patients to suffer
chorea and limb incoordination, psychiatric impairment, and cognitive deterioration as a
consequence of cortex dysfunction.

The function of the Htt protein is under debate as many roles have been attributed
to it, including its involvement in the dynamics of the cytoskeleton, gene expression, or
neuronal survival [4]. Among these functions, Htt also works to regulate macroautophagy
(autophagy from now on) [5]. In this regard, patients and models of HD show reduced
autophagy capacity, which in turn results in augmented proteotoxicity as autophagy is
one of the main sources of mHtt clearance [6,7]. Apart from autophagy, the ubiquitin-
proteasome system (UPS) has also been shown to play a part in removing mHtt from cells,
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and disruption of this function seems to have a role in the progress of HD [8–10]. Therefore,
restoring autophagy and proteasome flux using specific inhibitors has shown to be a key
therapeutic strategy for fighting HD [2,11–14].

One characteristic trait of neurodegenerative disorders is the participation of oxidative
stress in the progression of the disease [15]. Several strategies to fight HD have been
implemented using antioxidants as therapeutic drugs [16]. To counteract oxidative stress
in HD, some organic compounds that emulate superoxide dismutase (SOD) have been
synthesised [17–19]. The structure of these chemicals is such that they are able to carry metal
ions, such as manganese, for example, and therefore mimic the SOD catalytic core [17].

In this work, we have assessed the potential of 4QMn, a substance that mimics the
active centre of SOD and hence, its antioxidant capacity [17], to alleviate symptoms of
HD in vitro and in vivo models. Interestingly, we observed that this substance was able
to reduce mHtt and polyQ aggregates. Hence, we tested the capacity of the compound to
eliminate mHtt from human cells and C. elegans nematodes and restore the functionality
of neurons. Moreover, we showed that 4QMn was able to induce the activity of UPS
and autophagy in cultured cells, which explains why it rescues proteostasis in worms
and human cell models of HD. Therefore, this compound holds promise as a potential
therapeutic agent for HD and other neurodegenerative diseases where protein aggregates
are involved.

2. Results and Discussion
2.1. Treating In Vitro and In Vivo Models of HD with 4QMn Reduces Protein Aggregation

As mentioned above, mHtt acquires an abnormal protein conformation, which leads
to aggregation and subsequent cell toxicity [20]. As the aggregation of mHtt is a common
feature among the different models of HD, this is the first therapeutic target under study
during compound screenings [21]. Therefore, we aimed to determine the ability of 4QMn to
reduce total mHtt in human cells. HEK293T cells were transfected with the 121Q plasmid
that overexpressed the mHTT1-586 fragment of huntingtin and fused in-frame to mCherry.
This species of mHtt is naturally released by digestion of the full-length mHtt, by caspase
C6, in patients with HD [22]. Moreover, this form of mHtt is believed to be particularly
toxic and crucial for the progression of the pathology [22]. Hence, after transfection, the
cells were treated with different non-toxic concentrations of 4QMn. These were chosen
after performing a cell death assay (MTT assay Figure 1A). After incubation with the
compound, the cells were processed for mHtt quantification using immunofluorescence
(under an In-Cell Analyzer automatic fluorescence microscope), and in parallel, the cells
were lysed, and the total mHtt was analysed by Western blot. In the immunofluorescence
assay, quantification was performed with the In-cell Analyzer software, and the cells
were also treated with L1 (3,6,9-triaza-1(2,6)-pyridinecyclodecaphane-14-carboxylic acid), a
compound that forms Cu2+ complexes and mimics SOD activity such as 4QMn [23]. After a
24 h treatment with 4QMn, we observed that the percentage of positive cells with mHtt was
significantly decreased by 40.4 ± 8.6%, compared to non-treated cells. However, this effect
was not observed when the cells were treated with the L1 compound. This result suggests
that the reduction in mHtt protein by 4QMn was not due to its antioxidant functionality as
a compound with similar antioxidant capacity, L1, did not reduce mHtt levels (Figure 1B,C).

Additionally, the Western blot analysis also showed that different concentrations of
4QMn (20 µM, 10 µM, and 5 µM) reduced overall mHtt levels when compared to untreated
control cells. The Western bands were semi-quantified using image analysis software to
obtain approximate values of inhibition of 20.5 ± 6.0%, 31.0 ± 6.0%, and 20.31 ± 6.0%,
respectively (Figure 1D,E).

Since treatment with 4QMn reduced the presence of total mHtt, we investigated
whether this translated into a reduction in mHtt aggregation. Hence, we took advantage of
the presence of mCherry fused in frame with mHtt to quantify protein aggregates using
fluorescence microscopy. This analysis showed that 4QMn was also able to substantially
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reduce the number of cells carrying inclusion bodies, which is an indirect way of measuring
mHtt aggregation (Figure 1F,G).
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expressing polyQs (40Q::YFP) in muscle cells [25]. These animals allow for the investiga-
tion of the dynamics of polyQ aggregation because polyQ peptides collapse and produce 
inclusion bodies that are easily observed and quantified using a dissecting fluorescence 
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4QMn compound resulted in a statistically significant, dose-dependent reduction in in-
clusion bodies (Figure 2A,B). In this model of polyQ toxicity, exacerbating the presence of 

Figure 1. Treating cells expressing mHtt with 4QMn reduces mHtt. (A) Cell viability analysis of
4QMn in HEK293 cells. (B) Cell count analysis by In-Cell analyzer. (C) Percentage of positive cells
with mHtt. (D) Western Blot of proteins from HEK293 cells transfected with 121Q, and treated with
different amounts of 4QMn. (E) Quantification of the mHtt from the Western Blot. The two bands
most likely represent proteolytic cleavage of mHtt, as suggested elsewhere [24]. (F) Representative
images of fluorescence taken from one of the experiments of the transfection of 121Q treated (4QMn
20 µM) and non-treated (control-vehicle). (G) Quantification of the number of cells showing inclusion
bodies from 121Q. ANOVA test with post hoc Tukey. **** p < 0.0001, *** p < 0.001, ** p < 0.01. All
experiments were performed three times, at least.

Since the 4QMn was able to reduce mHtt aggregation in vitro, we tested whether this
compound was also able to alleviate phenotypes in vivo. To do so, we used C. elegans
expressing polyQs (40Q::YFP) in muscle cells [25]. These animals allow for the investiga-
tion of the dynamics of polyQ aggregation because polyQ peptides collapse and produce
inclusion bodies that are easily observed and quantified using a dissecting fluorescence
microscope [13,14,25]. Additionally, these 40Q:YFP worms also show signs of oxidative
stress [26]. We observed that treating these animals with different concentrations of the
4QMn compound resulted in a statistically significant, dose-dependent reduction in in-
clusion bodies (Figure 2A,B). In this model of polyQ toxicity, exacerbating the presence
of free radicals or reducing oxidative stress by means of antioxidants does not affect the
aggregation dynamics [26]. Hence, we hypothesised that the 4QMn compound might be
acting through different pathways of protein clearance.
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Figure 2. The 4QMn compound reduces polyQ aggregation and reduces toxicity from mHtt in C. ele-
gans. (A) Growing C. elegans worms in different concentrations of 4QMn reduce polyQ aggregation
in muscle cells. (B) Representative fluorescent images of control (upper image) and 4QMn-treated
worms (below). (C) Incubating worms with 4QMn rescues neuronal function in worms stressed with
mHtt. The antioxidant 2QMn does not induce any effect in worms. A 2 mM metformin (Metf.) was
used as a positive control for polyQ aggregation reduction and alleviation of toxicity induced by
mHtt. The worms were synchronized and incubated with the drug from the L1 stage. The animals
were tested when they were at the young adult stage. ANOVA test with post hoc Tukey. *** p < 0.001;
ns non-statistically significant. Bar 0.1 mm.

In order to confirm that a reduction in polyQ aggregation by treatment with 4QMn
translated into an improvement of the disease phenotype, we tested neuronal function.
We used animals expressing the first exon of huntingtin fused in frame with TdTomato
in mechanosensory neurons [14]. An expression of this construct induces neuronal im-
pairment that can be assayed using the “touch assay”, which measures the ability of the
mechanosensory neurons to feel light mechanosensation [27]. This assay has been widely
used before to test treatments in worm models of HD [27–30]. Functional analysis of the
mechanosensory neurons of the animals expressing 112Q, treated with 4QMn, showed that
this compound was able to restore neuronal function, which suggests that this substance
has therapeutic potential to treat HD (Figure 2C). As described above, the 4QMn compound
mimics the SOD enzyme active centre and acts as an antioxidant molecule. Hence, the
rescue of the neural function might be due to a reduction in oxidative stress. To explore
this hypothesis, we treated the animals expressing 112Q with 2QMn, another Mn SOD
mimic molecule, which has the same molecular formula (C23H3ON6) as 4QMn, where the
quinone is bound to C2 (2QMn) instead of C4 (4QMn) [17,18]. However, treatment with
2QMn did not restore the neuronal function in worms expressing 112Q in mechanosensory
neurons (Figure 2C). This suggests that antioxidant function was not sufficient for neural
function recovery. Moreover, these results suggested that the beneficial effect of 4QMn was
exclusively due to the induction of other pathways or cellular processes. In this regard,
it has been described before that reduction in oxidative stress in diverse experimental
models as well as in patients affected by HD did not necessarily translate into the functional
recovery of a given phenotype (recently reviewed by Bono-Yagüe et al., 2020) [16].
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2.2. The Proteasomal System Is Impaired by mHtt and Treatment with 4QMn Restores Its Activity

The UPS pathway is one of the most important pathways for the degradation of toxic
proteins in eukaryotic cells. In models of polyQ-induced toxicity, including HD [9,10], UPS
substrates accumulate throughout the cell and induce toxicity through direct impairment
of proteasomal degradation [31]. Several strategies to develop therapies to treat HD have
relayed into activation of the UPS pathway [32–37]. Therefore, we tested the potential of
4QMn as a proteasome activator in our HD cell model. To do so, we transfected HEK293T
cells with the plasmid that expresses the mHtt isoform with the N-terminal 585 first amino
acids, carrying 121Q. Then, we incubated the cells with 4QMn for 24 h. An analysis of
the proteasomal activity showed that the cells expressing mHtt had significantly reduced
their proteasomal activity by 38.3% (±12.5%) without affecting cell viability compared to
control cells (Figure 3A,B), a result that is in agreement with the literature [9,38]. On the
other hand, treatment with 4QMn reduced proteasomal activity to the same level as control
cells (Figure 3A,B). To further investigate this, we used MG132, a well-known proteasome
inhibitor. MG132 reduced proteasome activity in the control cells as luminescence was
one order of magnitude lower (Figure 3C) compared to our experiment without inhibitor
(Figure 3B). As expected, mHtt further reduced proteasome activity in MG132 treated cells
(Figure 3B). In this case, incubation with 4QMn showed a trend to rescue proteasomal
activity, although it was not statistically significant. Altogether, these data show that the
mechanism of action of 4QMn is clearly related to the pathways of protein degradation.
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Figure 3. Treating mHtt-stressed cells with 4QMn reduces toxicity, and this effect is partially UPS-
independent. (A) Cell viability data (MTT assay). (B) Graph showing proteasomal activity, measured
by luminescence, in naïve HEK293 cells, cells transfected by mHtt, and cells transfected and treated
with 4QMn. (C) The same data, but with all treatments with the proteasome inhibitor MG132.
* p < 0.05; ** p < 0.01; ANOVA test with post hoc Tukey.

2.3. 4QMn Promotes Autophagy in Cells Stressed by mHtt

Autophagy is a conserved and essential cell process that allows the degradation of
damaged intracellular components, such as organelles, misfolded proteins, and foreign
bodies [39]. The maintenance of normal cellular proteostasis primarily depends on au-
tophagy. In fact, altered autophagy causes protein aggregation, and this is one of the
hallmarks of HD and other neurodegenerative diseases [40]. Numerous studies have
demonstrated that mHtt protein is an autophagy substrate (reviewed by Valionyte et al. [7]).
Moreover, activation of autophagy in models of HD increased mHtt clearance and cell
survival [41–44]. Interestingly, wild-type Htt is a component of the pathway that is re-
quired for selective degradation [5]. Thus, autophagy modulation has been proposed as a
therapeutic intervention in HD [14,30,45]. We tested autophagy in our in vitro model of
HD and the effect of 4QMn on autophagy. We monitored the autophagy flux by studying
different auto-phagosomal membrane markers or cargo-adaptors. These biomarkers are
the microtubule-associated protein LC3 and p62/SQSTM1 (p62). LC3I is a soluble protein
that is conjugated with phosphatidylethanolamine to become LC3II, which is located in
both the outer and inner membranes of auto-phagosomes [46]. When autophagy is in-



Int. J. Mol. Sci. 2022, 23, 8936 6 of 13

duced, the number of auto-phagosomes and auto-phagosomal carrying LC3II is increased.
However, as soon as the auto-phagosome fuses with the auto-lysosome, degradation of
LC3II occurs and a decrease in this protein can be assessed [47]. For this purpose, it is
absolutely necessary to use a lysosome-specific inhibitor, such as bafilomycin A1 (Baf
A1), that blocks the fusion between auto-phagosome and auto-lysosome, enabling LC3II
accumulation and quantification. On the other hand, degradation of p62 is another marker
widely used to monitor autophagy as it directly binds to LC3 and is degraded by autophagy
selectively [48]. The p62 protein is a ubiquitin-binding scaffold protein, also called sequesto-
some 1 (SQSTM1), that colocalizes with ubiquitinated proteins in several neurodegenerative
diseases such as HD [49]. In the same way as for LC3II, it is rapidly degraded when the
fusion with the auto-lysosome occurs. Thus, using baf A1 is also mandatory to be able to
quantify the levels of autophagy induction.

The Western blot analysis revealed that 20 µM 4QMn significantly increased LC3II
protein levels in naïve cells (without mHtt), which strongly suggests that this substance
is able to potently activate autophagy (Figure 4A,B). On the other hand, there were also
significant differences between the control cells and cells expressing mHtt and treated with
4QMn (Figure 4A,B). In addition, the LC3II levels were increased in this HD cell model,
as has been observed in previous studies [43,50–52]. Finally, the treatment with 4QMn
also significantly increased LC3II in cells with mHtt aggregates (Figure 4C), which further
suggests that the autophagy flux was activated. Regarding p62, Western blot analysis did
not show any significant difference among the conditions tested (data not shown).
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Figure 4. The compound 4QMn induces autophagy in cells stressed by mHtt. (A) Western blot
analysis of the expression of the LC3 forms. Actin was detected to perform normalization of the
samples. (B) Graph with the quantification of the western blot from A. (C) Fluorescence imaging of the
cultures of HEK293 naïve and transfected with mHtt, stained for nuclei (blue), mHtt (mCherry/red),
and LC3 (green). ANOVA test with post hoc Tukey. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.4. 4QMn Activates UPS and Autophagy for mHtt Degradation

It is well-known that mHtt aggregates accumulate in the cytoplasm, causing the loss of
normal physiological functions and the gain of toxic functions [4,53]. We have shown above
that 4QMn activates both the UPS and autophagy pathways to remove mHtt aggregates.
Hence, we sought to investigate the mechanism of action of this compound. To this end,
the degradation rate of mHtt was studied using the cycloheximide (Chx) chase assay under
the effect of the proteasomal inhibitor, MG132, the lysosome inhibitor, baf A1 or both
compounds simultaneously. Through performing the Western blot image analysis, mHtt
was quantified over time in the presence of Chx and the effect of 4QMn was evaluated. The
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results showed that 4QMn treatment induced a substantial degradation (59.5 ± 0.1%) of
mHtt after 8 h (Figure 5A). When the lysosomal inhibitor baf A1 was added to the Chx
treated cells, the 4QMn treatment still reduced mHtt degradation, although at lower levels
(Figure 5B). Similarly, when the proteasome inhibitor MG132 was added in the presence of
Chx, the 4QMn treatment still induced a significant decrease in mHtt levels (Figure 5C),
suggesting that 4QMn still exerted its action. Finally, both inhibitors, MG132 and baf
A1, were added along with 4QMn. This treatment resulted in the complete inhibition of
4QMn function, and mHtt degradation was not induced (Figure 5D). These results clearly
demonstrate that 4QMn induces mHtt degradation through both the UPS and autophagy
pathways, and blockade in one of the pathways can be overcome by activation of the other
as mHtt degradation was induced at similar levels as in control cells.
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Future strategies to delay the progression of HD—and maybe other neurodegenerative
diseases—may consist of a combination of small molecules that synergise with more
complex therapies in the degradation of mHtt, and hence alleviate the symptoms of patients
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with HD. Some of these strategies include genetic means, such as silencing the expression
of the gene using RNAi, which induces degradation of the messenger and then encodes the
protein [54]. Other ways to do so are the use of antisense oligonucleotides (ASO) to block
the translation of this messenger. ASOs are currently being used in clinical trials [54–64].
Some strategies that are under investigation involve gene targeting to edit HTT, using
CRISPR, for example, to remove the CAG expansion from the gene [65]. However, these
techniques are in their infancy, require further research to make them useful, and even
they would require specialized personnel to deliver therapies and genome modification
in humans [66]. Most of these techniques and strategies are reviewed by Tabrizi and
collaborators [67].

Some small compounds have shown the potential to reduce the expression of mHtt.
This, in contrast to DNA delivery techniques, allows for systemic elimination of the
toxic cause of HD, mHtt. These small molecules, compared to DNA or single-stranded
Oligodeoxynucleotides (ssODNs), can reach the nervous system and most organs, can
be easily administered (orally) and would be widely available to all patients without the
need to attend specialized delivery centres. Systemic administration is also important
because Htt is ubiquitously expressed, and many non-neuronal phenotypes have also been
described so far [2,4]. Therefore, the 4QMn molecule could be a potential candidate for the
treatment of HD and maybe other neurodegenerative diseases.

3. Materials and Methods
3.1. Cell Culture and Transfection

Human embryonic kidney 293T cells (HEK293T) were cultured in Gibco DMEM
medium, low glucose (Fisher scientific, Madrid, Spain) supplemented with L-Glutamine
(Sigma Aldrich, Darmstadt, Germany), penicillin-streptomycin (Gibco, Fisher Scientific,
Madrid, Spain) and fetal bovine serum (Gibco, Fisher Scientific, Madrid, Spain). Cells
were harvested with trypsin/EDTA (Gibco, Fisher Scientific, Madrid, Spain) when 80%
confluence was reached, and they were seeded at a density of 8 × 103 cells/mL into 96-well
plates or 50 × 103 cells/mL into 24-well plates (Corning Incorporated, Kennenbunk, ME,
USA). Cultures were maintained at 37 ◦C in a humidified incubator supplying 5% CO2/air.
For generating the Huntington’s disease cell model, the transient expression of mHtt was
induced. HEK293T cells were transfected using Lipofectamine 3000 (Invitrogen, Fisher
Scientific, Madrid, Spain), and the complexes were prepared and incubated according to
the manufacturer’s protocol using Opti-MEM reduced serum medium (Fisher Scientific,
Madrid, Spain). The plasmid used for the overexpression of huntingtin protein contained
the huntingtin exon 1 with a polyQ stretch of 121 glutamines in frame with the red fluo-
rescent protein mCherry and the CMV promoter. After 24 h incubation, the transfection
reagent was removed, and cells were treated with 4QMn compound at 5–10–20 µM concen-
trations to evaluate its efficacy in the subsequent assays (three biological replicates). The
concentrations used in these experiments were not cytotoxic, previously determined by the
MTT assay.

3.2. Worm Culture and Manipulation

C. elegans worms were maintained and assayed at 20 ◦C, as described elsewhere [68].
The 40Q model [25] was obtained from the repository of worms Caenorhabditis Genetics
Center (https://cgc.umn.edu/ (accessed on 20 June 2022)). The 112Q model was created by
Sanchis et al. [14]. The collection of polyQ aggregation from 40Q animals was performed
on life worms while foraging in Petri dishes, using a dissecting microscope equipped with
fluorescence (Leica TCS SP5-AOBS, headquarters), following the procedures described
elsewhere [13,14]. The mechanosensation data was collected using an eyelash mounted on
a toothpick, following procedures described elsewhere [13,14,29,30,55]. We performed at
least three independent experiments per type of assay. The worms were synchronized and
incubated with the drug from the L1 stage. The animals were tested when they were in the
young adult stage. The worms were cultured in liquid with the 4QMn or vehicle (controls)

https://cgc.umn.edu/
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on a shaker as described elsewhere [13,14]. An ANOVA test was used to investigate
statistical significance, and the post hoc of Tukey was applied to find out each p-value.

3.3. MTT Assay

To evaluate cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (Sigma Aldrich, Darmstadt, Germany) was used. HEK293 cells treated with the
different compounds were incubated with the MTT reagent for 3 h. After the incubation
period, dimethyl sulfoxide (Sigma Aldrich, Darmstadt, Germany) was used to dissolve the
formazan, and the colour intensity was measured at 550 nm in a spectrophotometer Halo
LED 96 (Dynamica Scientific, Livingston, UK).

3.4. Immunofluorescence Quantification through In-Cell Analyzer

For protein quantification by immunofluorescence analysis, the In-Cell Analyzer 2000
(GE Healthcare Life Sciences, Chicago, IL, USA) was employed. After the transfection,
cells were incubated for 24 h in a medium (control) or medium containing 5 µM of each
compound. Following that, cells were processed for microscope analysis. First, cells were
fixed with paraformaldehyde 2% (Electron Microscopy Sciences, Hatfield, PA, USA) in
DMEM medium for 15 min. Then, they were stained with DAPI and Phalloidin 488 (Sigma
Aldrich, St. Louis, MO, USA) for 30 min. After that, cells were washed and kept in PBS
(Gibco, Sigma Aldrich, St. Louis, MO, USA) for image analysis. The In-Cell Investigator
image analysis software was employed to determine the percentage of cells with huntingtin
(positive cells) and the percentage of cells without (negative cells).

3.5. Western Blot Analysis

For protein quantification by Western blot, transfected cells were washed with PBS
buffer (Gibco, Fisher Scientific, Madrid, Spain) before RIPA buffer (150 mM NaCl, 0.1%
Triton X-100, 0.5% Sodium Deoxycholate, 0.1% SDS, 2 mM EDTA and 50 mM Tris-HCl,
pH 8.0), and a protease inhibitor cocktail (Sigma Aldrich, Darmstadt, Germany) was added
to lyse the samples. After that, a cell scraper was performed to detach cells from the well
plate, and a Pierce BCA protein assay (Thermo Scientific, Bannockburn, IL, USA) was
employed to quantify the number of proteins in the lysate. Protein extracts were sepa-
rated by 10% or 15% (depending on the size of the protein of interest) sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene
di-fluoride (PVDF) membranes (Bio-Rad Laboratories, Hercules, CA, USA). After trans-
fer, the membrane was blocked in 5% milk solution with Tween20 0.1% (Sigma Aldrich,
Darmstadt, Germany) for 1 h and probed with the following primary antibodies: 1/5000
rabbit monoclonal [EPR5526] to Htt (ab109115), 1/2000 rabbit monoclonal [EPR18709]
to LC3B (ab192890), 1/200 mouse monoclonal to SQSTM1/p62 (ab56416), and 1/5000
rabbit monoclonal to beta-Actin (ab8227), all from Abcam, Cambridge, UK. The secondary
antibodies used were 1/10,000 goat anti-rabbit IgG H&L HRP (ab97051) and 1/10,000
goat anti-mouse IgG HRP (ab205719), also from Abcam (Cambridge, UK). Chemilumi-
nescent detection was performed using ECL detection kit (Amersham, Fisher Scientific,
Madrid, Spain). Densitometry analysis was performed using Image J software (version 1.52,
Madrid, Spain).

3.6. Proteasome Activity

To measure proteasome activity, the Proteasome-Glo chymotrypsin-like cell-based
kit (Promega Biotech Ibérica, Madrid, Spain) was used according to the manufacturer’s
instructions. HEK293T cells were seeded in a white 96-well plate, and after transfection,
they were treated with 4QMn at 20 µM for 24 h. After the incubation period, cells were
processed according to the protocol of the kit. When the activity of the proteasome wanted
to be inhibited with a possible rescued capacity of 4QMn, the proteasome inhibitor, MG132
(M7449, Sigma Aldrich, Darmstadt, Germany) was used at 10 µM. In this case, cells were
treated with 4QMn and MG132 simultaneously.
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3.7. Autophagy Markers Study

To quantify autophagy activity, it is necessary to use a lysosome-specific inhibitor,
Bafilomycin A1 (Baf A1). For these studies, after cell transfection and treatment with 4QMn
at 20 µM for 24 h, Baf A1 is added to the cells at 20 nM during 4 h. After the incubation
time, cells are processed for subsequent studies.

3.8. Immunostaining

For microscope analysis, cells were fixed with paraformaldehyde 4% (Electron Mi-
croscopy Sciences, Hatfield, PA, USA) in PBS for 20 min. Then, cells were washed with PBS
and blocked with 10% fetal bovine serum (FBS) (Gibco, Fisher Scientific, Madrid, Spain)
in PBS buffer with 0.1% Tween20 for 1 h at room temperature. After that, cells were incu-
bated with primary antibody rabbit monoclonal to LC3B at 1 µg/mL (ab192890) or mouse
monoclonal to SQSTM1/p62 at 1/200 (ab56416) in blocking solution overnight, at 4 ◦C
in a humidified chamber. After the incubation period, cells were washed again with PBS,
and the secondary antibody Alexa 488 anti-mouse or anti-rabbit 1/200 (Invitrogen, Fisher
Scientific, Madrid, Spain) was added to blocking solution with DAPI 1/100 (Invitrogen,
Fisher Scientific, Madrid, Spain) for 1 h. Finally, cells were washed and mounted with
FluorSave reagent (Calbiochem, Merck Millipore, Darmstadt, Germany).

3.9. Cycloheximide Chase Assay (CHX)

The CHX assay was performed to study the degradation kinetics of mHtt. First,
HEK293T cells were transfected with the plasmid with 121Q. After 24 h transfection, cells
were washed with PBS to remove the transfection reagent, and 4QMn at 20 µM was
added together with cycloheximide at 300 µM (Sigma Aldrich, Darmstadt, Germany).
Then, cells were washed, and RIPA buffer was added at time 0–4–8 h after the addition
of cycloheximide reagent. Afterward, cells were processed for Western blot analysis as
described before.

3.10. Statistical Analysis

GraphPad Prism software, version 8 (GraphPad, San Diego, CA, USA), was used to
perform the statistical analysis. Data are represented as mean ± SD, and the ordinary
one-way ANOVA test with Dunnett’s post hoc and Mann–Whitey U test were applied for
the analysis. Statistical significance was set at p < 0.05, 95% of confidence.

4. Conclusions and Final Remarks

In this work, we showed that a small water-soluble molecule, able to cross the blood-
brain barrier, can reduce the aggregation of mHtt in human cell models and C. elegans
transgenic models. Moreover, the 4QMn molecule acts by activating the UPS and the
autophagy pathways. These data point to the 4QMn molecule as a potential orally delivered
candidate to treat HD systemically. Furthermore, because of the wide roles of protein
aggregation in neurodegenerative diseases, the 4QMn molecule may also have applications
in other pathologies in which autophagy or proteasome activation may relieve some of
the symptoms.

5. Patents

4QMn compound synthesis and use are subjected to several international patents.
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