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Abstract: Chronic hyperglycemia triggers an abnormal rise in reactive oxygen species (ROS) that
leads to blindness in patients with diabetes mellitus (DM) and cataracts. In this study, the effects
of dapagliflozin, metformin and resveratrol on ROS production were investigated in lens epithelial
cells (LECs) of animals with fructose-induced DM. LECs were isolated from patients without DM,
or with DM devoid of diabetic retinopathy. Animals were treated with 10% fructose for 8 weeks
to induce DM, which was verified by monitoring blood pressure and serum parameters. For drug
treatments, 1.2 mg/day of dapagliflozin was given for 2 weeks, 500 mg/kg/day of metformin was
given, and 10 mg/kg/day of resveratrol was given. Dihydroethidium was used to stain endogenous
O2˙− production in vivo of the LECs. Superoxide production was expressed in the cataract of DM,
or patients without DM. Sodium–glucose cotransporter 2 (SGLT2), glucose transporter 1 (GLUT1),
GLUT5, the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit
p47/p67-phox, NOX4 and RAGE were significantly increased in LECs with DM. In addition, the
dapagliflozin treatment reduced GLUT5, p47/p67-phox, NADPH oxidase 4 (NOX4) and receptor for
advanced glycation end products (RAGE) expressions. On the contrary, metformin or resveratrol
inhibited p47-phox, GLUT5, and SGLT2 expressions, but not nuclear factor erythroid 2–related factor
2 (NRF2). In summary, dapagliflozin, metformin or resveratrol down-regulated p47-phox expression
through SGLT2 inactivation and ROS reduction. These important findings imply that SGLT2 can be
blocked to ameliorate oxidative stress in the cataracts of DM patients.

Keywords: cataract; type 2 diabetes mellitus; NADPH oxidase; glucose transporter; resveratrol

1. Introduction

Diabetic patients aged above 65 may suffer irreversible cataract development; how-
ever, good control over the metabolism may reverse cataract development in younger
diabetic patients [1]. The Wisconsin Epidemiologic Study of Diabetic Retinopathy reported
that 24.9% of type 2 diabetes patients and 8.3% of type 1 diabetes patients had a history
of 10-year-long cumulative incidence for cataract surgery [2]. Type 1 diabetics’ risk fac-
tors include age, severity of diabetic retinopathy (DR) and proteinuria; Type 2 diabetics’
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risk factors include prolonged duration of diabetes, lack of metabolic control and use of
insulin [1,3]. At present, cataract removal and intraocular lens implants are the major
treatments for diabetic cataracts. Nevertheless, surgery may result to severe postoperative
complications such as corneal edema, infection, and ocular hypertension, especially in the
elderly and individuals having hyperglycemic conditions [4]. In consequence, alternative
treatment for diabetic cataracts is imminent.

In the past 50 years, fructose consumption has surpassed 10% of our daily calorie
intake in the form of sucrose and inexpensive corn-based sweeteners such as high-fructose
corn syrup (HFCS) [5]. Even though fructose is not a healthy constituent for consumption,
fructose is commonly found in the modern diet and has been the major culprit for metabolic
diseases. In prior studies, modulation of fructose transporter GLUT5 (SLC2A5) was found
to have potential for treating metabolic disease, since GLUT5 is involved in fructose
metabolism and intestinal fructose absorption [6]. Most importantly, GLUT5 is the major
fructose transporter in human eyes [7], whereas Mantych et al. suggested that GLUT1 is
the main glucose transporter typically found in lens epithelial cells (LECs) of the blood-
aqueous barrier. The LECs play an important role in preventing oxidative stress and
nutrient transport across the aqueous humor. Surprisingly, GLUT1, GLUT5 and SGLT2
were previously found to be highly expressed in cataracts and LECs of DM rats [8,9].

Fructose promotes reactive oxygen species (ROS) production and downregulates key
antioxidant enzymes such as superoxide dismutase (SOD) [10,11]. ROS overproduction
was found to worsen diabetic complications including cataract development in patients
having chronic hyperglycemia [12]. Recent studies showed that phagocyte-type NADPH
oxidase, composed of two catalytic (p22-phox and p91-phox) and four regulatory subunits
(p40-phox, p47-phox, p67-phox and Ras-related C3 botulinum toxin substrate 1 or Rac1), is
the major factor leading to ROS production in the vasculature network [13]. Furthermore,
NADPH oxidase is derived from advanced glycation end products (AGEs) during fructose
metabolism, whose receptors is receptor for AGEs (RAGE). RAGE and AGE belong to
senescent protein derivatives and are both associated with metabolic syndromes [14,15].
Signaling through RAGE and AGE may directly induce ROS via NADPH oxidases or
through other unidentified mechanisms [16].

In this study, metformin was investigated because it is a biguanide commonly used to
lower serum glucose in non-insulin-dependent diabetic patients, and it enhances glucose
metabolism in the retina, protects retinal photoreceptors and retinal pigment epithelium
from heritable mutations, and has been found to lower oxidative stress in a preclinical
animal study [17]. Apart from metformin, resveratrol was also examined since it is an
antioxidant, promotes 5′ adenosine monophosphate-activated protein kinase (AMPK)
activity and improves insulin sensitivity to relieve various metabolic disorders [18,19].

Dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, is a newly-emerging
compound used to treat diabetes. A SGLT2 inhibitor acts on the proximal tubules to enhance
sugar release into the urine, independent of insulin. SGLT2 inhibitors are known to be
less likely to cause side effect such as hypoglycemia, compared to conventional treatment
using insulin. We previously showed that GLUTs may be involved in RAGE-induced
superoxide production and cataract formation in DM patients, as well as a type 2 DM
animal model. Dapagliflozin may have been involved in inhibition of SGLT2 and GLUT
expressions, downregulation of RAGE and NADPH oxidases, and suppression of ROS
accumulation, thereby protecting the LECs [20]. Until now, neither the role of SGLT2
nor NADPH-dependent ROS in fructose-associated diabetic cataract development have
been clarified. We hypothesized that ROS formation during fructose-induced diabetic
cataract development requires SGLT2 and NADPH oxidase. By targeting NADPH oxidase
(p47-phox) using dapagliflozin, metformin or resveratrol, SGLT2 was inactivated and ROS
was reduced. Our findings support the theory that a SGLT2 blocker inhibits oxidative stress
in the LECs, a powerful tool for studying cataract pathogenesis in DM patients.
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2. Results
2.1. Superoxide Production in Cataract Lenses of DM Patients

Oxidized lenses and decreased repair ability are linked to increased lens opacity and
cataract development during aging and in patients with chronic hyperglycemia [21,22].
Ten DM (−) patients with cataracts (4 males, 6 females), and DM (+) patients with cataracts
(4 males, 6 females) were enrolled in this study with informed consent as control and
experimental groups, respectively. The DM (−) patients’ mean age was 64.0 ± 4.9 years old,
and DM (+) patients’ mean age was 67.0 ± 3.5 years old (p = 0.13). The HbA1c level was
7.70 ± 0.54 for the DM (+) patients (Table 1). DHE fluorescence assay was used to analyze
superoxide in the LECs with and without DM (Figure 1A). Results showed that DHE levels
were apparent in the LEC of diabetic and non-diabetic cataract sections (Figure 1A).

Table 1. Demographics and baseline clinical characteristics of the participants.

Control Group (n = 10) DM Group (n = 10) p Value

Age (years) 64.0 ± 4.9 67.0 ± 3.5 0.13
Sex (Male:Female) 4:6 4:6 1.00

BMI 23.7 ± 2.8 25.4 ± 3.9 0.27
HbA1c - 7.70 ± 0.54

Hemoglobin A1c (HbA1c) level was determined in patients without DM (Control) and in DM patients without
diabetic retinopathy (DM group). BMI: Body mass index. Values are shown as mean ± SEM.

Figure 1. Superoxide generated in the lens of cataract in diabetic patients. (A) Representative images
showing superoxide-positive cells in red, lens epithelial tissue was derived from cataracts of diabetic
or non−diabetic patients. Cell nuclei were counterstained with DAPI (blue). Scale bar = 20 µm.
(B) Quantified values (right) are represented as mean ± SEM (n = 10 for each group).

2.2. Several Drugs Prevent Fructose-Mediated Metabolic Defects

Table 2 provides detailed measurements for fasting glucose, triglyceride, high-density
lipoprotein, and cholesterol levels in the animals. Consistent with a recent report, we
observed significant elevation of serum triglyceride after fructose administration, compared
to controls [11,23]. The fasting blood fructose level was also higher in fructose-fed animals
compared to those fed no fructose, whereas the direct high-density lipoprotein level was
significantly lower. Dapagliflozin, metformin and resveratrol administration for two weeks
prevented fructose-mediated metabolic defects. The fasting glucose and triglyceride level
were significantly lower, but direct high-density lipoprotein levels showed no difference in
the dapagliflozin and resveratrol groups compared to the fructose only group. These results
indicate that dapagliflozin, metformin and resveratrol suppressed fructose-induced DM.
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Table 2. General characteristics of the experimental groups.

Parameter/Group WKY Fructose 8 W Fructose 8 W+
Dapagliflozin

Fructose 8 W+
Metformin

Fructose 8 W+
Resveratrol

Fasting serum
glucose (mg/dL) 94.3 ± 4.3 375.8 ± 10.8 * 298.3± 26.2 # 324.8 ± 9.4 # 311.7 ± 24.5 #

dHDL
(mg/dL) 67.7± 0.9 64.3 ± 0.3 * 61.6 ± 2.7 77.0 ± 1.0 # 62.3 ± 1.5

Triglyceride
(mg/dL) 103.5 ± 5.0 177.3 ± 5.2 * 152.3 ± 0.9 # 124.0 ± 19.2 # 149.0 ± 10.1 #

The fasting serum glucose, high-density lipoprotein (HDL) and serum triglyceride (TG) levels were determined in
6 weeks of 10% fructose-fed animals, followed by fructose + dapagliflozin, metformin or resveratrol for 2 weeks.
dHDL: direct high-density lipoprotein. The values are shown as mean ± SEM (n = 6 per group); * p < 0.05 versus
control; # p < 0.05 versus Fructose 8 W.

2.3. Dapagliflozin Inhibits RAGE-Induced NADPH Oxidase Subunit Production by Abolishing
SGLT2 Expression in LECs of Fructose-Induced DM Rats

Previously, we demonstrated that dapagliflozin downregulated RAGE-induced NADPH
oxidase expression in LECs via inactivation of GLUTs and reduction in ROS generation.
Here, we found that NADPH oxidase p47-phox, GLUT5, NOX4, and RAGE proteins levels
were significantly increased compared to the control. Additionally, co-administration of
dapagliflozin prevented this increase (Figure 2A,B). Immunoblotting analysis demonstrated
that SGLT2, GLUT1 and RAGE protein expressions were decreased after dapagliflozin
treatment in the diabetic animals (Figure 2C). Dapagliflozin also reduced NADPH oxidase
p67-phox and NOX4 protein levels in the diabetic LECs (Figure 2D). Based on these findings,
we suggest that dapagliflozin downregulated fructose-induced ROS through inhibiting
SGLT2 signaling.

Figure 2. Fructose enhances RAGE expression through GLUT, and dapagliflozin reverses NADPH
oxidase subunit (p67−phox) in the fructose-induced type 2 DM lens. (A,B) Representative images
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showing GLUT5− and RAGE-positive (green) and p47−phox and NOX4−positive (red) cells in the
lens with or without dapagliflozin. Quantitative data were compared to no fructose group. Cell
nuclei were counterstained in DAPI (blue). (C,D) RAGE, SGLT2, GLUT1, GLUT5, p67-phox and
NOX1−4 protein expressions in the fructose-induced type 2 DM lens were significantly decreased
by dapagliflozin. Values are presented as mean ± SEM (n = 6 for each group). Scale bar = 20 µm.
* p < 0.05 and ** p < 0.001; # p < 0.05 versus Fructose 8 W.

2.4. Metformin Reduces NADPH Oxidase Subunit Production by Abolishing SGLT2 Expression in
LECs of Fructose-Induced DM Rats

Previously, we showed that dapagliflozin reduced ROS and downregulated RAGE-
induced NADPH oxidase expression through GLUTs inactivation in the LECs. In this study,
p47-phox and GLUT5 protein levels were significantly decreased after metformin addition
(Figure 3A,B). Furthermore, metformin decreased SGLT2 and NADPH oxidase p67-phox
protein expressions, and NRF2 was not affected (Figure 3C,D). As a result, metformin
blocks SGLT2 signaling and downregulates ROS generation in the DM animals.

Figure 3. Metformin effectively reverses SGLT2-induced GLUT5 and NADPH oxidase subunit
(p47−phox) in the fructose−induced type 2 DM lens. (A,B) Representative images showing GLUT5-
positive (green) and p47−phox-positive (red) cells in the lens with or without metformin, compared
to no fructose group. Cell nuclei are counterstained with DAPI (blue). (C,D) Quantitative analyses
for p67−phox and SGLT2 after metformin was provided to the animals. Values are presented as
mean ± SEM (n = 6 per group). Scale bar = 20 µm. * p < 0.05 and ** p < 0.001; # p < 0.05 versus
Fructose 8 W.
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2.5. Resveratrol Improves SGLT2-Induced NADPH Oxidase Subunit Generation in LECs of
Fructose-Induced DM Rats

Our previous study demonstrated that dapagliflozin decreased ROS generation and
downregulated RAGE-induced NADPH oxidase expression via GLUTs inactivation. Here,
we found that resveratrol significantly lowers p47-phox and GLUT5 protein expressions in
the LECs of DM animals (Figure 4A,B). Resveratrol decreased SGLT2 protein expression,
but has no effect on NRF2 (Figure 4C,D). In consequence, resveratrol downregulates ROS
generation by inhibiting SGLT2 function in the lens of diabetic animals.

Figure 4. Resveratrol reduces fructose-induced NADPH oxidase subunit production mediated
through a SGLT2−dependent mechanism in the epithelial section of type 2 DM lens. (A,B) Repre-
sentative images for GLUT5−positive (green) and p47−phox NOX4-positive (red) cells in the lens
after resveratrol treatment, compared to no fructose group. Cell nuclei were counterstained in DAPI
(blue). (C,D) Quantitative analysis demonstrated that SGLT2 and p67−phox proteins‘ level were
significantly decreased by resveratrol treatment. Values are presented as mean ± SEM (n = 6 per
group). Scale bar = 20 µm. * p < 0.05 and ** p < 0.001; # p < 0.05 versus Fructose 8 W.

3. Materials and Methods
3.1. Chemicals and Reagents

Drugs and chemicals were obtained from Sigma-Aldrich (Sigma Chemical Co., St. Louis,
MO, USA). Primary antibodies against GLUT1, SGLT2 and RAGE were purchased from
Abcam (Abcam, Cambridge, MA; ab115730, ab3611, ab65965, and ab37296, respectively),
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NADPH oxidase 4 (NOX 4) from Novus Biologicals (NB110-58849, Englewood, CO, USA),
p67-phox from Millipore (07-502, Billerica, MA, USA), and GLUT5 from GeneTex (Long
Beach, CA, USA).

3.2. Ethics Statement

This study was reviewed and approved by the Institutional Review Board of Kaohsi-
ung Veterans General Hospital (Kaohsiung, Taiwan; IRB number: VGHKS18-CT4-22).

This prospective study is comprised of patients who underwent phacoemulsification
and intraocular lens implantation between August 2018 and September 2019 at Kaohsiung
Veterans General Hospital. Protocols follow the guidelines from Declaration of Helsinki,
approved by the hospital’s institutional review board. After giving a detailed explanation
of the surgical procedures and possible complications, all participants provided written
informed consent. All the data and specimens were collected and anonymized before
analysis. The patients were selected based on clinically confirmed nuclear grade 3 cataracts
according to the Lens Opacities Classification System III [17]. The subjects were classified
into the following 2 groups: (1) patients without DM (Group 1); (2) patients with DM
(Group 2).

3.3. Animals

Sixteen-week-old male WKY rats were obtained from the National Science Council
Animal Facility (NSCFA) (Taipei, Taiwan) and housed in the animal facility at Kaohsiung
Veterans General Hospital (VGHKS; Kaohsiung, Taiwan). NSCAF and VGHKS have
received international certification from the AAALACi. Animals entering in the VGHKS
were free of infectious organisms that are pathogenic and/or capable of interfering with
research objectives. The rats were caged individually in a light- (12-h light/12-h dark
cycle) and temperature-controlled (23–24 ◦C) room and fed with normal rat chow (Purina;
St. Louis, MO, USA) and tap water ad libitum. All animal protocols are in accordance
with the ARRIVE guidelines [24,25], approved by the Animal Research Committee and the
Institutional Review Board at Kaohsiung Veterans General Hospital. Drug treatments for
animals were conducted using a blinded method.

The animals underwent 1 week of acclimatization before being subjected to blood pres-
sure measurement for another 1 week. After a stabilization period, the rats were randomly
assigned to 5 groups, comprising 6 rats per group with the following oral administration
regime: (1) control: pure drinking water; (2) fructose: 10% fructose in drinking water
for 8 weeks; (3) dapagliflozin: 10% fructose in drinking water for 6 weeks, followed by
2-week fructose + dapagliflozin (3 mg/kg/day); (4) metformin group: 10% fructose in
drinking water for 6 weeks, followed by 2-week fructose + metformin (500 mg/kg/day);
(5) resveratrol group: 10% fructose in drinking water for 6 weeks, followed by 2-week
fructose + resveratrol (10 mg/kg/day). All rats in the experimental groups developed type
2 DM, and no incidence of heart failure or sudden death was found.

3.4. Tissue Collection

Based on the 2013 American Veterinary Medical Association (AVMA) guidelines, all
animals were euthanized using 100% CO2. Within 2–5 min after the animals died, their
lenses were removed and immediately frozen on dry ice. Tissues collected from the same
experimental groups were pooled and stored at −80 ◦C.

3.5. Measurement of ROS in Lenses from DM Patients and LECs from Type 2 DM Rats

The endogenous in vivo O2
¯ levels produced in humans with DM cataracts and

fructose-fed rats were determined by staining the anterior region of the lens capsule
with dihydroethidium (DHE; Invitrogen, Carlsbad, CA, USA). Lens epithelial cell (LEC)-
containing slices removed from the rats were embedded in OCT (Shandon Cryomatrix;
Thermo Electron Co., Pittsburgh, PA, USA), flash-frozen in a methylbutane ice-cold bath,
and placed in liquid nitrogen. Lens capsular flaps were stained with 1 µM DHE for 20 min,
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away from light, at 37 ◦C in a 5% CO2 incubator. Samples were imaged using a fluorescence
microscope and analyzed using the Zeiss LSM Image software (Carl Zeiss MicroImaging,
Jena, Germany).

3.6. Measurement of Physiological Indices

In the final stage of the study, 1–2 mL of blood was collected from the experimental
animals by cardiac puncture. Plasma glucose, direct high-density lipoprotein (dHDL), total
cholesterol (TC) and triglyceride (TG) levels were determined using a clinical chemistry
analyzer (Ortho Clinical VITROS™ 350 System, Rochester, NY, USA).

3.7. Immunoblotting Analysis

Total protein extracts were prepared by homogenizing the lenses in a lysis buffer
with protease and phosphatase inhibitor cocktails and then incubating for 1 h at 4 ◦C. The
extracted proteins (assessed by BCA protein assay; Pierce) were subjected to 7.5–10% SDS-
Tris glycine gel electrophoresis and transferred onto a polyvinylidene difluoride membrane
(GE Healthcare, Buckinghamshire, UK).

The membrane was blocked in 5% non-fat skim milk using Tris-buffered saline/Tween-
20 buffer (10 mmol/L Tris, 150 mmol/L NaCl, and 0.1% Tween-20, pH 7.4, slightly alkali),
followed by incubation in anti-p67-phox (07-502), anti-GLUT1 (ab115730), rat anti-GLUT5
(GTX12098) and human anti-GLUT5 (GTX83626) primary antibodies at 1:1000 dilutions
at 4 ◦C overnight. Peroxidase-conjugated anti-mouse or anti-rabbit secondary antibodies
(1:5000 dilution) were used. Proteins were detected using an ECL-Plus detection kit from
GE Healthcare and exposed to film. The developed films were scanned (photo scanner 4490,
Epson, Long Beach, CA, USA) and analyzed using NIH image analysis software (National
Institutes of Health, Bethesda, MD, USA).

3.8. Immunofluorescence Staining

Cryostat slices (10 µm) or the lens capsular flaps were incubated in anti-NOX4, anti-
GLUT1, anti-GLUT5, anti-RAC1 or anti-RAGE primary antibodies (1:100 dilution). After a
phosphate-buffered saline wash, sections were incubated in green-fluorescent Alexa Fluor
488- or 588-conjugated donkey anti-rabbit IgG (1:200 dilution; Invitrogen) at 25 ◦C for 2 h.
The sections were analyzed using a fluorescence microscope and Zeiss LSM Image software
(Carl Zeiss MicroImaging, DE Thüringen, Jena, Germany).

3.9. Statistical Analysis

All statistical analyses were carried out on raw data input using version 13.0, SPSS
(SPSS Inc., Chicago, IL, USA). The DM and control groups were being compared using
the non-parametric Mann-Whitney U test and the Chi-square test. One-way analysis of
variance (ANOVA) with Scheffe’s post hoc comparison was performed to distinguish
differences between groups. The p values < 0.05 were considered significant. Data represent
mean ± standard error of the mean (SEM) of 6 independent experiments, each in triplicate.
Data and statistical analysis comply with recommendations for experimental design and
analysis in pharmacology [19,26].

4. Discussion

Metabolic disease is complicated, and metabolic-related complications have a crucial
role in the growth rate of cataracts [27]. The cause of cataract development has been
attributed to uncontrolled blood glucose level [28]. Lens opacity and oxidation [29], ROS
formation, and sorbitol accumulation through AR conversion of glucose [30] have been
linked to a distinctive rise in blood glucose and lens protein glycosylation during cataract
development. Nevertheless, there has been no clear evidence to link anti-diabetic drugs
and lowered cataract risks. Therefore, finding an effective method to treat diabetic cataract
is necessary.
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The sweetness of fructose makes it an ideal part of our modern diet despite its in-
volvement in various metabolic diseases. Fructose requires fructose transporter GLUT5
for absorption in the intestine and GLUT5 is crucial for fructose metabolism, which makes
GLUT5 a potential target for treating metabolic disease [6]. GLUT5 was reported to be the
major transporter for fructose in human eyes [7]. Lim et al., observed that GLUT1 expres-
sion is prominent in the epithelial lining and in the fibrous region of both the rat and human
lens, and SGLT2 is abundant in the core membrane, epithelium, outer and inner cortex in
the rat lens [31]. Mantych et al., suggested that GLUT1 is the main transporter for glucose,
which is typically located in the blood-aqueous barrier of the lens. Additionally, GLUT1,
GLUT5 and SGLT2 are highly expressed in both DM cataracts and LECs of DM rats [8,9].
LECs play a crucial role in giving protection from oxidative stress and providing nutrient
transport across the aqueous humor, and the energy acquired from glucose metabolism is
required to maintain lens transparency. Within the lens tissue, glucose uptake is facilitated
through members of the GLUT family, or sodium-dependent through the SGLT family, or
both [32]. Chan et al., reported that SGLT2 presence in the bovine ciliary body epithelium
may shed light on glucose transport, physiology of the bovine blood-aqueous barrier and
glycemic control linked to diabetic cataract formation [33]. Previous studies demonstrated
that SGLT2 and GLUT1 expressions in LECs were significantly elevated only in diabetic
patients [20], indicating that SGLT2 and GLUT1 may be required for RAGE-induced su-
peroxide generation and may be relevant to diabetic cataract formation. We found that
SGLT2 and GLUT1 may be required for fructose-induced NADPH oxidase generation and
pathogenesis of type 2 DM cataract development. The drugs dapagliflozin, metformin
and resveratrol may have acted through suppression of SGLT2 and GLUT5 expressions,
downregulated the RAGE and NADPH oxidase and prevented ROS accumulation, leading
to protection from oxidative stress in the LECs (Figure 5).

Recently, SGLT2 inhibitors have been used to treat diabetes; however, their underlying
mechanism is not yet understood. According to Zinman et al., empagliflozin, an SGLT2 in-
hibitor, reduces the risk of cardiovascular death, death from any cause, and hospitalization
from heart failure in type 2 diabetic patients [34]. Cherney et al., reported that empagliflozin
provides renal protection for type 1 diabetic patients [35]. SGLT2 inhibitors not only lower
blood glucose but also suppress diabetic complications. Therefore, a SGLT2 inhibitor such
as dapagliflozin is a novel therapeutic option for type 2 DM cataract treatment. The bene-
ficial effects of dapagliflozin on the LECs may be mediated by downregulation of GLUT,
RAGE and NADPH oxidases, and suppressed ROS accumulation (Figure 2). Additionally,
metformin and resveratrol diminish ROS production through suppression of SGLT2 protein
expression in the type 2 DM LECs (Figures 3 and 4). We observed that dapagliflozin,
metformin and resveratrol administration for 2 weeks prevented metabolic defects induced
by fructose. Notably, the fasting glucose and triglyceride levels were significantly lower
(Table 2). On the contrary, SGLT2 inhibitors did not lower insulin resistance or improve
insulin secretion, which are the major pathological defects in type 2 DM [36]. Metformin is
widely considered to be the optimal choice for type 2 DM treatment; however, long-term
use of metformin seems to be less effective in overcoming diabetes-associated complica-
tions [37]. Resveratrol significantly improves insulin sensitivity and glucose homeostasis,
therefore it is a novel addition to diabetes and its sequelae treatments [38]. Resveratrol,
taken at a dose of 1–2 g/day, was found to improve glucose tolerance and post-meal plasma
glucose in older adults having impaired glucose tolerance (IGT) [39]. Daily resveratrol
oral supplementation for 3 months significantly reduces HbA1c, systolic blood pressure,
total cholesterol, LDL-C, fasting blood glucose in type 2 DM patients [40]. Interestingly,
Korshalm et al., demonstrated that individuals having modest insulin resistance show
beneficial effects, but healthy individuals having normal glucose homeostasis will be less
likely to be affected by resveratrol [41]. Further studies are necessary to determine the
effect of resveratrol on chronic conditions such as insulin resistance.
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Figure 5. Underlying mechanism for inhibiting SGLT2−enchanced NOX2/4-dependent oxidative
stress in the lens of type 2 DM. (A) WKY rats were categorized into four experimental groups: (1) 10%
fructose only for 6 weeks; (2) followed by oral administration of dapagliflozin (1.2 mg/kg/day);
(3) metformin (500 mg/kg/day); and (4) resveratrol (10 mg/kg/day) for 8 weeks. (B) The SGLT2
inhibitor dapagliflozin is an important fructose regulator that downregulates the SGLT2−induced ac-
tivity of AGE−RAGE−NOX2/4 and p47−phox (red line). (C,D) Fructose requires SGLT2 to increase
superoxide generation (black line); however, both metformin and resveratrol prevent superoxide
accumulation through reduction of fructose-activated SGLT2 signal transduction (red line).

Although dapagliflozin and metformin have been widely used to control DM-related
complications, metabolic diseases are still escalating at an alarming rate, prompting further
investigation into alternative therapies. However, a previous study showed that antidiabetic
drug treatment did not reduce the risk of cataract. Food-derived bioactive compounds
have been increasingly explored for their ameliorative effects against metabolic diseases.
Our research team and others have extensively examined the beneficial effects of red wine,
including its bioactive compounds such as resveratrol, in improving insulin sensitivity, and
reducing oxidative stress, enhancing GLUT4 translocation, activating sirtuin 1 (SIRT1) and
AMPK are all promising discoveries [19,42]. Furthermore, other studies found that SGLT2
inhibition by dapagliflozin concurrently enhanced renal gluconeogenesis. Theoretically,
either increased insulin action or downregulated peroxisome proliferator-activated receptor
gamma coactivator 1 alpha (PGC-1α) expression can inhibit forkhead box protein O1
(FoxO1), leading to a decrease in renal gluconeogenesis. A previous study indicated that
resveratrol treatment upregulated components in renal insulin signaling at both gene
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and protein level in diabetic rats [43]. Finally, Sun et al., demonstrated that resveratrol
significantly ameliorated dapagliflozin-induced renal gluconeogenesis by promoting the
insulin signaling pathway which subsequently inhibits nuclear translocation of FoxO1 [44].
Hyperglycemia, a consequence of diabetes, enhances the formation of advanced glycation
end products (AGEs) and senescent protein derivatives that result from the auto-oxidation
of glucose and fructose [14]. AGE–RAGE interaction directly induces the generation of ROS
via NADPH oxidases and/or other previously characterized mechanisms [16]. Furthermore,
the dietary fructose-mediated generation of AGEs and activation of RAGE contribute to
metabolic syndromes [15].

Notably, several clinical studies support the idea that resveratrol supplementation
for patients already prescribed metformin could be equally effective in managing blood
glucose and insulin, as well as systolic blood pressure [45]. Recent reports state that
dapagliflozin, metformin or resveratrol downregulate NADPH oxidase subunit p47−phox
expression via SGLT2 inactivation and ROS reduction. Based on this evidence, we suggest
that resveratrol supplementation in patients taking either metformin or dapagliflozin could
have an equally beneficial effect in managing diabetes-related complications, such as blood
glucose and SGLT2 expression improvements, as well as cataract prevention. Nevertheless,
these fascinating findings require further clinical study and validation.

5. Conclusions

In conclusion, we observed that DM rats’ LECs showed significantly increased expres-
sions for SGLT2 or GLUT5 protein, and were inhibited by co-administration of dapagliflozin,
metformin or resveratrol. This finding implies that resveratrol supplementation has im-
mense promise for treating diabetic cataracts. However, the optimal delivery route for
resveratrol supplementation requires further investigation.
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