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Abstract: A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can
be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis.
Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC)
through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation,
and altering the host immune response. During the process of carcinogenesis, the composition of the
bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized
by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC.
Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum,
Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples.
These have a potential diagnostic application to predict oral cancer through noninvasive salivary
screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various
disorders, are valuable adjuvants to improve the response to OSCC therapy.

Keywords: oral cancer prognosis; oral microbiome; polymicrobial synergy; dysbiosis; interspecies
communication; host-microbial interaction; oral squamous cell carcinoma

1. Oral Microenvironment in Healthy Condition

The interspecies and host-microbial interactions can be included in the holistic frame-
work of holobiont, which accounts for the host and its obligate or facultative symbionts,
whose dynamic interconnectedness entails emergent interactions and outcomes [1]. De-
spite the fact that the notorious 10:1 ratio of bacterial/human cells has been revised to
the estimate of about 1.3:1 in a “reference man”, with about 38 × 1012 total bacteria in the
human body [2], the biological role of the microbiota has not scaled down. The number
of bacteria in the mouth is less than 1% of the colon bacteria number; however, bacterial
concentrations in the saliva and dental plaque are high (about 109 and 1011, bacteria per mL
content, respectively) [2]. Comprehensive information about the bacterial species present
in the oral cavity is publicly available (Expanded Human Oral Microbiome Database
(EHOMD), n.d.). Multi-omics approaches are currently available to study the complexity
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of polymicrobial environments, interspecies interactions and the mechanisms underlying
these relationships [3].

Changes in microbial biomass in the oral cavity depend on the interaction between
different microbial species in the biofilm. The oral biofilm matures through interactions be-
tween early colonizing microorganisms with later colonizers through several mechanisms,
including coagulation, metabolic exchange, small-molecule signal-mediated communi-
cation, and exchange of genetic material. The numerous bacteria in the oral cavity are
not uniformly distributed over all surfaces but proliferate differently in ecological niches
depending on their metabolism in a healthy oral cavity [4].

Multiple oral anatomical sites influence the ecology of these habitats and create micro-
bial environmental differences (Figure 1). The most abundant species of buccal epithelium
were Streptococcus, Gemella, Eubacterium, Selenomonas, Veillonella, Actinomyces, Atopobium,
Rothia, Neisseria, Eikenella, Campylobacter, Porphyromonas, Prevotella, Granulicatella, Capnocy-
tophaga, Fusobacterium, Leptotrichia, Streptococcus mitis, Granulicatella adiacens, often consid-
ered an opportunistic pathogen, was detected from bacteremia/septicemia in patients with
infective endocarditis/atheroma [5] but also at buccal sites in the healthy oral cavity.

On the tongue dorsum between keratinized papillae filiformis there were species of
Streptococcus mitis, Streptococcus australis, Streptococcus parasanguinis, Streptococcus salivarius,
Streptococcus sp. clone FP015, and Streptococcus sp. clone FN051, Granulicatella adiacens,
and Veillonella spp. Anatomical differences of the dorsum of the tongue from the lateral
margin influenced the bacterial profiles above. The lateral margin of the tongue has a
smooth nonkeratinized surface, and the predominant bacteria were Streptococcus mitis,
Streptococcus mitis bv. 2, Streptococcus sp. clone DP009, Streptococcus sp. clone FN051, Strep-
tococcus australis, Granulicatella adiacens, Gemella haemolysans, and Veillonella spp. [6,7]. The
tongue species most associated with health were Streptococcus salivarius, Rothia mucilaginosa
(Stomatococcus mucilaginosus), and an uncharacterized, cultivable species of Eubacterium
(strain FTB41) [8].

Likewise, the main bacterial species were Streptococcus mitis, Streptococcus mitis biovar
2, Streptococcus sp. clone FN051, Streptococcus infantis, Granulicatella elegans, G. hemolysans,
and Neisseria subflava on the hard palate. Streptococcus mitis was the most commonly
found species in essentially all healthy sites and subjects. However, both S. mitis and Strep-
tococcus oralis have been associated with bacterial endocarditis in patients with prosthetic
valves [9,10]. In addition to the distinctive bacteria of a healthy oral cavity there were
bacteria associated with periodontal disease, such as Porphyromonas gingivalis, Tannerella
forsythia, and Treponema denticola [11].
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Figure 1. Predominant microbial communities within different ecological niches of the oral and oro-
pharyngeal region. This figure was created using data sources from Aas et al. [6], Dewhirst et al. 
[12], Diaz et al. [13], Hall et al. [14], and Tamashiro et al. [15]. The species were color-coded according 
to microbial complexes described by Haffajee et al. [16]. 

2. Microbiota and Inflammation in The Oral Cavity 
Oral health firstly depends on a correct balance between the various microbial pop-

ulations that constitute the oral microbiota, when this balance is lost, a condition of 
dysbiosis is established. A condition of dysbiosis occurs, in fact, as a consequence of the 
disproportionate proliferation of some types of pathogenic microorganisms and it can 
have several triggers such as antimicrobial agents, age, hormonal changes, poor oral hy-
giene, smoking, or it may be favored by other body pathologies. Dysbiosis can lead to the 
generation of numerous oral diseases, including carious pathology, periodontal disease, 
and gingivitis [17]. 

Both periodontitis and gingivitis are characterized by inflammation, but periodonti-
tis is a more serious condition than gingivitis. In the latter, the inflammation is limited to 
the soft tissues surrounding the teeth while periodontitis is a chronic disease which results 
in the destruction of teeth supporting structures and it is recognized as the leading cause 
of tooth loss in the adult population of industrialized countries. 

Periodontal disease is defined as a chronic inflammatory disease and the bacteria re-
sponsible for this disease can persist, resistant to immune reactions, especially if the dis-
ease is not treated. Inflammation is part of the body’s first line of defense against invasive 
pathogens. A correct inflammatory response guarantees the correct resolution of the in-
flammation, but when the inflammatory reactions are inadequate and persistent over time 
there can be serious damage both locally and systemically. 

Immune responses are subjected to a complex regulation that is the result of interac-
tions between different types of immunocompetent cells, which communicate to each 
other through cytokines which have the function of regulating, suppressing, or amplify-
ing the mechanisms of inflammation. Inevitably, periodontitis leads to an increase of pro-
inflammatory cytokines such as interleukin- (IL-) 1α, IL-1 β, tumor necrosis factor-alpha 
(TNFα), and IL-6. IL-8 is a chemokine, important for the recruitment of defense cells in 

Figure 1. Predominant microbial communities within different ecological niches of the oral and
oropharyngeal region. This figure was created using data sources from Aas et al. [6], Dewhirst
et al. [12], Diaz et al. [13], Hall et al. [14], and Tamashiro et al. [15]. The species were color-coded
according to microbial complexes described by Haffajee et al. [16].

2. Microbiota and Inflammation in The Oral Cavity

Oral health firstly depends on a correct balance between the various microbial popula-
tions that constitute the oral microbiota, when this balance is lost, a condition of dysbiosis
is established. A condition of dysbiosis occurs, in fact, as a consequence of the dispropor-
tionate proliferation of some types of pathogenic microorganisms and it can have several
triggers such as antimicrobial agents, age, hormonal changes, poor oral hygiene, smoking,
or it may be favored by other body pathologies. Dysbiosis can lead to the generation of nu-
merous oral diseases, including carious pathology, periodontal disease, and gingivitis [17].

Both periodontitis and gingivitis are characterized by inflammation, but periodontitis
is a more serious condition than gingivitis. In the latter, the inflammation is limited to the
soft tissues surrounding the teeth while periodontitis is a chronic disease which results in
the destruction of teeth supporting structures and it is recognized as the leading cause of
tooth loss in the adult population of industrialized countries.

Periodontal disease is defined as a chronic inflammatory disease and the bacteria
responsible for this disease can persist, resistant to immune reactions, especially if the
disease is not treated. Inflammation is part of the body’s first line of defense against
invasive pathogens. A correct inflammatory response guarantees the correct resolution of
the inflammation, but when the inflammatory reactions are inadequate and persistent over
time there can be serious damage both locally and systemically.

Immune responses are subjected to a complex regulation that is the result of interac-
tions between different types of immunocompetent cells, which communicate to each other
through cytokines which have the function of regulating, suppressing, or amplifying the
mechanisms of inflammation. Inevitably, periodontitis leads to an increase of proinflamma-
tory cytokines such as interleukin- (IL-) 1α, IL-1 β, tumor necrosis factor-alpha (TNFα), and
IL-6. IL-8 is a chemokine, important for the recruitment of defense cells in areas where their
presence is necessary. IL-17 also seems to be involved in the pathogenesis of periodontal
disease. It is a proinflammatory cytokine that stimulates the production of other mediators,
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such as IL-6 and matrix metalloproteinases (MMPs). The prostaglandins E2 (PGE2), which
are vasoactive amines derived from arachidonic acid, are also involved in the inflammatory
process. They act on fibroblasts and osteoclasts by stimulating the production of MMPs.
The helper T cells regulate both humoral and cell-mediated immune responses. The hu-
moral immune response is promoted by Th2 cells, which produce IL-4, IL-5, IL-10, and
IL-13. Th1 lymphocytes release IL-2 and interferon-γ (INF-γ) which increases cell-mediated
responses. The relationship between inflammation and cancer is not new. Recently, a very
high number of studies have discussed this issue. Many malignancies arise from areas of
infection and inflammation, simply as part of the normal host response. Indeed, there is a
growing body of evidence that shows that many malignancies are initiated by infections;
upwards of 15% of malignancies worldwide can be attributed to infections, a global total of
1.2 million cases per year [18,19]. P53 mutations are seen at frequencies similar to those in
tumors in chronic inflammatory diseases such as rheumatoid arthritis and inflammatory
bowel disease [18].

Undoubtedly, inflammation plays an important role in carcinogenesis and interestingly,
several oral bacteria have been shown to activate inflammatory pathways associated with
several stages of cellular transformation. Pathogenic bacteria can promote malignant
tumors, and the tumor microenvironment itself can selectively stimulate the growth of
bacteria [20]. The robust relationship between bacteria, chronic inflammation, and tumors
is established: the functionally proinflammatory bacteriome in the body of the tumor is
associated with oral cancer [21].

Antiapoptotic pathways—such as the JAK/STAT and phosphatidylinositol 3-kinase
(PI3K)/Akt—can be activated by infected gingival epithelial cells (GECs). Porphyromonas
gingivalis, a bacterium involved in periodontitis, can be internalized by GECs. Both path-
ways are also related to inflammation. Some cytokines such as IL-6, TNF-α, or IFN-γ
function through the JAK/STAT pathway; additionally, the JAK/STAT pathway activates
NF-κB and stimulates TNF-α production. The PI3K/Akt pathway, on the other hand, is
involved in the increase of Toll-Like receptor-4 (TLR4) mRNA, in response to bacterial
lipopolysaccharide (LPS). Finally, phosphorylation of Akt and its consequent activation
induces NF-κB, which increases the transcription of antiapoptotic genes [19]. Coinfection
studies using Fusobacterium nucleatum and Porphyromonas gingivalis show that they induce a
synergic virulence response with a stronger inflammatory response triggered by elevated
levels of TNF-α, NF-κB, and interleukin IL-1β, as well as higher levels of attachment and
invasion into host cells [19].

Another interesting role is played by MMPs, which are a family of zinc-dependent
endopeptidases with more than 20 different members. Matrix metalloproteinases play a cru-
cial role in extracellular matrix and basement membrane degradation. This property favors
periodontal tissue destruction, as well as cancer progression and metastasis, by causing
tissue dissolution that enables tumor invasion [22]. Different studies have demonstrated
higher concentrations of MMP-9 in patients with chronic periodontitis than in controls.
MMP-9 is a widely investigated MMP, it is involved in cancer cell invasion, tumor metasta-
sis, angiogenesis, and endothelial–mesenchymal-transition (EMT). It is also involved in
mediating tumor microenvironment and modulating tumor-associated inflammation via
cytokines and their receptors. The overexpression of MMP-9 has often been observed in
different malignant tumors [23–25].

Another important role in the link between bacteria-inflammation and cancerogenesis
is the production of free radical species. Different studies have shown that periodontitis
is related to excessive reactive oxygen species (ROS) production or elevated oxidative
damage [26].

Leukocytes and other phagocytic cells can induce DNA damage or interfere with DNA
repair mechanisms, through their generation of reactive oxygen and nitrogen species that
are produced normally by these cells to fight infection. These species react to the formation
of peroxynitrite, a mutagenic agent. The generated products, in turn, demonstrate a strong
affinity for more inflammatory cells, perpetuating the vicious cycle.
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Many proinflammatory cytokines (such as IFN-γ, IL1β and other cytokines) facilitate
induction of the inducible isoform of nitric oxide (NO) synthase (NOS), thus they could
mediate excessive production of NO. NO facilitates vascular permeability, which accelerates
nutritional supply to the tumor tissue and hence sustains the rapid tumor growth. This
evidence suggests that inflammatory responses induced by various pathogens would
accelerate mutagenesis as well as tissue damage [18,27]. Bacteria and host might interact
according to the plaque ecological hypothesis [28]. Accumulation of supragingival and
subgingival biofilms leads to inflammation, promoting alteration in physiological microbial
composition. Such accumulation also increases the competitiveness of the oral pathogen at
the expense of oral health-associated species through increased up-regulation of virulence
factor expression. This results in a positive feedback loop.

The published studies on periodontitis and cancer mostly point to a positive associ-
ation. In this association, inflammation has an essential role but more in-depth studies
are needed. Sustained cell proliferation in an environment rich in inflammatory cells, acti-
vated stroma, and DNA-damage-promoting agents, certainly potentiates and/or promotes
neoplastic risk. It is unclear whether the inflammatory mediators are critical for the devel-
opment and growth of tumors or whether they constitute a permissive environment for the
progression of malignancies. Moreover, a large number of studies show how the treatment
of periodontitis substantially decreases markers of inflammation, but more investigation
is also needed to assess how improved periodontal disease prevention and management
strategies may impact cancer risk [18,22].

3. Microbiota and Pathogenetic Mechanisms Underlying Oral Squamous Cell
Carcinoma (OSCC)

Head and neck cancers account for five percent of all tumors, and half of them occur
specifically in the oral cavity [29]. Oral squamous cell carcinoma (OSCC) is a subset of head
and neck squamous cell carcinoma, constituting over 90% of all oral cancers [30]. Despite
advances in surgical techniques, adjuvant radiotherapy, and chemotherapy, the incidence
of OSCC appears to be increasing worldwide, and the 5-year overall survival rate remains
low, at approximately 50–60%. Smoking, drinking, and chewing betel are the main risk
factors for oral cancer [31]. Other possible risk factors may include viral infection, fungal
infection, and chronic periodontitis, whereas some cases cannot be clearly explained by
any known risk factors [32–34]. Oral carcinogenesis is also associated with bacteria [35,36].

The correct balance between the commensal microbes and the host is essential for main-
tenance of physiological homeostasis, response to environmental changes, and survival.
The composition of the microbiota at various anatomical sites is controlled by host genetics,
particularly by the polymorphisms in immune-related genes, as well as by environmental
factors, such as lifestyle and nutrition.

The microbiota has important local effects such as barrier fortification and the estab-
lishment of mucosal immunity, but it also exerts systemic effects, including modulation of
metabolism inflammation and immunity. At the epithelial barrier surfaces, the composition
of the microbiota and the abundance of particular species affects both inflammation and
immunity, as well as the homeostasis of epithelial and stromal cells [37].

Human body surfaces are subject to constant environmental insult and injury. In-
fections, trauma, dietary factors, and germline mutations can contribute to breach of the
body’s mucosal barriers. In most individuals, barrier breaches are rapidly repaired and tis-
sue homeostasis is restored. Impaired host or microbial resiliency contributes to persistent
barrier breach and a failure to restore homeostasis. In these settings, the microbiota may
influence carcinogenesis by altering host cell proliferation and death, perturbing immune
system function, and influencing metabolism within a host [38] (Figure 2).
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For these reasons, it is so important to avoid a dysbiotic condition. Oral dysbiosis
produces a microecological imbalance into the oral cavity, promoting a cascade of patho-
physiological events which affect both evolution, development, progression, and metastasis
of cancers [39].

Although cancer is generally considered to be a disease of host genetics and envi-
ronmental factors, microorganisms are implicated in a consistent percentage of human
malignancies. Infection-induced cancer accounts for approximately 16% of the global
burden of all human cancers, corresponding to approximately 2 million new cases per
year [37].

How microbes and the microbiota contribute to carcinogenesis, whether by enhancing
or diminishing a host’s risk, fall into three broad categories: (1) altering the balance of host
cell proliferation and death, (2) influencing immune system function, and (3) influencing
metabolism of host-produced factors, ingested foodstuffs, and pharmaceuticals [38].

Different microbial agents are classified as human carcinogens. The herpesvirus
Epstein-Barr virus (EBV) is associated with a diverse range of tumors, such as Burkitt
lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorders
(PTLD), diffuse large B cell lymphoma (DLBCL), NK/T cell lymphoma, nasopharyngeal
carcinoma (NPC), and EBV-positive gastric cancer (EBV-GC) [40].

HBV and HCV are associated with hepatocellular carcinoma (HCC), they establish
a chronic liver infection and in the 80% of cases they lead to HCCs. The role of the gut
microbiota in regulating liver pathology and progression to HCC in mice has been clearly
documented; interestingly, young mice, similarly to neonates or young children, fail to clear
HBV infection in a hydrodynamic transfection model until an adult-like gut microbiota is
established [37].

Helicobacter pylori is strongly associated with gastric carcinoma, although in most cases
this infection leads to gastritis. Different strains of HPV (primarily HPV16 and HPV18)
are also associated with anogenital cancers, a subset of head and neck cancers, and skin
cancers. Interestingly, from several studies it has emerged that oncogenic viruses require
inflammation to promote tumorigenesis [37,41]. Both HPV and EBV have been reported as
oncovirus interplaying with local microbiome to promote host inflammatory carcinogenesis
in head and neck cancers [42].

Fusobacterium nucleatum is a gram-negative anaerobic bacterium associated with vari-
ous pathological conditions such as periodontitis, premature birth, inflammatory bowel
diseases, and colon cancer. In several studies regarding the correlation between Fusobac-
terium and colic carcinogenesis, it has been observed how this bacterium influences the

https://biorender.com
https://biorender.com
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creation of a pro-inflammatory tumor environment. Growing evidence supports the possi-
ble causative role of Fusobacterium nucleatum in both cancer initiation, disease progression,
and chemotherapy resistance [43]. All these correlations highlight the importance that
inflammation and microorganisms have in carcinogenesis.

The mechanisms by which microbes influence cancer development and progression
are microbic proliferation, bacterial toxins, β-catenin signaling alterations, and inflamma-
tion. Bacterial toxins can directly damage host DNA. Bacteria also damage DNA indirectly
via host-produced reactive oxygen and nitrogen species. When DNA damage exceeds
host cell repair capacity, cell death or cancer-enabling mutations occur. β-Catenin signal-
ing alterations are a frequent target of cancer-associated microbes. β-catenin signaling
results in activation of genes that control cell survival and proliferation. For example,
Fusobacterium nucleatum is a member of the oral microbiota and it is associated with human
colorectal cancer. Binding of the FadA adhesin of Fusobacterium nucleatum to E-cadherin
activates β-catenin signaling, resulting in activation of genes that control cell survival and
proliferation.

Proinflammatory pathways are engaged upon mucosal barrier breach in an evolv-
ing tumor. Loss of boundaries between host and microbe engages pattern recognition
receptors and their signaling cascades. Feedforward loops of chronic inflammation me-
diated by NF-κB and STAT3 signaling fuel carcinogenesis within both transforming and
non-neoplastic cells within the tumors [38]. It is important to know that the enrichment
of a microbe at a tumor site does not connote that a microbe is directly associated with
the disease. Some microbes can find favorable conditions for their survival in the tumor
microenvironment.

Lifestyle risk factors trigger oral dysbiosis, whose inflammatory and genotoxic pro-
cesses are again influenced by lifestyle risk factors [44]. External pressures trigger dysbiosis
as a disturbance of the balanced equilibrium of the bacterial ecosystems in the human micro-
biome; with regards to this, tobacco smoking and chewing, psychological stressors, and diet
all affect the oral microbiome and the onset and progression of periodontal diseases [45].
In this vein, poor oral hygiene, alcohol consumption, the use of betel quids, and genetic
factors also influence the association between periodontopathogenic bacteria and oral
cancer [46]. The smoker’s oral microbiota represented a significant abundance of Veillonella
dispar, Leptotrichia spp., and Prevotella pleuritidis when compared to non-smokers. Heavy
smokers had a greater abundance of Fusobacterium massiliense, which exhibited substantial
sequence similarity with Fusobacterium nucleatum and Prevotella bivia [47]. Smoking may
affect oral health by creating a different environment by altering connections among oral
microbiota, and the microbiota and their metabolic function. Smoker-enriched bacteria can
increase the acidity of the oral cavity promoting the release of amino acid-related enzymes,
and amino sugar and nucleotide sugar metabolism [48].

All in all, lifestyle risk factors disturb the holobiont tuned equilibrium, triggering peri-
odontal disease and dysbiosis into the oral cavity, which facilitate the onset and progression
of oral cancer. Once these and/or other factors have led to the establishment of a tumor
environment, the inflammation and hypoxic niche alter the oral microbiome determining a
vicious loop. Alteration of the balance between bacteria and human hosts can increase the
risk of oral cancer, even without taking into account environmental factors such as tobacco
and alcohol.

Knowledge of the alterations in the oral microbial flora can help in the development
of antimicrobial therapies useful for the prevention of OSCC. Overall oral bacterial profiles
showed significant difference between cancer sites and normal tissue of OSCC patients,
which might be considered diagnostic markers and treatment targets.

4. Bacterial Communities Associated with OSCC

Studies have shown that compared to healthy subjects, periodontitis-correlated taxa
were significantly increased in the microbiota of the OSCC [49], including Porphyromonas
gingivalis, Fusobacterium nucleatum, Pseudomonas aeruginosa [36], Fusobacterium periodonticum,
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Aggregatibacter segnis, Campylobacter rectus [50], Campylobacter showae [51], Peptostreptococcus
stomatis [20,52], Peptostreptococcus micros, and Catonella morbi [20] (Figure 3a), while Strep-
tococcus, Veillonella, and Rothia were significantly decreased in cancer tissue [53]. Loss of
dental elements and the presence of disease have been associated with reduced richness
and low diversity in the microbiome [54]. Most of the pathogenic periodontal bacteria are
obligate or facultative anaerobes, and their abundance changed significantly in the hypoxic
tumor microenvironment. In addition, the microbiota within the tumorous mucosa were
saccharolytic and aciduric species. Host proteins may also be metabolized or fermented
into sulfides and nitrosamines by Firmicutes and Bacteroides, potentiating cell mutations [55].
The microbiota composition appeared different depending on the type of sampling and
depending on the stage of OSCC.

Within the OSCC tissue, Solobacterium moorei, hydrogen sulfide producer Fusobacterium
naviforme, and Neisseria flavescens were significantly increased [56]. These bacteria can
promote invasion across the basement membrane in OSCC; this is possible because (1) the
volatile sulfur compounds produced can increase ROS release by inhibiting the enzyme su-
peroxide dismutase and (2) methyl mercaptan promotes degradation of type 4 collagen [57].
Fusobacterium periodonticum could potentially cooperate with Fusobacterium nucleatum in
tumor progression within the tumor tissue [49,58]. Fusobacterium nucleatum has the ability
to coagulate with a diverse range of bacteria. In an aerobic environment it can coagulate
with Porphyromonas gingivalis in cultures containing Actinomyces oris and Veillonella sp. In
addition, Fusobacterium nucleatum helps generate a reducing and capnophilic environment
that is necessary for the growth of Porphyromonas gingivalis [59]. The interaction between
bacteria may or may not be favorable for the proliferation and survival of the species.

For example interaction of Porphyromonas gingivalis with Streptococcus gordonii may not
be favorable because Porphyromonas gingivalis upregulates a series of genes involved in re-
duction of adhesion and signaling, and thus decrease its ability to form a biofilm [60]. There
is also a negative correlation between the Porphyromonas gingivalis and S. oralis, S. cristatus,
S. intermedius, or S. mutans because Porphyromonas gingivalis can reduce the production
of extracellular arginine deiminase proteins by Streptococcus cristatus and Staphylococcus
intermedius [61,62]. According to the “key pathogen” hypothesis [63], low-abundance
oral bacteria may interact through multiple interspecies pathways, such as heterolactic
fermentation, which may influence the growth of some bacteria and lead to dysbiosis of the
oral microbiota. Dysbiosis of the microbiota promotes the development of OSCC. Bacteria
contribute to the maintenance of homeostasis of the oral microenvironment.

There was a different composition of the microbiota of the tissue biopsy samples
depending on the location of the tumor, for example Capnocytophaga gingivalis, Rothia
mucilaginosa, and P. intermedia were significantly enriched in the lining mucosa, tongue,
and gingiva, respectively [64]. These bacteria can secrete peptidases in tumor sites that are
activated through proteinase-activated receptors (PARs) [65,66]. In this way, these protease-
producing bacteria can degrade host tissue like extracellular matrix (ECM), destruct host
physical barriers, and modulate host immune response, finally contributing to the onset
and progression of tumors [67].

Microbioma analysis of tumor tissues versus normal buccal mucosa of OSCC patients
using the 16S rDNA sequencing revealed an increase of genes related to cell motility in
tumor sites, such as bacterial chemotaxis and flagellar assembly, genes associated with
proinflammatory bacterial component, such as lipopolysaccharide biosynthesis, and genes
involved in metabolism of cofactors and vitamins [20].

Intersample variation of OSCC oral microbiome was significantly associated with
site of sampling, i.e., tumor site or buccal site far distant from the tumor site. in addition
to the increase and decrease of oral bacterial species, some low-abundance oral bacteria
might contribute to development of OSCC. A lower abundance of Streptococcus genera
was observed in patients with OSCC, associated with an oral health condition. There
were significantly higher abundance of Streptococcus infantis in smokeless tobacco non-
consumers compared to that in smokeless tobacco consumers and contralateral buccal site
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of OSCC samples compared to that in the OSCC tumor site [68]. Streptococcus sanguinis,
associated with periodontal health [69], could reduce the colonization of soft tissue surfaces
by A. actinomycetemcomitans [70]. However, it is not clear whether Streptococcus genera
actually promotes oral health or survives exclusively in healthy microenvironments [71].
Streptococcus sanguinis, despite promoting the adhesion of Fusobacterium nucleatum, reduces
its production of H2O2 and its killing effect [72]. Other members of the oral microbiome that
have been associated with a reduced risk of OSCC development included Corynebacterium,
Kingella, Leptotrichia, Neisseria, Parvimonas micra, and Haemophilus parainfluenza. Their
presence was suggested to be cancer protective [73]. However, in cancer, development
metabolism and the functionally specialized role of the bacterial community are more
relevant than composition [74].

While Capnocytophaga gingivalis, Prevotella melaninogenica, Sreptococcus mitis,
Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia were signifi-
cantly enriched in unstimulated saliva samples of OSCC patients (Figure 3b) [46,64,75–79].
Capnocytophaga gingivalis, Prevotella melaninogenica, and Streptococcus mitis are sig-
nificantly elevated in the saliva of patients with OSCC with a diagnostic sensitivity and
specificity of 80% and 82%, respectively [76].

Neisseria species, which are numerous in saliva samples, could play an important role
in alcohol-related carcinogenesis because they produce acetaldehyde [80]. The bacteriome
of saliva from patients with OSCC differed significantly from tumor tissue microbiota in
terms of community structure, however, remained similar at taxonomic and metabolic
levels except for elevated abundances of Streptococcus, Lactobacillus, and Bacteroides, and
acetoin-biosynthesis, respectively [78]. Overabundance of Porphyromonas gingivalis in saliva
was associated with advanced pathologic staging but lower recurrence rate of OSCC [81].
The origin of Porphyromonas gingivalis in OSCC tissue might be from the salivary microbial
reservoir. Increased abundance of Fusobacteria species in oral tongue samples of OSCC
patients was associated with significantly increased programmed death-ligand 1 (PD-L1)
expression and—along with reduced abundance of Rothia and Streptococcus species—with
lower alpha diversity [82].
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Figure 3. Word cloud of bacterial species detected in (a) cancer tissue and (b) saliva of OSCC patients.
The PICo (Population, Intervention, Comparison and Outcomes) question was: “What are the bacteria
significantly more abundant in OSCC patients when compared to healthy control?”. Articles were
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searched in Medline/PubMed, Science Direct, Google Scholar, or Scopus, with the string “oral
microbiota” OR “oral bacteria” AND “oral squamous cell carcinoma” OR “OSCC”. Inclusion criteria
were: in vivo studies, next generation sequencing (NGS) procedure, English language, date of
publication: January 2005 to January 2022. Exclusion criteria were: animal studies, reviews and
meta-analyses type. Data were finally retrieved from 13 articles [36,49,52,53,73,76,78,79,83–87]. Image
created with WordArt (https://wordart.com/; last accessed on 26 June 2022). Bacteria found to be
most frequently associated with OSCC are reported with larger font size; at progressively smaller
font size, bacteria significantly associated with OSCC but less frequently reported.

5. Microbiome and Oral Cancer Prognosis

Multiple studies have revealed that the microbiota is predictive of disease severity
and therapy outcome in cancers including but not limited to lung, pancreatic, colorectal,
oral, breast, prostate, and liver cancers. In the last five years, several studies reported the
relationship between Fusobacterium nucleatum and the clinical outcome in human cancers.
For example, in the colon, differences in the flora of different intestinal segments may
result in a different prognosis for colorectal cancer. Fusobacterium nucleatum is one of the
potential pathogens associated with a worse prognosis and high Fusobacterium nucleatum
levels were linked to a more advantage stage [88,89]. In terms of survival outcomes
(disease-free survival and/or overall survival-OS-time) and in agreement with these data,
other studies reported that adjuvant chemotherapy was more effective in patients with
low Fusobacterium nucleatum levels than in those with higher Fusobacterium nucleatum
levels [90,91]. Intriguingly, if the prognosis of colon tumors is different from the tumor
site (left vs. right) [92] and different bacteria are found throughout the different segments
of the intestine, this means that the bacteria influence the prognosis [93]. In regards to
esophageal cancer, it was found [94] that Fusobacterium nucleatum–positive patients had
significantly shorter cancer-specific survival and OS, and higher cancer-specific mortality
compared with Fusobacterium nucleatum–negative cases. They also found an upregulation
of the CCL20 chemokine and hypothesized that Fusobacterium nucleatum contributes to
the acquisition of aggressive tumor behavior through chemokines activation. Streptococcus
anginosis, in particular, has been associated much more with esophageal cancer rather than
oral cancer [95]. Recently, it has been seen that even the breast tissue is affected by the
microbiome. Dysbiosis may lead to the development of breast cancer through possible
mechanisms linked to both immune regulation and the onset of a tumor microenvironment,
but most of all to estrogen metabolism and the estrobolome [96], a term that indicates
the collection of microbes that are capable of modulating the enterohepatic circulation
of estrogens. The estrogen, conjugated in bile, can then be deconjugated by the enzyme
β-glucuronidase secreted by gut bacteria. This active, unbound estrogen is reabsorbed
into the circulation and binds to estrogen receptors which leads to several physiological
responses, influencing reproductive processes and cardiovascular health. Variations or
alterations in the microbiome cause higher circulating estrogen levels and increased risk of
breast cancer [97]. Gut microbiome of breast cancer patients differs from that of healthy
subjects and some species contain members that can cause double-stranded DNA breaks in
cells that make up breast cancers [98,99]. Furthermore, a correlation has been shown [100]
between composition and cancer grade, suggesting a relationship between the microbiome
and breast cancer development and progression. Finally, balancing a dysbiotic microbiome
with the use of antibiotics therapy, which usually increases the risk of breast cancer can be
useful either before or after a cancer diagnosis [96].

As regards HNSCC, different bacteria including Fusobacterium nucleatum and peri-
odonticum, Streptococcus salivarius, Porphyromonas, and different Lactobacillus subspecies
are associated with the diagnosis of this kind of cancer. The periodontal pathogens Fu-
sobacterium nucleatum (subspecies polymorphum), Campylobacter subspecies, P. aeruginosa, but
also Porphyromonas, are considered as “mobile microbiome” because they originate in the
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OC but are also associated with extra-oral infections and inflammation. They have been
reported to be associated with OSCC [36]. In particular, Porphyromonas gingivalis, Prevotella
intermedia, Fusobacterium nucleatum, and A actinomycetemconcomitans, produce volatile sulfur
compounds such as genotoxic and mutagenic agent hydrogen sulfide (H2S) in the gingival
pockets that induce chronic inflammation and cells proliferation, migration, invasion, and
tumor angiogenesis.

Bacteria such as Fusobacterium nucleatum and Lactobacillus play controversial roles in
the development of oral cancer. The hypoxic nature of the tumor environment, the reduced
immunity of the host, and the production of purines in the necrotic center of the tumor
facilitate the attraction of bacteria to a tumor. As a consequence of hospitality, these bacteria
disfavor tumor growth [101]. Fusobacterium is one of these bacteria. On the other hand,
Fusobacterium nucleatum is implicated in the progression of OSCC by inducing proliferation
of oral epithelial cell through activation of kinases and by binding its adhesion FadA to
E-cadherin and in turn activating the Wnt/β-catenin pathway [102]. An interesting finding,
although to be confirmed with further research, is that OSCC lesions associated with the
abundance of Fusobacterium nucleatum have a better prognosis when treated with drugs
such as Pembrolizumab [103].

Lactic acid bacteria may have a protumoral and protective effect on OSCC. Lactobacillus
has been implicated in OSCC development because they produce other acids, such as acetic,
butyric, isobutyric, isovaleric, and isocaproic acids, which reduce the environmental pH,
thus contributing to cancer growth and spread [104]. Furthermore, Lactobacillus was found
to be increasingly abundant, relative to the increasing TNM staging of cancer patients [105].

Although lactic acid production can reduce the pH of the oral cavity by promoting
cancer cell proliferation, on the other hand, they promote apoptosis (increases upregula-
tion of PTEN and MAPK signaling), apoptosis provides antioxidative protection (against
reactive oxygen species (ROS)) to cells, increased numbers of immune cells (T cells) and
induction of cytokines (INF-gamma, TNF-alpha), and improved tumor suppression gene
expression [106]. Lactic acid bacteria that can improve response to anticancer therapies are
Streptococcus mitis, Streptococcus gordonii, Streptomyces, Neisseria, Veillonella, Kingella, and
Corynebacterium. Lactic acid bacteria are commonly used in probiotic therapy and have
shown success in the management of several disorders that include cancer [106].

Lactobacillus fermentum and Lactobacillus plantarum strains are the most studied bacteria
as probiotic adjuvants in the treatment of OSCC. Porphyromonas gingivalis concentration can
influence the prognosis of OSCC. Porphyromonas gingivalis overabundance in saliva has con-
troversial prognostic power. According to some studies, patients with an overabundance
of Porphyromonas gingivalis in saliva had a longer disease-free time and lower recurrence
rate [81], while patients with a high Porphyromonas gingivalis level had the worst prognosis
in esophageal squamous cell carcinoma [107,108]. The diversity of study populations and
follow-up periods could have contributed to this prognostic inconsistency. The extent of
inflammatory gene expression could also influence the prognosis of OSCC.

Among inflammatory genes, the COX-2 gene has been shown to be up-regulated in
oral cancer and precancer, but its involvement in prognosis is uncertain. In the study by
Abdolkarim Moazeni-Roodi et al., COX-2 induction was correlated with H-ras expression
in OSCC, suggesting the involvement in oral cancer progression but also in increase of
tumor grade [109]. In another study, a significantly higher expression of COX-2 was also
found in oral cancer patients compared to normal controls, but COX-2 expression was
found to be independent of grade of tumor and stage of disease [110]. The authors also
suggest a role for COX-2 receptors in oral cancer carcinogenesis and provide for the use of
COX-2 inhibitors for prevention of oral carcinogenesis.

The field of bacterial-based immunotherapies has recently received renewed interest,
as they can infiltrate and replicate within solid tumors; in this vein, OSCC represents the
ideal type of cancer to be treated [111]. Therapeutic strategies can be modeled targeting the
virulence factors of Porphyromonas gingivalis and Fusobacterium nucleatum and developing
phage therapy against oral pathogens such as Fusobacterium nucleatum, Streptococcus mutans,
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and Neisseria meningitidis. In addition, modulating pH microenvironment, along with
taking advantage of probiotic bacteria such as Streptococcus dentisani or Streptococcus A12
and of specific antimicrobial peptides are promising strategies to combat oral cancer as a
multifactorial disease [112]. More attention should be paid on oral antibiotics, as they may
alter intestinal microbiota, stimulating immune dysbiosis and limiting the abundance of
probiotic bacteria, thus promoting OSCC development [113].

6. Limitations and Perspectives

The limitation of this review is a result of the difficulty of comparing studies with
different methodologies. Indeed, the choice of analysis method and sample type greatly
influence the results and do not allow us to perform a quantitative analysis.

Multicenter longitudinal association studies with third-generation sequencing plat-
forms are needed to determine the etiopathogenic relationships between microbiota and
OSCC. Therefore, we encourage further research in this up-and-coming field, which could
lead to the development of effective prognostic targets and even therapies for patients
with OSCC. Metagenomics and transcriptomics are indispensable for understanding the
interaction between bacteria in the oral biofilm.

7. Conclusions

This review supports the association of oral microbiota with OSCC tumorigenesis and
illustrates which bacteria could be used as biomarkers for the early diagnosis of OSCC.
Microbial dysbiosis is evident in patients with OSCC. Several bacterial species appear to
influence the progression, metastasis, and recurrence of oral cancer. The human microbiota
may determine the response to cancer therapy through different mechanisms, and thus may
positively or negatively influence the outcome. However, oral dysbiosis as a risk factor in
the development and progression of oral cancer needs to be further elucidated. The genera,
species, or combinations of bacteria involved have also not been thoroughly characterized.

This review provides insights into bacterial species or microbial compositions of po-
tential importance to be investigated on saliva samples in patients with OSCC. Variation
in individual species cannot discriminate between health and disease, so comparisons
between complexes of microorganisms have now been included in the analysis. Microbial
complexes significantly associated with oral carcinogenesis were depicted in an original
way, rather than a summary list of oral bacteria to provide a direction for future clinical
studies. Only studies performed through next generation sequencing (NGS) procedure
were analyzed, as it requires a small volume of sample, eliminating the bias of PCR. The
significantly increased bacteria in salivary samples were not the same as those identified
within tissues of patients with OSCC. The use of the salivary microbiome as a reliable diag-
nostic tool has proven to be an important noninvasive opportunity in the early diagnosis
of OSCC.
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