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Supplementary Figure S1.

(A) Heat maps of different genes. (B) was GO enrichment analysis of different genes. (C) was KCNN4
protein level in stem cells and non-stem cells in HepG2 and Huh?7 cell lines. (D) was the schematic diagram
of FACS in HepG2 and Huh? cells, the relative expression of mRNA and protein of KCNN4 were shown

as blow.
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Supplementary Figure S2.

(A, B) The efficacies of knockdown of KCNN4 by siRNA were examined by gPCR(A) and western blot(B)
in HCC cells. (C, D) The efficacies of knockdown or overexpression of KCNN4 by lentiviruses were
examined by qPCR(C) and western blot(D) in HCC cells. ov-KCNN4, overexpression of KCNN4. lv-ctrl,
the control of gene overexpression. sh-KCNN4, KCNN4 interference. sh-ctrl, the control of RNA
interference. (E) The expression of stem cell transcription factors, including Sox2, Oct4, and Nanog in
HepG2 and Huh?. The liver of tumor-bearing mice was dissected and the tumor formation was observed

(F, above) The typical pictures of each group was shown (F, below). (G) In the gradient dilution model of



the NOD-SCID mouse, tumor volume(mm?) was shown.
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Supplementary Figure S3. KCNN4 enhanced the chemotherapy resistance of HCC.
Cell proliferation was detected using the CCK8 assay. HepG2 and Huh7 cells (2x10° cells/well) were

seeded in 96-well plated and treated with sorafenib and the gemcitabine in HepG2/Huh7 and the

absorbances were measured at 450 nm in 24h (A) and 48h (B), respectively. (C) Drug-induced apoptosis

was detected by flow cytometry treated with sorafenib (10umol in HepG2 and 7.5umol in Huh?) after 48h.
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Supplementary Figure S4. KCNN4 enhances metabolic fitness in LCSCs by upregulating glucose
metabolism.

Mito-stress test (A, C, E) and glycolysis test (B, D, F) were executed for OCR (Oxygen Consumption Rate)
and ECAR (Extracellular Acidification Rate) in adherent cells and stem cells. (A) adherent cells vs stem
cells. Mito-stress test. The bar charts represented basal respiration, maximal respiration, proton leak, ATP
production, and spare respiration capacity, respectively. (B) adherent cells vs stem cells. glycolysis-stress
test. The bar charts represented glycolysis, glycolytic capacity, and glycolytic reserve, respectively. (C)
ov-KCNN#4 vs lv-ctrl in HepG2 and Huh?7 cell lines. Mito-stress test. The bar charts represented basal



respiration, maximal respiration, proton leak, ATP production, and spare respiration capacity,
respectively. (D) ov-KCNN4 vs lv-ctrl in HepG2 and Huh? cell lines. glycolysis-stress test. The bar charts
represented glycolysis, glycolytic capacity, and glycolytic reserve, respectively. (E) ov-KCNN4 vs lv-ctrl
in stem cells enriched from the sphere of HepG2 and Huh? cell lines. Mito-stress test. The bar charts
represented basal respiration, maximal respiration, proton leak, ATP production, and spare respiration
capacity, respectively. (F) ov-KCNN4 vs lv-ctrl in stem cells enriched from the sphere of HepG2 and Huh?7
cell lines. glycolysis-stress test. The bar charts represented glycolysis, glycolytic capacity, and glycolytic
reserve, respectively. These data represent the mean +SD from at least three independent experiments. 2-

way Student’s t-test. * p <0.05, **p < 0.01, **p<0.001, ***p<0.0001.



Figure. S5

Gono expression of PDHAZ in LINC
oo

A.
‘Gene oxpression of ALDH1L2 in LINC Gene expression of HK1 in LIHC ‘Gone expression of HK3 in LINC PKM in LIKC
o8 1 — 5T o) 100§ T 20 T
: s H o
¢ H
1 N s{ 50«
; | T i ;
£ £ £ H £
H 82 H H H
{ o ! H or
$ ) 5| $ .
1 H I .
—_— . = = i
KCNNé-High KCNN4-Low
aroup

=

KCNNi-High  KCNN4-Low
group

Runing Envichent Scoe

KCNNa-High  KCNN4-Low
group.

Fatly Acd Metabolsm
Pr121E-05
adjust P=0.0001

KCNN4-High KCNNa-Low
group

Runring Envichmant Score

Fatty Acds Qxdaton. mitochondrial
P=7.57E-08
adust P=235E.06

KCNNé-High  KCNNA-Low
group

adjust P2

Running Enrchmant Soom

Steroid Melabaiism
59207

KCNNi-High  KCNNé-Low
group

Fary Acds Cridaton. peraxisomal
P=6.60E-
adjust P=0.0301

05605

Runring Envichmant Scor

g

$ |, mE
E L i H
H 3, e i
3 3 | § -5
3 5 5 4™ = = el i : = =
Raricin Ordarea Datasel : "Ranicin Ordered Datsset o Rark In Ordoreo Dataset Rarkin Ordrec Dstasel
g Citric Acid Cycle Serne and Thre Metabolt i
H Ghic A Op § Glycire, g s T Mtabolsm § . GL‘;,B:,;VMM,,M e cyse § Gheolysis andhcaneopenass
£, wroo 4 scPia0sss 3 L oo | B P,
i I i I
i £ £ ‘ £
] g g o g
i ; ; i
* ) Ly - WA LU W
£ o 2 . L £ . a £ l
i i H | i
5 E E E
i: i- - i
4 = o = ol o = o o R ol | =T ) o
(- ok et Dot T rones B - D
C. D. - S o —
.
Gene expression of KCNN4 in LIHC i
ﬁﬁlli
H : group § iz
§ . - s H / ER ]
i e - e
T o - = = = 5 B = = - = 2 5 = 2w =
o : : =
E Group BB KCNN4-High B KCNN4-Low
.
N T s e s ™ " s % s
061 o @ .
°
s °
=
°
S 044
=3 8
3] °
a
©
:
°
£ 3
? 024 ° °
w ° ° L
° ° °
o8 ° 8, ° &
° ° * b 1
° (]
° °
o
liciapiiaigd C
00+
2 g
= 2 h-] T .
-3 4 > o o = g ]
o @ o = > © 2 £ [ 3 3 o S =
g 5 o, 8 5 2 F 4 € . 7 5 5 , § o £ ¥ $ % 8
P S 8 P P » g 2 > 3 £ & g S 2 2 = B > < s o
2 g 2 e @ £ 5} 8 ) £ 5 £ & S ]
-] o <] = 3} c - = @ 3 =3 L] -3 [ 4 £ h o 5
fF g o & g 2 ® 4, F g @ E 3 &€ 2 £ £ g 8 3 §
1 ] ] = > 15 ) < 2 = =2 =
s x~ 8 & § ° § & &% 8 £ $§ F ¢ % % 3 &8 ¢ o & 2
§ § ~ § § 2 & o S @ § = 8 £ uw g 2 x §& §F =2 %
2 =
T 9 s = =5 Z 2 H @ 3 g Z o [ g 8
2 & 8 = 2
8 8 2 ~
~ &
-
~

Supplementary Figure S5. KCNN4 enhanced metabolic fitness by upregulating energy metabolism.

The different expressions of key enzymes were shown as (A). According to the expression of KCNN4, the
metabolism-related pathways were enriched as (B). (C) was the expression level of KCNN4 in SI-HIGH
and SI-LOW groups, respectively. (D) were the correlations between KCNN4 and stemness transcription

factors. (E) were the correlations between expression of KCNN4 and immune infiltration of 22 immune

cell types in patients with HCC.
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Supplementary Figure S6. The tissue-specific pattern of mRNA expression of KCNN4 in BioGPS

database.



