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Abstract: Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive
disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the
interplay between host genetics, and environmental factors, resulting in an aberrant immune response
leading to intestinal inflammation. Due to the high morbidity and long-term management of CD,
the development of non-pharmacological approaches to mitigate the severity of CD has recently
attracted great attention. The gut microbiota has been recognized as an important player in the
development of CD, and general alterations in the gut microbiome have been established in these
patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments
in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut
microbiome in terms of composition and functionality. However, how specific dietary strategies could
modulate the gut microbiota composition and how this would impact host–microbe interactions
in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe
interactions and their involvement in CD pathogenesis and severity, and we highlight the most
up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the
role of the microbiota in gut inflammation and immunity.
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1. Introduction

Crohn’s disease (CD), a subtype of inflammatory bowel disease (IBD), refers to a
complex disabling, idiopathic, progressive, and destructive disorder with an unknown
etiology that could affect any segment of the gastrointestinal (GI) tract [1]. It is estimated
that CD could affect up to 300 in 100,000 individuals in westernized countries in Europe,
North America, and Oceania, and it is associated with high morbidity and a high economic
burden [2]. Crohn’s disease is a chronic remitting and relapsing inflammatory disease
characterized by skip intestinal lesions affecting the gut wall along the GI tract, which can
lead to chronic abdominal pain, diarrhea, obstruction, and/or perianal lesions [3]. The
pathogenesis of CD is multifactorial and involves the interplay between the host’s genetics,
immune system, and gut microbiota, which are influenced by environmental factors and
result in an aberrant response in the GI tract with subsequent intestinal inflammation [4].

Int. J. Mol. Sci. 2022, 23, 8361. https://doi.org/10.3390/ijms23158361 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158361
https://doi.org/10.3390/ijms23158361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7463-3343
https://orcid.org/0000-0001-9750-4237
https://orcid.org/0000-0001-6913-0610
https://orcid.org/0000-0001-6804-5449
https://doi.org/10.3390/ijms23158361
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158361?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 8361 2 of 19

There are a variety of pharmacological treatment options for patients with CD, includ-
ing antibiotics, 5-aminosalicylates, corticosteroids, immune suppressants, and/or biologic
therapy, all of which are principally selected based on the symptoms and whether remission
is being induced or maintained. Although traditionally corticosteroids have been the cor-
nerstone of CD management, anti-inflammatory therapies (e.g., anti-tumor necrosis factor
(anti-TNF) therapy) have become the therapy of choice for the treatment of CD in the past
two decades, especially in patients with moderate to severe active CD or in patients that
are unresponsive to other therapies [5]. In addition, new biologic therapies including anti-
integrins and anti-IL12/23p40 are gaining interest in light of their promising results [6,7].
However, most of these therapies show poor long-term maintenance of intestinal integrity,
and they are associated with significant health-care costs and side effects. Thus, the devel-
opment of new strategies such as nutritional interventions is mandatory to improve the
quality of life of patients with CD [1]. In this sense, exclusive enteral nutrition (EEN) has
been successfully used over a long period of time in the treatment of patients with CD,
and it is recommended as the first-line induction therapy for children with CD [8]. Indeed,
EEN has been demonstrated to achieve similar results to those obtained with corticosteroid
treatment in the patients, with additional benefits such as avoidance of growth retarding
and complete coverage of nutritional needs [8,9]. However, although the efficacy of EEN
in the clinical management of CD is indubitable, the exact mechanisms underlying such
positive outcomes remain uncertain [10].

The intestinal gut microbiome has emerged as a pre-eminent target for potential new
therapeutic treatments in CD. The human gut microbiota harbors more than 1014 microor-
ganisms (including bacteria, virus, and yeast), which have a symbiotic and mutualistic
relationship with the host. Since the moment of birth, the gut microbiota plays an important
role in physiological processes such as the development of the immune system, intestinal
homeostasis, behavior, and host metabolism [11–13]. Imbalance in the gut microbiome, the
so-called dysbiosis, is associated with metabolic and gastrointestinal conditions such as IBD,
which includes CD, and ulcerative colitis (UC) [14]. Among the factors that meaningfully
affect the microbiota, diet is one of the key players in maintaining a well-balanced and
healthy gut-microbial microenvironment. Thus, the development of specific diets aimed
at the modification of gut microbiota has arisen as a promising cost-effective strategy to
improve CD management and evolution. In this review, we discuss the most recent knowl-
edge on host–microbe interactions and their involvement in the pathogenesis and severity
of CD, and we highlight the most up-to-date information on nutritional interventions
targeting the modulation of gut-microbiota composition and the immune system.

2. Gut Microbiome in Crohn’s Disease

The gut microbiome is closely linked to the immune system and is a key player in the
pathogenesis of CD [15]. The emergence of new molecular techniques and bioinformatics
tools in the last decade has provided a better understanding of the alterations associated
with a pathological status of the microbiome and its associated metabolome. Multiple
human microbiome studies have demonstrated a close relationship between such dysbiosis
and certain clinical aspects of CD, including inflammation, intestinal permeability, and post-
operative CD recurrence [16,17]. Thus, these studies have established that patients with CD
showed reductions in bacterial diversity and altered abundance of certain taxa including a
reduction in health-promoting microorganisms (e.g., Faecalibacterium and Roseburia spp.)
and an increase in pathogenic microorganisms (e.g., Escherichia, Fusobacterium, and My-
cobacterium spp.) [18]. Furthermore, increasing evidence support that such dysbiosis might
be a causal factor in the development and evolution of chronic intestinal inflammatory
diseases such as CD [19]. Despite this growing evidence, the exact mechanisms involved in
host–microbe interactions in CD pathophysiology have not been yet fully understood.
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2.1. Intestinal Inflammation and Gut Dysbiosis in CD

Susceptibility to CD is dependent on different elements, including genetic predisposi-
tion and environmental factors, such as diet and pollution. Importantly, these non-genetic
factors are well-known to have an important impact on the gut microbiome composition of
the host [20]. Microbiome components interact with the host’s immune system to play a
key role in the maintenance of physiological homeostasis. Thus, the disruption of a healthy
microbiome or the reduction in the ratio of certain beneficial commensal microorganisms,
resulting in a dysbiosis, may induce an exacerbated activation of the mucosal immune
system associated with an exacerbated and altered cytokine production that contributes to
the establishment and progression of CD [21].

Several pro-inflammatory cytokines are involved in CD, but, among them, IL-23 [22]
(a member of the IL-12 family) and IL-17 are key to its pathogenesis [23]. These pro-
inflammatory cytokines activate and expand a lymphocyte T helper (Th) 17 response that
is accompanied by the induction of other pro-inflammatory mediators including TNFα,
IFNγ, and IL-1β, among others. Gut-resident macrophages, together with dendritic cells,
play a key role in the establishment of this exacerbated pro-inflammatory process found
in CD. These cells are the main producers of IL-23 [24], which activates the Th17 and Th1
inflammatory response, but they are also involved in the progression of CD as a later cellular
source of other pro-inflammatory cytokines, such as TNFα and IL-1β. The other cellular
key players in the progression of the pathology are Th17 lymphocytes, which expand
and augment their population in the gut mucosa in response to IL-23 [25], maintaining
chronic inflammation of the intestine in CD. Th17 lymphocytes mainly produce IL-17, but
can also produce IFNγ, IL-21, IL-22, and TNFα [26,27]. Thus, the accumulation of active
expanding Th17 lymphocytes in the submucosa and lamina propria further contributes to
the progression of CD [28]. Other cell populations, such as certain subsets of γδ T cells [29],
natural killer T (NKT) cells [30–32], and type 3 innate lymphoid cells (ILC-3) [22], also
respond to IL-23 and other pro-inflammatory cytokines and are, thus, considered as “type
17 cells”. The stimulation of these type 17 cells with IL-23 and other pro-inflammatory
mediators, such as IL-1β, also contribute to the local mucosa inflammation, fulfilling
an important role in CD perpetuation [33]. As a counterpart, regulatory T cells (Tregs)
have an important role as main down-regulators and major suppressors of the immune
response [34], and, thus, the differentiation of T cells to this modulatory phenotype and
their appropriate activation may fulfil a key role in the maintenance of the gut homeostasis.

On the other hand, it has been reported that the gut dysbiosis observed in IBD pa-
tients [35] is characterized by a reduction in microorganisms with anti-inflammatory prop-
erties and an elevation of those with pro-inflammatory capacities [36,37], which favors
the augmented and disturbed pro-inflammatory cytokine production observed in CD. A
reduction in the general diversity of the gut microbiota, accompanied by a lower abun-
dance of Firmicutes, is a common signature of IBD [38,39]. In patients with CD, it has
been shown that the abundances of Faecalibacterium prausnitzii, Blautia faecis, Roseburia
inulinivorans, Ruminococcus torques, and Clostridium lavalense are highly reduced when
compared to healthy/control individuals. Notably, F. prausnitzii presents an important anti-
inflammatory activity mediated by its butyrate production [40,41]. Indeed, these bacteria
have been demonstrated to induce the production of the anti-inflammatory cytokine IL-10
by immune cells, thus being able to diminish the production of key pro-inflammatory cy-
tokines such as IL-12 and IFNγ [42]. Furthermore, short-chain fatty acid (SCFA)-producing
bacteria strains present in healthy human fecal samples, such as those included in Clostrid-
ium clusters IV, XIVa, and XVIII, can induce, via butyrate production, the differentiation and
expansion of anti-inflammatory Tregs [43]. On the contrary, an increase in Proteobacteria,
especially those with adhesive properties to the intestinal epithelium such as adhesion-
invasive Escherichia coli (AIEC), prevalent in CD [44], can induce Th17 pro-inflammatory
cells [45].

An open question in this field is whether the dysbiosis seen in CD precedes inflam-
mation or whether dysbiosis is a consequence of the inflammatory process. An interesting
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study that analyzed the microbiota composition in mucosal tissue biopsies and fecal sam-
ples of treatment-naive pediatric patients with CD revealed an increased abundance of
Veillonellaceae, Paturellaceae, Neisseriaceae, Fusobacteriaceae spp., and E. coli spp., and a de-
creased abundance of Clostridiales, Bacteroides, Faecalibacterium spp., Roseburia spp., Blautia
spp., Ruminococcus spp., and Lachnospiraceae spp. [18]. As this study investigated a newly
diagnosed population, it suggests that microbiota changes occur early and may precede
clinical disease. Indeed, a recent study using a genetic model of CD (deficient in two CD
susceptibility genes, NOD2 and phagocyte NADPH oxidase) demonstrated an increase
in pathobiont species preceding the onset of colitis [46]. These observations suggest that
dysbiosis in CD can be present before inflammation, suggesting a key role of the gut micro-
biome in CD pathogenesis. Figure 1 shows an overview of the inflammatory mechanisms
described in CD in relation to microbial dysbiosis.

Figure 1. Overview of inflammatory mechanisms involved in CD progression related to gut dysbiosis.

2.2. Host–Microbe Interactions in CD

Involvement of the gut microbiome in CD pathogenesis was initially suggested by
Rutgeerts et al., after observing that CD recurrence was decreased or eliminated in patients
undergoing surgical diversion of the fecal stream [47]. These observations were later
confirmed by another group, after seeing that exposure of distal limb to luminal content was
associated with recurrence of inflammation after surgical resection [48]. Further evidence
indicating a key role of microbial involvement in CD comes from animal models, where
the transfer of fecal microbiota from mice with colitis-initiated inflammation in healthy
mice [49]. Moreover, colitis-susceptible mice with T cell receptor-alpha beta (TCRαβ)
mutations develop colitis when colonized with a conventional microbiota but not when
raised in germ-free conditions [50].

Many studies have reported changes in the microbiota of patients with IBD patients.
However, these have not identified a consistent change in microbial composition. A po-
tential reason for this is the great variation in studies characterizing the microbiota in IBD
patients due to confounding variables such as disease duration, differences in treatment,
sampling location, and variation in analysis. However, it is very well-characterized that
dysbiosis is present in IBD patients, which is more pronounced in CD than in UC, with
a more altered and unstable microbiota composition in the former [51,52]. A number of
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studies have demonstrated that the microbiota of patients with CD possesses a reduced
richness of species, with a decrease in the relative abundance of F. prausnitzii, Bacteroides,
Blautia, Ruminococcus, Roseburia, Coprococcus, and Lachnospiraceae, and increased abundance
of Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae [53,54]. Among bacteria com-
monly associated with IBD, adherent-invasive E. coli (AIEC), initially isolated from patients
with CD with ileal lesions [44], has been highly associated with CD pathogenesis [55]. In
this regard, a recent study found an association of AIEC with the early phase of recurrence
in patients with ileal CD [56]. Additionally, a systemic review and meta-analysis reported
that the prevalence of AIEC in patients with UC is 12% (range 0% to 10%) compared to
5% in non-IBD controls and 29% (range 21.7 to 62.5%) in patients with CD, indicating that
AIEC may also be relevant in the pathogenesis of UC [57]. AIEC lack classical pathogenicity
genes but can persist in macrophages, where they can induce proinflammatory cytokine
secretion without inducing cell death [57]. One gene that supports the survival of AIEC
in macrophages is gipA, which is induced by different factors including bile salts, reactive
oxygen species, and pH changes [58].

In addition to infecting macrophages, AIEC can adhere to and invade epithelial
cells, thus affecting the integrity of the epithelial barrier by altering the expression of
tight junction proteins such as claudin-2, zonula occludens 1, and E-cadherin [59,60].
AIEC can bind to epithelial cells through the receptor carcinoembryonic antigen-related
cell adhesion molecule 6 (CEACAM6), often found increased in the ileum of patients
with CD [61,62]. Several factors can affect the expression of AIEC on epithelial cells,
including pro-inflammatory cytokines, dietary emulsifiers, gut metabolites, etc. [63–65].
For example, the fucose fermentation product 1,2-propanediol, which is highly increased in
the microbiome of patients with CD, was shown to regulate AIEC-induced intestinal T cell
inflammation in mice via the metabolic recognition and activation of phagocytes [64]. Other
mucosal metabolites such as ethanolamine, ileitis-associated amino acids, glutathione, and
fucose were shown to enhance AIEC growth and virulence factors resulting in worsening
intestinal inflammation in AIEC-mono-associated IL-10−/− mice [65], indicating the impact
that the gut environment has on the ability for AIEC to thrive in the gut of the patients.
Other studies also associated the impaired autophagy-mediated clearance of AIEC with
enhanced inflammation, further supporting their role in CD pathogenesis [66].

Similar to alterations in gut microbiota, gut mucosal virome analyses in IBD patients
have identified an increase in Caudiovirales phages and viral-like particles (VLP) such as
Siphoviridae, Myoviridae, and Podoviridae, especially associated to patients with CD [67,68].
To examine how the innate immune system responds to viruses in the gut, a recent study
utilizing humanized mice treated with colonic virome isolated from healthy individuals,
showed that the mice were protected from the development of intestinal inflammation,
while those treated with UC- and CD-associated viromes developed a more severe colitis
phenotype [69]. Interestingly, macrophages cultured in the presence of healthy colonic
virome resulted in the down-regulation of genes associated with apoptosis, inflammation,
and the anti-viral response and the up-regulation of genes associated with pro-survival
and homeostatic/resolving state, while UC/CD virome induced a pro-inflammatory gene
profile, often associated to IBD [69]. Moreover, epithelial cells cultured in the presence
of UC/CD virome presented TLR4-independent barrier integrity and pro-inflammatory
cytokine response. Interestingly, a worsening in the epithelial cell response to IBD vi-
rome was observed when mutations associated with the IBD-susceptible gene melanoma
differentiation-associated gene 5 (MDA5) were present [69].

Fungi are also important microorganisms constituting the gut microbiota. Fungi
can be recognized by the immune system through several pattern recognition receptors
(PRRs) including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and NOD-
like receptors (NLRs). Recognition of the fungal structures, including polysaccharides
(mannans or mannoproteins), β-glucans, and unmethylated DNA, by different PRRs,
results in the activation of pro-inflammatory cytokines such as IL-1β, TNF-α, etc., leading
to an enhanced immune response [70]. Fungal alterations have been identified in patients
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with IBD, especially in Candida albicans and Malassezia restricta [71]. Colonization of mice
with these fungal species worsened colitis [72,73], and M. restricta was shown to activate
the NLRP3 inflammasome via an increased caspase-1 and IL-1β activity [73,74]. A higher
relative abundance of colonic M. restricta was associated with a mutation in the CARD9
gene, CARDS12N, which is linked to IBD onset [73]. In another study, Ost et al. showed
that fecal IgA from patients with IBD bound with high affinity to C. albicans and low affinity
to Saccharomyces cerevisiae. In addition, the hyphae of C. albicans and an IgA-targeted
adhesin led to the exacerbation of intestinal inflammation, and vaccines that induced an
adhesin-specific immune response protected the animals from disease [75].

Other data has also indicated that the interaction of fungal and bacterial microorgan-
isms could regulate the outcome of IBD. Thus, a reduction in the abundance of Enterobacte-
riaceae caused by the presence of C. albicans reduced the development of murine colitis [76].
Overall, all these recent studies indicate that not only bacteria have an impact on the host
response and CD pathogenesis, but also other microorganisms, including fungi and virome,
are key players in CD pathogenesis.

2.3. Impact of Microbial-Derived Metabolites in CD Pathogenesis

As described above, compositional changes in the gut microbiota are potential con-
tributing factors in driving inflammation in CD. Importantly, alterations in the gut bacteria
will alter the bacterially generated metabolite landscape of the gut. These bacterial metabo-
lites (e.g., secondary bile acids (BAs), SCFAs, etc.), have been shown to have an impact
on many host processes including metabolism, epithelial barrier integrity, and innate and
adaptive immune responses [77].

Numerous reports have demonstrated that BAs can act as signaling molecules, influ-
encing multiple metabolic pathways [78–80]. These molecules are synthesized in the liver
and secreted via the gall bladder to the small intestine as primary BAs, thus representing
a small portion of BA moieties present in the BA pool. In the GI tract, the high diversity
of BA moieties is a consequence of the microbial metabolism, which is mainly involved
in the conversion of primary BAs into secondary BAs. Therefore, the relative compo-
sition of this BA pool is dependent on the gut-microbiota composition, and alterations
of this pool have been related to alterations in host signaling pathways both in the gut
and systemically. Remarkably, CD pathogenesis has been related to an imbalance in the
primary/secondary BA ratio and altered BA concentrations, as well as to impaired BA
metabolism (e.g., decreased BA deconjugation) [81]. Furthermore, changes in the BA pool
have been proposed as an indicator of therapeutic response, where patients with CD with
increased serum levels of secondary bile acids such as deoxycholic acid (DCA) responded
better to infliximab, while those with increased levels of unconjugated cholic acid (CA) and
chenodeoxycholic acid (CDCA) did not respond [82]. Recent reports have postulated an
anti-inflammatory potential of certain BA intermediate moieties, including the lithocholic
acid (LCA) metabolites 3-oxo-LCA and isoalloLCA, which inhibit Th17 differentiation, and
how bacteria that possess 3α-hydroxysteroid dehydrogenase—the enzyme that catalyzes
the production these metabolites—are significantly decreased in IBD patients [83].

There is a growing body of evidence suggesting that BA signaling through BA recep-
tors (BARs), including farnesoid X receptor (FXR), a master regulator of BA synthesis [84],
Takeda-G-protein-receptor-5 (TGR5) [85], and the vitamin D receptor (VDR) [86], can
influence immune processes [87]. Indeed, activation of these BARs has been shown to
exert anti-inflammatory effects through different mechanisms, including the modulation of
inflammatory pathways such as NF-κB, the induction of Treg cell differentiation [86,88],
the reduction in the levels of pro-inflammatory cytokines such as IL-1β, IL-6, IFNγ, and
TNFα [89], and the increased release of the anti-inflammatory cytokine IL-10 [85,90].

SCFAs are bacterial metabolites derived from the fermentation of indigestible fibers,
of which acetate, propionate, and butyrate are the most abundantly produced by the gut
microbiota [91]. The main functions of SCFAs in the intestine consist of maintenance
of homeostasis, intestinal epithelial-cell turnover, energy metabolism, or induction of
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epithelial-barrier function [92]. In addition, SCFAs can act as an energy source for colono-
cytes as well as exert an immunomodulatory effect. In particular, butyrate has been widely
described to promote an anti-inflammatory response, through the differentiation of Treg
cells as well as through the inhibition of NF-κB signaling and the activity of histone deacety-
lases (HDACs) [93,94], via its interaction with G-protein coupled receptors (GPCRs) (e.g.,
GPR41, GPR43, and GPR109A). The main butyrate-producing bacteria include the Rose-
buria and Faecalibacterium genera, belonging to the Firmicutes phylum [95–97], which are
known to be significantly reduced in patients with CD [92]. Consequently, levels of lumi-
nal butyrate are diminished in these patients, leading, thus, to an exacerbated immune
response [98,99]. The effects of SCFA in IBD pathogenesis have been widely studied and
their role as inflammation regulators has been recently reviewed by others [100,101].

2.4. Other Microbial-Derived Components Related to CD

Outer Membrane Vesicles (OMVs), which are small, spherically bilayer (100–300 nm)
vesicles generated by Gram-negative bacteria have been recently described to play a role in
the pathophysiology of IBD [102]. In epithelial cells, OMVs specifically secreted by AIEC
stimulated IL-8 secretion and promoted AIEC internalization into the mucosa [103,104].
OMVs produced from another IBD-associated pathobiont, Bacteroides vulgatus, were reported
to both silence dendritic cells [105], activate NF-κB, and stimulate IL-8 production in epithelial
cells [106]. A similar immunomodulatory potential has been ascribed to B. fragilis OMVs
containing polysaccharide A (PSA), which can regulate TLR4 transcription in epithelial
cells [107] and increase the production of the anti-inflammatory cytokine IL-10 [108]. Another
recent study reported that B. thetaiotaomicron OMVs stimulated the expression of IL-10 in
colonic dendritic cells, as well as IL-10 and IL-6 in blood-derived dendritic cells in healthy
individuals, but not in colonic or peripheral dendritic cells in patients with either CD or
UC [109]. Overall, these data indicate an immunomodulatory potential of OMVs by targeting
mucosal and systemic cell responses, which are highly dependent on the target cell.

3. Nutritional Strategies in CD Treatment and Management
3.1. Microbiota-Based Therapies

As previously stated, the gut microbiota has been recently recognized as one of
the main factors involved in the pathogenesis of CD. Studies on the microbiome have
shown that patients with CD have dysbiosis with decreased diversity, high instability,
and high inter-individual variability [110,111]. Furthermore, a reduction in Firmicutes
and Actinobacteria, together with an increase in Proteobacteria, are common hallmarks
in patients with CD [52]. Thus, it is not surprising that over the last decades, alternative
strategies based on the use of pre-/probiotics, have been developed to complement or
even replace pharmacological therapy for the treatment of IBD [112]. The role of prebiotics
and probiotics in CD management has been extensively discussed and reviewed in detail
elsewhere [113–117]. Several probiotic strains known to have beneficial effects on health
have been tested in human clinical studies including Bifidobacterium spp., Lactobacillus
spp., E. coli Nissle 1917, and Saccharomyces boulardii [19]. Noteworthy, while the efficacy
of probiotics such as VSL#3, containing a mixture of eight bacterial strains including four
Lactobacillus spp., three strains of Bifidobacterium spp., and Streptococcus salivarius subsp.
Thermophilus, has been well established for UC management, but attempts to prove their
usefulness in CD have produced controversial results [113]. These incongruences might
be in part explained by differences in study design, methodology, the variety of pre- or
probiotics used, and/or patients’ compliance. Thus, further research is needed to confirm
the above-mentioned health claims [118]. Due to this controversy, the European Society for
Clinical Nutrition and Metabolism (ESPEN) guidelines on clinical nutrition in IBD do not
currently recommend (and even discourage) the use of probiotics for the treatment and
management of CD [9].

Alternatively, prebiotics (non-digestible food ingredients that stimulate the growth of
beneficial bacteria), such as oligosaccharides, inulin, or polyphenols, have been proposed
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as an option for the modulation of the gut microbiome as CD therapy. For instance,
inulin supplementation in a rat model of colitis induced changes in the gut microbiota
profile, including an increase in Lactobacillus spp., and amelioration of the symptoms [119].
Similarly, resveratrol (a polyphenol found at high concentrations in grapes) was described
to increase Lactobacilli and Bifidobacteria, accompanied by a decrease in inflammation
markers in a rat model of colitis [120]. Nevertheless, so far, no study has yet verified the
efficacy of prebiotics in patients with CD.

3.2. Dietary Interventions Targeting Microbiome in CD

There have been several attempts to identify dietary patterns and the risk of CD
progression. A recent meta-analysis identified a “healthy” diet (defined as a high intake
of vegetables, fruits, legumes, low-fat dairy products, fiber, poultry, fish, nuts, and whole-
grain foods) as a protective factor against CD development [121]. However, the relationship
between specific diets and the increased risk of CD is less clear [121]. On the other hand, a
relationship between the intake of specific foods and nutrients with a microbiota enriched
in bacteria that modulate the inflammatory response has been also proposed [122]. For
instance, the consumption of high-sugar foods has been related to the reduced abundance
of anti-inflammatory bacteria (F. prausnitzii and Roseburia hominis), while plant-based
foods were linked to an increase in SCFA-producers with potential anti-inflammatory
effects [111,122]. Among the proposed mechanisms of action involved in the response to
therapy in patients with CD, modulation of the gut microbiota composition by diet appears
as one of the most important factors. Thus, the management of CD should not only focus on
the use of pharmacological strategies, but it should also include nutritional interventions,
especially aimed at modulating the immune response and reversing gut dysbiosis [8,123].

Diet-based therapies targeting the management of CD have been tested since the late
1970s [124]. EEN has become the gold-standard treatment against active CD in pediatric
patients affected by luminal CD [8]. EEN has shown to achieve similar outcomes as those
obtained with corticosteroid treatment in terms of remission [125], while benefiting bone
and muscle parameters, mucosal healing, and growth as well as reducing the risk of
relapse in the patients [126]. Such therapeutic effects of EEN have been associated with
the exclusion of specific factors from the diet including fats, sugars, or food additives that
are likely to be harmful due to their described ability to trigger inflammation [126,127].
Interestingly, studies on the impact of EEN on gut-microbiome dynamics have shown a
reduction in α-diversity [128], which has been suggested to favor the long-term restoration
of the gut microbiota [129]. However, a recent prospective study carried out by Levine
et al. [130], showed a rebound in pre-treatment composition after 12 weeks on EEN. In
addition, the lack of palatability of enteral formula commonly leads to difficulties in
acceptance and compliance, hindering its implementation on a larger scale [131].

In order to overcome the above-mentioned limitations of EEN, there have been some
attempts for seeking alternative nutritional strategies based on whole-food diets for CD
treatment. The main objective of these types of diets is to reduce foods that have been
described to be pro-inflammatory (e.g., red meat, processed meat, sugar, etc.) [132] and/or
increase those types of food that could promote a favorable intestinal microbiota [16,133].
In this sense, the use of partial enteral nutrition (PEN), i.e., consumption of whole food
supplemented with enteral nutrition (EN), was introduced as an attempt to improve
compliance [134]. The first results obtained from PEN were discouraging as, although
positive results were obtained in active CD management, the lack of restriction on the type
of whole food consumed led to lower remission rates than EEN [134]. Furthermore, when
comparing the effects of both diets, PEN has been described to fail in modulating the gut
microbiome [135].

Other diets with anti-inflammatory potential, including the low-FODMAP diet (exclusion
of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) [136–139],
the Specific Carbohydrate Diet (SCD, exclusion of complex carbohydrates) [140–143], or
the Mediterranean Diet [143–147], have been assessed as an alternative to EEN. However,
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most of these diets have shown contradictory results regarding their effectiveness in CD
treatment [148]. The impact of these diets on the pathogenesis and management of CD has
already been thoroughly reviewed elsewhere [149,150]. Of special interest is the case of the CD
exclusion diet (CDED, low in fat and animal protein with high content of carbohydrates and
dietary fiber) [130,151–155], which is emerging as a potent alternative to EEN. It consists of
three phases that start with a very restrictive diet supplemented with PEN, which is gradually
reduced as new foods are introduced. Clinical trials in pediatric patients with CD have shown
that CDED plus PEN has comparable results in inducing remission. Furthermore, the patient’s
compliance with an allowance to consume whole foods thereby increases the probability of
success [154]. Anyway, all these studies have been focused on clinical outcomes and have
disregarded data on the gut microbiome, which is why information on microbial changes
associated with such diets is still scarce.

Table 1 summarizes the available data on microbiome and/or microbial metabolism
modulation provoked by the different diet-based therapies against CD. In general, one
of the common features is the modulation of microbial diversity as the first response
to nutritional intervention. Thus, the low-FODMAP diet has been reported to reduce
Firmicutes including Clostridium cluster XIVa and F. prausnitzii. On the other hand, the SCD
and Mediterranean diet showed an increased diversity with a reduction in Proteobacteria
and Bacillaceae abundance, together with a timid increase in Bacteroidetes and Clostridium
cluster IV and XIVa. Importantly, these changes seemed to remain in the long-term and did
not return to baseline composition.

Table 1. Clinical trials with nutritional intervention in patients with CD.

Intervention Cohort and
Sample Size Trial Design and Follow-Up Objective Outcomes Ref

EEN
Pediatric patients

with active CD
(n = 10)

Prospective observational
study.

To investigate the impact of
EEN therapy on intestinal
microbiota in patients with

active CD that achieved
substantial remission (SR) vs.
those that did not achieve SR

(non-SR) after 24-weeks
follow-up.

↓ α-diversity in SR

[128]EEN via nasogastric/gastric
tubing for at least 12 weeks

to induce remission.

↑ α-diversity in non-SR

↓ Firmicute in SR group

↑ Bacteroidetes in SR group

↓ Bacteroidetes in non-SR group

↑ Firmicutes and Verrucomicrobia
in non-SR group

EEN
Pediatric patients
with new-onset

active CD (n = 19)

Randomized, prospective
clinical trial. EEN

(ModulenÒ IBD, n = 13) or
corticosteroids (n = 6) for

8 weeks.
To investigate differences

between EEN vs.
corticosteroids on

inflammation and intestinal
microbiota.

No differences in clinical remission

[156]

NCT00265772 a

↑mucosal healing in the EEN group

↑ proportion of Rominococcus and
Clostridium in EEN group

↓ Faecalbacterium and Roseburia in
EEN group

↑ α-diversity in EEN group

EEN or PEN vs.
anti-TNF therapy

Pediatric patients
with CD (n = 90)

Prospective cohort clinical
trial. Consumption of EEN
(n = 22), PEN (n = 16), or

treated with anti-TNF
therapy (n = 52) for 8 weeks.

To evaluate the dynamics of
microbiome during

treatment.

↓ Dialister, Dorea, Gordonibacter,
Haemophilus and Streptococcus with

EEN after 1 week

[135]

↓ Candida, Clavispora and
Cyberlindnera with EEN after 1 week

↑ Alistipes with EEN after 1 week

Microbiota profile closer to healthy
controls’ profile (n = 26) after 8

weeks of treatment with EEN and
anti-TNF
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Table 1. Cont.

Intervention Cohort and
Sample Size Trial Design and Follow-Up Objective Outcomes Ref

PEN
Adult patients with
active CD (n = 17)

Observational study. Daily
consumption of E028

(NutriciaÒ) enteral nutrition
(n = 17) for 2 weeks.

To evaluate changes in
microbial metabolism
through metabolome

analysis and the relation
with reduction in

inflammation.

↓ CRP

[157]

07/Q1205/39

↓ SCFA

↓ 1-propanol

↓ 1-butanol

↓ SCFA esters

PEN

Pediatric patients
with CD in clinical
remission or mild

disease activity
(n = 41)

Two center, non-randomized
controlled intervention

study. Daily intake of casein
based complete liquid

formula (ModulenÒ IBD,
n = 22) or no nutritional
intervention (n = 19) for

12 months. To investigate efficacy of
PEN on bone health, growth,

and course and assess
microbial and

metabolome changes.

No differences in bone parameters

[158]

DRKS00010278

Improved BMI, muscle-cross
sectional area and grip strength in

PEN group

Improved height z-scores in
PEN group

↑ phosphatidylcholines

↑ non-esterified fatty acids

↑ fumaric acid

↓ α-diversity in PEN group

Low-FODMAP
Diet

Adult patients with
quiescent CD

(n = 9)

Randomized, controlled
cross-over, single-blinded

clinical trial. Consumption
of low-FODMAP diet or a
diet containing FODMAP

content of a typical
Australian diet for 21 days

with a 21-day
washout period.

To evaluate differences in
fecal microbiota, as well as

differences in fecal pH,
SCFA, GI symptoms, fecal
frequency and weight, and

whole-gut transit time.

↓ GI symptoms after 14 days in the
low FODMAP group

[138]

ACTRN12612001185853

↓ butyrate-producing Clostridium
cluster XIVa and mucus-associated

Akkermansia muciniphila in low
FODMAP group

↑ Ruminococcus torques with low
FODMAP diet

Low-FODMAP
Diet

Adult patients with
UC or quiescent

CD (n = 52)

Multicenter, randomized,
parallel, single-blinded,
placebo-controlled trial.

Consumption of
low-FODMAP diet (n = 27;
n = 14 with CD) or placebo

Sham diet (n = 25; n = 12
with CD) for 4 weeks.

To evaluate differences in
IBS Severity Scoring System,
inflammatory markers, and

microbiome composition
and SCFA.

No differences in SCFA between
diets in patients with CD

[137]

ISRCTN17061468

↓ Bifidobacterium longun, B.
adolescentis, F. prausnitzii species in

the FODMAP group

↑ B. dentium in low-FODMAP group

Specific
Carbohydrate

Diet

Pediatric patients
with mild to

moderate IBD
(n = 12)

Multicenter, open-label
clinical trial. Consumption

of SCD for 12 weeks
(n = 9 with CD).

To determine the effect of
SCD on active IBD clinical
and laboratory parameters

as well as in gut microbiome

Improvement in CRP at week 2

[141]

↓ Calprotectin at week 4

↑ Albumin at week 12

Improvement of dysbiosis after
2 weeks

↑ Inter-individual variability in
microbiome dynamics
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Table 1. Cont.

Intervention Cohort and
Sample Size Trial Design and Follow-Up Objective Outcomes Ref

Specific
Carbohydrate

Diet

Pediatric patients
with CD

Randomized, double-blind,
intervention, controlled

clinical trial. Consumption
of SCD (n = 3), modified
SCD (with oats and rice;

MSCD, n = 4) or whole food
diet excluding wheat, corn,

sugar, milk and food
additives (n = 3) for

12 weeks.

To evaluate the efficacy of
SCD and two modified
versions of SCD on CD
clinical parameters and

changes gut microbiome.

↑ Blautia, Lachnospiraceae,
Faecalibacterium prausnitzii,
Roseburia hominis, Roseburia

intestinalis, Anaerobutyricum hallii
and Eubacterium eligens

[140]

(n = 10) NCT02610101 ↓ Escherichia coli

Specific
Carbohydrate
Diet vs. Low
Residue Diet

Adult patients with
CD in clinical
remission or

healthy volunteers
(n = 8)

Consumption of SCD or
LRD for 30 days with a
30-day washout period.

To detect changes in the
gut microbiome.

↑ diversity on SCD diet

[142]↓ diversity on LRD diet

Specific
Carbohydrate

Diet vs.
Mediterranean

Diet

CD adult patients
with mild to

moderate
symptoms (n = 194)

Multicenter, parallel group,
randomized controlled trial.

Consumption of SCD
(n = 101) or Mediterranean
diet (n = 93) for 12 weeks.

To compare the effectiveness
of SCD to Mediterranean

diet in symptomatic
remission of CD.

No differences between diets in CD
remission, fecal calprotectin, and
CRP after 6 weeks of treatment [143]

NCT03058679 No differences in
microbiome analysis

Mediterranean-
inspired

Diet

Patients with active
yet stable CD

symptoms

Consumption of
Mediterranean-inspired

anti-inflammatory diet for
6 weeks.

To evaluate beneficial effects
on patients with CD by

determining changes in gene
expression and

microbiota abundance.

Changes in expression of genes
involved in EIF2 signaling, B cell

development, Th cell
differentiation, uracil degradation II

and thymine degradation [144]

(n = 8) NTY/11/11/109
↑ Bacteroidetes and Clostridium

cluster IV and XIVa

↓ Proteobacteria and Bacillaceae.

CDED plus PEN

Pediatric patients
with mild to

moderate luminal
CD (n = 78)

Multicenter, prospective,
randomized controlled trial.

To compare tolerability and
efficacy of CDED + PEN

with EEN in inducing and
sustaining remission.

Higher tolerability to CDED + PEN

[130]

CDED + PEN (n = 40) or
EEN (n = 34) for 6 weeks.

↓ Actinobacteria and Proteobacteria
after 6 weeks with both diets

NCT01728870

↑ Clostridia after 6 weeks with
both diets.

Rebound toward baseline
community at week 12 in

EEN group

Changes in community following
the same trend as week 6 at week 12

in CDED + PEN group

a Registry number of the trial is indicated when available. BMI, body mass index; CD, Crohn’s disease; CDED,
Crohn’s disease exclusion diet; CRP, C-reactive protein; EEN, exclusive enteral nutrition; EIF2, eukaryotic
initiation factor 2; FODMAP, fermentable, disaccharides, monosaccharides, and polyols; GI, gastrointestinal; IBD,
inflammatory bowel disease; LRD, low-residue diet; MSCD, modified specific carbohydrate diet; PEN, partial
enteral nutrition; SCD, Specific Carbohydrate Diet; SCFA, short-chain fatty acids; TNF, tumor necrosis factor; UC,
ulcerative colitis.

More recently the use of the CDED (with or without PEN) has been demonstrated
not only to successfully induce remission and reduce inflammation comparable to those
obtained with EEN but also to promote long-term modifications in microbiome profiles,
as well as to increase tolerance and compliance in patients with CD [130,152,159]. For
instance, the combination of PEN and CDED reduced the abundance of Actinobacteria and
Proteobacteria, with an increase in commensal Clostridia after 6 weeks of diet intervention.
This modulation of the gut microbiota supports findings observed with EEN intervention.
However, while the microbiome of patients on EEN diet has been described to return to
baseline profiles upon long-term remission, changes in the microbiota in patients consuming
a CDED were maintained after 12 weeks post-treatment [130].

Notwithstanding, therapeutic diets should be thoroughly supervised by an experi-
enced nutritionist, as any nutritional deficiency or imbalance may lead to negative outcomes
such as malnutrition or growth delay in children [149].
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4. Conclusions

Crohn’s disease is a complex, disabling, idiopathic, progressive, and destructive
disorder with an unknown etiology. The management and treatment of CD are currently
based on pharmacological strategies with high co-morbidities and health burden associated.
Thus, the development of more cost-effective mitigation strategies has become a priority.
Over the years, there have been several attempts to develop non-pharmacological therapies
to ameliorate CD activity, including nutritional approaches specifically designed to reinforce
the immune system and reduce intestinal inflammation.

The relationship between the gut microbiome and CD has been largely studied over
the last decades in both preclinical and clinical studies. Indeed, dysbiosis has arisen as
a major player in the development of functional and inflammatory intestinal disorders
including CD. Thus, the development of strategies aimed at the modulation and restoration
of a normally functioning microbiome has become a priority. Current evidence based on
preclinical studies using nutritional strategies, including the use of pre-/probiotics has
shown promising results in experimental IBD models. However, to date, the attempts to
translate such results into human subjects with CD have largely failed.

On the other hand, studies have shown that diet can remarkably impact both the com-
position and functionality of the gut microbiota to maintain a healthy gut. Nevertheless, the
precise knowledge of how specific dietary strategies affect host–microbe interactions in IBD,
and more specifically in CD, is still insufficient. In addition, the lack of standardization of
clinical trials, variability in the design, and failure in compliance entails a major limitation
in these types of studies. Thus, the optimization of nutritional interventions that could
complement the currently used pharmacological therapies or therapies used to ameliorate
CD symptoms is a field of special biomedical interest. In this regard, while the usefulness
of microbial-based therapies is still controversial, the implementation of some diets, such as
SCD, low-FODMAP, and more recently CDED, are being recognized as potentially interest-
ing for this purpose, although data are still scarce. Thus, more well-designed, adequately
powered randomized, controlled clinical trials are needed to confirm the potential benefit of
such nutritional interventions, as well as to unravel the key cellular and molecular players
and their specific roles in driving potential health benefits.
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