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Abstract: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which
represent the range of dystrophinopathies, account for nearly 80% of muscle dystrophy. DMD and
BMD result from the loss of a functional dystrophin protein, and the leading cause of death in these
patients is cardiac remodeling and heart failure. The pathogenesis and progression of the more severe
form of DMD have been extensively studied and are controlled by many determinants, including
microRNAs (miRNAs). The regulatory role of miRNAs in muscle function and the differential
miRNA expression in muscular dystrophy indicate the clinical significance of miRNAs. This review
discusses the relevant microRNAs as potential biomarkers and therapeutic targets for DMD and
DMD cardiomyopathy as examples of dystrophinopathies.
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1. Introduction

Dystrophinopathies are a group of X-linked inheritance disorders characterized by
loss of limbs, loss of respiratory and cardiac muscle strength, and destruction of nerve
tissue. There are two main forms of dystrophinopathy: Duchenne muscular dystrophy
(DMD), which develops in early childhood and presents with severe symptoms, and Becker
muscular dystrophy (BMD), which develops late as a milder form [1]. These diseases are
caused by the absence [2] or marked reduction [3] of the dystrophin protein, which results
from a mutation in the DMD gene on the X-chromosome. Therefore, DMD and BMD occur
more frequently in males than females. Females with a defective allele may also show very
mild symptoms, but are at risk for a gradual increase in heart disease [4]. Globally, the
prevalence of muscular dystrophy (MD) is estimated at 3.6 per 100,000 people [5]. The
expected prevalence of DMD is 4.8 per 100,000 and 1.6 per 100,000 for BMD [5]. DMD/BMD
accounts for more than 80% of all MD cases [6].

Heart abnormalities are common in many forms of MD (Table 1), in which dilated
cardiomyopathy (DCM) is typical. DMD/BMD patients also present with an abnormal
heart rhythm or arrhythmia, and sometimes localized hypertrophy. Approximately 10-20%
of DMD patients die from heart failure or sudden death because of progressive heart disease,
which is a significant cause of patient death, along with respiratory failure. Because of
the successful management of respiratory complications and the steady increase in life
expectancy of DMD patients, primary cardiac death in DMD patients is expected to increase.
In particular, given that up to 50% of BMD patients die of heart failure, cardiac abnormalities
may develop before skeletal problems [6]. In addition, females carrying either the DMD or
BMD dystrophin mutation develop heart failure, even in the absence of any skeletal muscle
defects [7].
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Table 1. Examples of different types of muscular diseases associated with cardiac abnormalities.
OMIM accessed on 1 May 2022.

Age of Onset

Name OMIM No. Gene Inheritance Cardiac Complications
(Years)
Becker 300376 DMD XLR 5 to 60 Arrhymias, DCM, HT
Duchenne 310200 DMD XLR 2and 3 Arrhymias, DCM, HT
310300 (TP1) EMD XLR .
Emery-Dreifuss 181350 (TP2) LMNA AD 10 gg\‘}rghgglasfvtﬁl“k’
616516 (TP3) LMNA AR s oudden dea
. . 603511 (TP1) DNAJB6 AD DCM in certain sub-type,
Limb-Girdle 253600 (TP2) CSPN3 AR 100 30 Conduction disorders
. 160900 (TP1) DMPK AD AF, Arrhymias, AV block,
Myotonic 602668 (TP2) CNBP AD 20t040 DCM, Sudden death

AD, autosomal dominant; AF, atrial fibrillation; AV, atrioventricular; CSPN3, calpain-3; CNBP, CCHC-type
zinc finger nucleic acid binding protein; DCM, dilated cardiomyopathy; DNAJB6, Dna] heat shock protein
family (Hsp40) member B6; DMD, dystrophin; DMPK, myotonic dystrophy protein kinase; EMD, emerin; HT,
hypertrophy; LMNA, lamin A/C; OMIM, online mendelian inheritance in man; TP, Type; XLR, X-linked recessive.

Dystrophin is a long (110 nm) and slender cytoskeletal protein of approximately
400 kDa in size. It is predominantly expressed in skeletal and cardiac muscles [8]. Muta-
tions in the dystrophin gene, including intragenic deletions (60-65% of cases), duplications
(5-15% of cases), and point mutations, result in dystrophin dysfunction [9]. For DMD, mu-
tations destroy the reading frame and produce a severely truncated dystrophin protein that
breaks down rapidly. In contrast, in BMD, the reading frame for the dystrophin mutation is
maintained and expressed, thus producing a partially functioning protein [9]. Dystrophin
is located on the inner surface of the sarcolemma. The N-terminal domain of dystrophin
directly binds to the F-actin cytoskeleton [10], whereas the C-terminal cysteine-rich region
of dystrophin interacts with a component of the sarcolemmal (glyco) protein complex [11],
which in turn connects to the extracellular matrix [12]. This dystrophin-associated protein
complex (DPC) participates in force transduction and stabilizes the plasma membrane of
muscle cells during contraction. Therefore, either the absence of the dystrophin protein
(DMD) or the reduced expression of dystrophin (BMD) causes the sarcolemma to become
fragile with reduced stiffness and increased leakiness, rendering muscle cells susceptible
to damage during contraction—relaxation [13]. In addition, growing evidence suggests
DPC acts as a scaffold for signaling pathways in both skeletal and cardiac muscles [14,15].
Thus, DPC abnormalities are considered an important pathologic defect that causes muscle
degeneration and cardiomyopathy.

Essential biological processes, including cell proliferation, differentiation, and apopto-
sis, are regulated, in part, by microRNAs (miRNAs) through post-transcriptional regulation
of the gene expression [16]. Thus, miRNA dysregulation has been implicated in a variety
of diseases. This review provides an overview and update on relevant miRNAs associated
with dystrophinopathy, with a focus on DMD. Understanding the role and impact of miR-
NAs on DMD pathogenesis will provide insight into their potential utility (as tools and
targets) for novel dystrophinopathy treatments.

2. microRNAs Associated with Dystrophinopathy
2.1. Importance of miRNA

MiRNAs are small, non-coding RNAs of approximately 22 nucleotides in length [17].
miRNA genes can be included in other genes or can be located in the intron of host genes.
Sometimes, miRNA genes are composed of polycistronic clusters and are expected to be co-
expressed [18]. The production of mammalian miRNAs is a highly regulated process [17].
In the nucleus, miRNA is transcribed by RNA polymerase II/III to generate primary
miRNA (pri-miRNA), which are modified with a 7-methylguanosine cap structure and
polyadenylation. Pri-miRNA is usually more than one kilobase long and contains a double-
strand area incompletely in the hairpin loop. Through the canonical Drosha/DGCR8
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cleavage or non-canocical pathways, pri-miRNA is converted to a hairpin-like precursor
miRNA (pre-miRNA) with a length of about 70-100 nt. This pre-miRNA is exported from
the nucleus to the cytoplasm with the help of Exportin 5, and is further processed by
the RNase called Dicer to generate mature miRNA of ~22 nt in length. Each pre-miRNA
can release two mature miRNA strands (5p and 3p) containing different messenger RNA
(mRNA)-targeting sequences. In general, only one single strand becomes a template loaded
into the RISC (RNA-induced silencing complex) to control the fate of specific mRNAs.
The mature miRNA functions by complementary base-pairing with the miRNA response
elements (MRE) located in the target mRNA. The 3’-untranslational region (3’-UTR) often
contains MREs [19]. As a result, it can interfere with the translation of the transcript or can
cause the degradation of the mRNA target directly (Figure 1).
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Figure 1. Overview of canonical miRNA biogenesis and function. MiRNA genes are expressed as
long transcripts (called pri-miRNAs) that are transcribed by RNA polymerase II or III, and produce
a precursor form of miRNA (called pre-miRNA) in the nucleus. The pre-miRNA is then exported
to the cytoplasm by exportin 5 and is further processed by the Dicer complex to generate mature
miRNA duplexes. Finally, mature miRNA duplexes are separated, and one of the strands is loaded
into RISC (RNA silencing complex), which binds to the target mRINA. Mature miRNA regulates the
specific gene expression by directly controlling the stability of the mRNA targets or suppressing
translation. DGCRS; DiGeorge Syndrome Critical Region 8, m7G; 7-methylguanosine cap structure.
Adapted from “microRNA in cancer” by BioRender.com (accessed on 29 June 2022). Retrieved from
https:/ /app.biorender.com/biorender-templates (accessed on 29 June 2022). Agreement number is
MK245ND69F.

In vertebrates, miRNAs function to modify or maintain cellular phenotypes during
various types of stress, usually by repressing or regulating the expression of proteins that
are specific to a particular cell type [20,21]. The human genome encodes approximately
2300 mature miRNAs [22]. Moreover, bioinformatic analyses suggest that a single miRNA
can target up to 200 different genes and that a combination of miRNAs can regulate the
expression of one-third of all human genes [23]. In addition, several studies have demon-
strated an association of dysregulated miRNA expression with the pathological basis of
various human diseases. Therefore, it is not surprising that miRNAs have important
implications for human health and cellular phenotypes, and modulating miRNAs repre-
sents a novel therapeutic strategy, especially for multifactorial diseases for which there are
currently no effective therapies.
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An important characteristic of miRNAs is their presence in biofluids, which often
correlates with various physiological states. Moreover, the robust chemical stability and
development of sensitive detection methods (e.g., next-generation sequencing, real-time
PCR, and microarrays) support the potential use of miRNAs as biomarkers. After the first
tumor-associated miRNAs (e.g., miR-21, miR-155, and miR-210) were discovered in the
serum of cancer patients [24], the list of miRNAs as biomarkers has grown significantly.
Elevated serum levels of a muscle-specific isoform of creatine kinase (CK) in DMD, along
with genetic assessments, are widely used diagnostic markers. However, serum CK is
neither DMD-specific nor a strong predictor of cardiac function [25]. Therefore, circulating
miRNAs have been proposed as biomarkers for the diagnosis and prognosis of DMD [26].

2.2. miRNAs as a DMD Biomarker

MiRNAs are expressed with tissue specificity. Eight miRNAs, namely miR-1, miR-
133a, miR-133b, miR-206, miR-208a, miR-208b, miR-499a, and miR-499b, were identified
as muscle-specific miRNAs [27-30]. Except for miR-206 (predominant in skeletal muscle)
and miR-208a (predominant in cardiac muscle), they are expressed in both cardiac and
skeletal muscle tissues. Three miR families, miR-1, miR-133, and miR-206, are among the
most abundant in muscle cells, accounting for more than 25% of all miRNAs [29]. They are
involved in skeletal muscle proliferation and differentiation [31,32].

Several microarray analyses have identified DMD-associated miRNAs [33-35]. For
example, muscle-specific miRNAs were found to be differentially expressed in dystrophic
muscle tissues in patients and in mdx mice, a well-established mouse model for DMD
research. The miRNAs, miR-1, miR-133, and miR-206, were decreased in the dystrophic
muscles compared with healthy tissue. Moreover, a significant upregulation (~70-fold) of
miR-31 inhibited the dystrophin expression by targeting the 3'-UTR of dystrophin in DMD
muscles [36]. Importantly, several muscle-enriched miRNAs (miR-1, miR-133, miR-206,
miR-208, and miR-499) were upregulated in the dystrophic sera, not only in animal models,
but also in patients (Table 2). In particular, the expression of miR-1 and miR-133, as
a result of muscle degeneration, was highly elevated in the dystrophic serum of DMD
patients (up to 100-fold in DMD and up to 30-fold in BMD versus healthy controls) [37].
Furthermore, upregulated serum miR-206 in female carriers of DMD, who were in most
cases asymptomatic, were reported, suggesting a potential use in carrier detection [38]. In
addition, a close relationship was reported between the levels of many serum miRNAs and
the functional performance of DMD patients [39].

Several non-muscle-specific miRNAs, including miR-30c, miR-181a, and miR-95, were
also elevated in the serum or plasma of DMD patients [40,41]. Compared with healthy
individuals over 4 years, the serum levels of miR-30c and miR-206 were significantly
elevated in BMD/DMD patients [42]. Moreover, the miR-206 levels clearly exhibited
characteristics that were different between patients with BMD and DMD. Recent clinical
interventions for DMD, such as antisense-mediated exon skipping, suggest an urgent need
for reliable biomarkers. Interestingly, the serum levels of miR-1, miR-133, and miR-206
in the mdx mice were correlated with the exon-skipping activity-dependent dystrophin
expression [35]. However, the expressions of these miRNAs were not significantly different
in the DMD patient serum before and after exon-skipping (Eteplirsen) treatment in a small
number of samples [39].

Table 2. Muscle-enriched miRNAs elevated in dystrophic serum.

Analysis Samples Function Refs.
miR-1 DMD patients, DMD mice, DMD dogs Myogenesis [37,43]
miR-133 DMD patient, DMD mice, DMD dogs Myogenesis [37,43]
miR-206 DMD patient, DMD female carrier, DMD mice, DMD dogs Muscle development & regeneration [37,38,43]
miR-208b  DMD patient, DMD mice, DMD dogs Muscle fiber determination, Myogenesis [41,44]
miR-499 DMD patient, DMD mice Muscle fiber determination [44]
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2.3. microRNAs Associated with DMD Cardiomyopathy

MiRNAs are involved in maintaining the cardiac structure and function. In fact, knock
out mice for Dicer, an enzyme that produces short RNA fragments, or Dgcr8, an enzyme
involved in the early stages of miRNA biosynthesis, exhibit dilated cardiomyopathy, heart
failure, and premature death [45,46]. In addition to expression profiling, animal studies
have shown that several muscle-specific DMD-related miRNAs, such as miR-1, miR-133,
and miR-208, are involved in cardiac muscle remodeling and pathogenesis (Table 3).

miR-1: Several studies have demonstrated a pathophysiological role for miR-1 in
heart disease. For example, an abnormal expression of miR-1 is involved in electrical
remodeling, such as the development of arrhythmias. With respect to the underlying
mechanism, miR-1 directly targets the key proteins that regulate potassium current (e.g.,
potassium ion channel and gap junction protein) [47] or proteins involved in muscle cell
Ca?* cycling (e.g., protein phosphatase PP2A) [48]. In addition, miR-1 is associated with
mechanical remodeling, suggesting that it has anti-hypertrophic properties. A reduced
miR-1 expression along with miR-133 has been reported in three different mouse models of
cardiac hypertrophy [49]. Because miR-1 is transcribed as a bicistronic transcript, together
with members of the miR-133 family, it raises the possibility of cooperation in cardiac
hypertrophy. In addition, miR-1 overexpression was shown to attenuate agonist-induced
cardiac hypertrophy in vitro and in vivo [50].

miR-133: MiR-133 has been implicated in myocardial remodeling. Similar to miR-1,
miR-133 overexpression suppresses cardiac cell hypertrophy [49]. In contrast, miR-133 inhi-
bition induces cardiac hypertrophy by targeting cytoskeletal and myofibrillar rearrangement-
related proteins (e.g., RhoA and CDC42) [49]. Decreased miR-133 promotes the progression
of cardiac fibrosis. Several central mediators in tissue fibrosis, such as TGF-f1 (transform-
ing growth factor-31), CTGF (connective tissue growth factor), and COL1A1 (collagen type
1-alpha 1), have been identified as direct targets of miR-133 [51-53]. The accumulation of
these miR-133 target molecules contributes to collagen deposition and fibrosis. Interest-
ingly, miR-133 can be directly regulated by other noncoding RNA, such as linc-MD1. A
muscle-specific long non-coding RNA (IncRNA), linc-MD1, binds to miR-133a and acts
as a competitor RNA for targets of miR-133, including MAML1 (Mastermind-like 1) and
MEF2C (Myocyte Enhancer Factor 2C) transcription factors [54]. The expression of linc-
MD1 is diminished in Duchenne patient myoblasts. Although the role of IncRNAs in DMD
pathogenesis is still unclear, understanding the IncRNAs—miRNAs—mRNAs network is
important to explore the molecular mechanism of DMD.

miR-208a: The miR-208 family, which contains miR-208a/b and miR-499, contributes
significantly to cardiac hypertrophy and arrhythmias. These three miRNAs are located
in the introns of the genes encoding myosin heavy chain isoforms, which regulate the
expression of sarcomeric contractile proteins [30,55]. Transgenic mouse studies have shown
that miR-208a, a heart-enriched miRNA, is associated with hypertrophic cardiomyocyte
growth and the upregulation of hypertrophy-related genes by targeting THRAP1 (thy-
roid hormone receptor-associated protein 1) and myostatin 2 [55]. Cardiac conduction
abnormalities have also been reported in both miR-208a deletion mice and miR-208 over-
expressing mice [28,55]. In addition, miR-208a null mice exhibited a reduction in cardiac
contractility [36]. As miR-208a can be released from heart muscle cells into the serum and
plasma in response to cardiac pathogenesis, several studies have evaluated their diagnostic
value. For example, the sensitivity and specificity of circulating miR-208a were reported
in patients with myocardial damage [56], severe COVID-19 [57], and heart failure with
reduced ejection fraction [58].

miR-339-5p: It was recently shown that miR-339-5p is upregulated and released
by exosomes from DMD patient-induced pluripotent stem cell-derived cardiomyocytes
(DMD-iCMs). Downregulation of miR-339-5p directly modulated stress-response genes
and reduced cardiomyocyte death in DMD-iCMs. These data indicate a pathological role
of elevated miR-339-5p in DMD cardiomyocytes [59].
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Table 3. Cardiopathological relevance of muscle-specific DMD-related miRNAs.

Expression Validated Targets Function Refs.
w1 Downmiir DRy KNEOAL G romeotass T )
w13 Do/ R CPCRCIGE  Cardemprony (5
miR-208a  Up in DCM THRAP1, MSTN gyr‘éclgzdﬁ;gelf;%?;y [28]

CDC42, Cell division control protein 42 homolog; COL1A1, collagen type 1-alpha 1; CTGEF, connective tissue
growth factor; DCM, dilated cardiomyopathy; GJA1 gap junction protein alpha 1, HAND2, Heart- and neural
crest derivatives-expressed protein 2; HT, hypertrophy; HE heart failure; KCNJ2, potassium inwardly rectifying
channel subfamily J; MEF2, myocyte enhancer factor-2; MSTN, Myostatin; RhoA, Ras homolog gene family
member A; THRAP1, thyroid hormone receptor-associated protein 1; TGF-f1, transforming growth factor-31;
PP2A, protein phosphatase 2A.

Serum miRNAs in disease carriers: Even without skeletal muscle symptoms, heart
symptoms often occur in female DMD/BMD carriers for the asymptomatic form with mild
abnormalities to progressive heart failure [60] and dilated cardiomyopathy [61], which
may require heart transplantation [62]. Therefore, early detection of heart disease in female
carriers is important. Changes in the miRNA levels associated with heart and /or skeletal
muscle pathologies, including cardiac hypertrophy (e.g., miR-22 and miR-26a), fibrosis
(e.g., miR-26a, miR-222, and miR-378a-5p), muscle cell death (e.g., miR-342), and regulation
of skeletal muscle mass (e.g., miR-378 and miR-29c¢) regulators have been detected in the
biofluids of disease carriers (Table 4) [63-65]. Interestingly, a significant downregulation
of miR-29c was only found in the blood of female DMD carriers with cardiac symptoms
detected by cardiovascular magnetic resonance [63]. It is worth determining whether this
miR-29¢ downregulation is female-specific and whether its expression is comparable to
healthy controls before cardiomyopathy in men with DMD.

Table 4. Circulating miRNAs in DMD/BMD-associated cardiomyopathy.

Name Source Function Refs.
Up miR-22 DMDc plasma Hypertrophy [63]
. DMDc plasma . .
miR-26a DMDms/BMDms plasma Fibrosis, Hypertrophy [63,64]
miR-206 DMDc plasma Muscle regeneration [63]
miR-222 DMDms/BMDms plasma Fibrosis [64]
miR-342 DMDc/BMDc plasma Cardiomyocyte apoptosis  [63]
. DMDc plasma . .
miR-378a-5p DMDms/BMDms plasma Fibrosis [63,64]
miR-378a-3p  DMDc/BMDc plasma SKM mass regulator [63]
Down miR-29¢ DMDe/BMDc plasma SKM mass regulator [64,65]

DMD urine

DMDc/BMDc, DMD/DMD female carriers; DMD/BMDms, DMD/BMD with myocardial scars;
SKM, skeletal muscle.

3. microRNAs with Therapeutic Potential
3.1. Restoration of Dystrophin or Utrophin Expression

Recently, several therapies that restore dystrophin expression have been successfully
developed for clinical studies. In addition, miRNAs that mediate an increase of dys-
trophin or utrophin, an autosomal paralogue of dystrophin, have attracted attention as
therapeutic candidates.

miR-31: MiR-31 is expressed in regenerating fibers, which are activated at the onset
of DMD in both mouse and human muscles [36]. DMD myoblasts with accumulated
miR-31 exhibit a lower differentiation potential and miR-31 has been shown to target
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dystrophin mRNA [36]. Importantly, the inhibition of miR-31 function may improve the
therapeutic efficacy of restoring the dystrophin expression. In human DMD myoblasts,
miR-31 inhibition increased dystrophin synthesis with exon 51 skipping [36]. In the skeletal
muscle, miR-31 also regulates myogenesis by inhibiting MYF5 (myogenic factor 5), an
activator of muscular satellite cells, which are identical to myogenic stem cells [66]. Thus,
miR-31 inhibition represents a therapeutic strategy to improve DMD muscle function by
improving dystrophin synthesis and muscle differentiation. Furthermore, miR-31 has a
role in cardiac remodeling. For example, atrial miR-31 inhibition contributes to electrical
remodeling, such as the termination of atrial fibrillation, by the restoring dystrophin and
nNOS (neuronal nitric oxide synthetase) levels [67]. The cardioprotective effects of miR-31
silencing have also been reported in rats with myocardial infarction [68]. Mechanistically,
miR-31 represses TNNT2 (troponin T2), E2F6 (E2F Transcription Factor 6), NR3C2 (Nuclear
Receptor Subfamily 3 Group C Member 2), and TIMP4 (Metalloproteinase inhibitor 4) by
binding to their respective target 3'-UTR sequences.

miR-206: Skeletal muscle-specific miR-206 is considered a new target for DMD therapy
because of its ability to regulate the expression of utrophin. In humans, utrophin is
nearly 80% identical to dystrophin [69] and it is naturally increased in the sarcolemma of
dystrophic skeletal muscles as a compensatory mechanism for dystrophin deficiency in
mice [70,71] and humans [72]. In mdx mice, downregulation of miR-206 resulted in a higher
utrophin expression and an improvement in the dystrophic phenotype [73]. In addition
to miR-206, the suppression of utrophin by several miRNAs, including let-7c, miR-150,
miR-196b, miR-296-5p, and miR-133b, was demonstrated [74,75]. A therapeutic strategy to
enhance utrophin production could be applicable to BMD patients, as well as all DMDs,
regardless of the type of dystrophin mutation. Currently, several drugs that stabilize the
utrophin—glycoprotein complex, including TVN-102 (recombinant human biglycan) and
rhAKM111 (recombinant human protein laminin-111), have been developed for utrophin
therapy [76]. Meanwhile, miR-206 has been characterized as a cardioprotective molecule. It
is upregulated in response to stress and promotes the survival of heart muscle cells in vitro
and in vivo [77].

3.2. Inhibition of Pathogenic Muscle Remodeling: Anti-Fibrosis

Muscle fibrosis, which is a massive accumulation of connective tissues, occurs as a
result of chronic tissue damage and inflammation, and is associated with muscle wasting
in DMD/BMD [78]. In addition to suppressing muscle regeneration, fibrosis accelerates
disease progression by disturbing proper therapy and by altering metabolism. There are
two well-known miRNAs that are associated with fibrosis in DMD conditions.

miR-21: MiR-21 is upregulated in DMD fibroblasts, the major collagen-producing cells,
and is correlated with the expression of pro-fibrotic genes [79]. Histological evaluations
have shown that the inhibition of miR-21 reduces diaphragmatic fibrosis in mdx mice.
In addition, in the diaphragm where miR-21 was overexpressed, the soluble collagen
content was reduced compared with the control group [79]. MiR-21 is also tightly linked
to cardiac fibrosis. Elevated miR-21 promotes cell transition from cardiac fibroblasts
to myofibroblasts, resulting in pathogenic heart modeling [80]. MiR-21 is considered a
potential therapeutic target for the treatment of cardiomyopathies [81]. With respect to
fibrosis, Regulus therapeutics is currently conducting a phase 2 clinical trial jointly with
Sanofi Genzyme to evaluate the safety and efficacy of anti-miR-21 oligonucleotides (RG-012)
in Alport patients (ClinicalTrials.gov Identifier: NCT02855268).

miR-29: MiR-29 has pro-myogenic activity and anti-fibrotic properties in DMD. Down-
regulation of all three members of the miR-29 family, miR-29a, miR-29b, and miR-29c,
were detected in dystrophic mouse muscles, including the limb muscles, diaphragm, and
heart [82]. A reduced miR-29a and miR-29¢ expression has also been found in human DMD
myoblasts [79]. Systemic delivery of miR-29 mimics into mdx mice promotes diaphragm
muscle regeneration and inhibits the development of fibrosis in the diaphragm by directly
repressing extracellular matrix components, such as microfibrillar-associated protein 5 and
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collagen [82]. The overexpression of miR-29c reduces muscle fibrosis in dystrophin and
utrophin double-knockout mice [83]. The co-overexpression of miR-29 in DMD mice with
micro-dystrophin restores fibrosis and muscle function to a similar levels to that of nor-
mal mice, suggesting a possible combination treatment strategy [83]. The therapeutic
effects of miR-29 have been extensively studied in multiple organ fibrosis, including the
heart [84]. Currently, the oligonucleotide mimic of miR-29b (Remlasten or MRG-201) is in
phase 2 clinical trials for cutaneous fibrosis (ClinicalTrials.gov Identifier: NCT03601052).

3.3. Restoration of Abnormal Calcium Homeostasis

Excessive intracellular Ca?* levels are a major secondary pathologic event in dys-
trophic muscles. For DMD, stretch-induced stress results in membrane tears that induce
extracellular Ca%* influx and cellular Ca?* accumulation. Furthermore, abnormal Ca2*
cycling between the cytosol and sarcoplasmic reticulum (SR)/endoplasmic reticulum (ER)
contributes to Ca®* overload in dystrophic muscles [85]. This disturbance in Ca?* homeosta-
sis eventually contributes to DMD pathology [85]. Several mechanisms have been proposed
for Ca?*-mediated muscle disease and DMD cardiomyopathy. Aberrant Ca?*-dependent
protein degradation results in proteolytic damage to cellular proteins and myofibrillar
proteins [17]. The activity of Ca?*-activated proteases, including calpain, is elevated in the
muscles of DMD patients [86,87]. The activation of calpain contributes to the breakdown
of myofibrillar proteins and eventually impairs muscle function [88,89]. Cellular Ca?*
overload is also associated with necrosis and apoptotic pathways in DMD [90,91]. Abnor-
malities in ER/SR Ca?* handling proteins, including reduced sarco/endoplasmic reticulum
Ca?*-ATPase (SERCA) pump activity and the hypersensitive ryanodine receptor (RyR)
channel, gradually increase the intracellular Ca?* load and inhibit the contractile function
of muscle cells [92,93]. This leads to repeated cycles of muscle degeneration/regeneration,
loss of myocytes, inflammatory responses, fibrosis, and, consequently, progressive muscle
weakness and dysfunction (Figure 2). Several preclinical animal studies have indicated
that the normalization of Ca?* abnormalities has therapeutic effects on DMD. In particular,
targeting SR Ca?* handling proteins, such as SERCA and RyR, shows promise, and there
are miRNAs that can directly regulate their expression.
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Figure 2. Role of calcium in the pathogenesis of dystrophinopathy. The figure includes the above-
mentioned therapeutic candidate microRNAs and their target genes. An abnormal dystrophin
expression may contribute to a loss of cytoskeletal and sarcolemma integrity and impaired calcium
homeostasis. Cytoplasmic calcium overload plays a pivotal role in the disease progression of dys-
trophic skeletal and cardiac muscles. BMD; Becker muscular dystrophy, DAG; dystrophin-associated
glycoproteins; DMD; Duchenne muscular dystrophy, ECC, excitation-contraction coupling.
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miR-1: RyR stabilization may prevent Ca* leakage from the SR, thereby reducing
intracellular Ca* accumulation. For example, pharmacological stabilization of the RyR Ca?*
release channel attenuates the disease phenotype in mdx mice [94]. In addition, treatment
with RyR stabilizing molecules increased the efficacy of exon-skipping drugs in DMD cell
culture models [95]. With respect to microRNAs, elevated miR-1 can hyperactivate the
RyR2 channel by inhibiting the PP2A regulatory subunit B56x, which is a scaffold for the
RyR2 complex [48].

miR-25: Overall, the SERCA pump overexpression has shown beneficial effects in
dystrophic mice. Importantly, severe dilated cardiomyopathy was ameliorated by SERCA2a
gene transfer in aged mdx mice [96]. Several miRNAs, including miR-25, have been
identified that target SERCA2a mRNA. The therapeutic potential of inhibiting miR-25
has also been evaluated in a mouse model of heart failure [97]; however, the expression
profile and muscle-related function of miR-25 in DMD have not been reported. Clinical
studies of SERCA2a gene therapy have been conducted for heart failure [98,99], which
may serve as an important basis for designing DMD and DMD cardiomyopathy therapies.
Moreover, given the therapeutic implications of targeting Ca?* cycling, in-depth studies
of specific miRNAs that regulate Ca?* mishandling in DMD are warranted. In particular,
research on miRNAs that regulate calcium metabolism in heart disease is being actively
conducted [100].

4. Conclusions

MiRNA has emerged as a key molecule involved in muscle gene expression and has
expanded its utility as a biomarker in dystrophinopathy. Several muscle-specific miRNAs
have been extensively examined for their potential as non-invasive biomarkers for DMD
diagnosis and/or disease monitoring. In addition, miRNAs were identified that were
associated with cardiomyopathy, the leading cause of death in DMD. The development of
miRNA-based biomarkers will be of clinical significance, as many new therapeutic regimens
for DMD have been tested in recent years. Meanwhile, the approval of Onpatro (Patisiran),
the first small interfering RNA (siRNA)-based drug for the treatment of nerve damage
caused by hereditary transthyretin-mediated amyloidosis, raises the prospect of miRNA
as a therapeutic agent for genetic diseases. In DMD, miRNAs may be useful for several
therapeutic strategies, such as for the stimulation of dystrophin or utrophin synthesis, the
reduction of fibrosis, and the improvement of cardiac abnormalities. However, research
has focused on only a few muscle-enriched miRNAs, and there are many more miRNAs
involved in muscle remodeling, fibrosis, and Ca®* cycling that have not yet been studied in
dystrophinopathies. A further understanding of the dystrophinopathy-associated miRNA
function will improve miRNA therapeutics in muscular dystrophies.
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