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Abstract: COVID-19 infections pose a serious global health concern so it is crucial to identify the
biomarkers for the susceptibility to and resistance against this disease that could help in a rapid risk
assessment and reliable decisions being made on patients’ treatment and their potential hospitalisa-
tion. Several studies investigated the factors associated with severe COVID-19 outcomes that can
be either environmental, population based, or genetic. It was demonstrated that the genetics of the
host plays an important role in the various immune responses and, therefore, there are different
clinical presentations of COVID-19 infection. In this study, we aimed to use variant descriptive
statistics from GWAS (Genome-Wide Association Study) and variant genomic annotations to iden-
tify metabolic pathways that are associated with a severe COVID-19 infection as well as pathways
related to resistance to COVID-19. For this purpose, we applied a custom-designed mixed linear
model implemented into custom-written software. Our analysis of more than 12.5 million SNPs
did not indicate any pathway that was significant for a severe COVID-19 infection. However, the
Allograft rejection pathway (hsa05330) was significant (p = 0.01087) for resistance to the infection.
The majority of the 27 SNP marking genes constituting the Allograft rejection pathway were located
on chromosome 6 (19 SNPs) and the remainder were mapped to chromosomes 2, 3, 10, 12, 20, and X.
This pathway comprises several immune system components crucial for the self versus non-self
recognition, but also the components of antiviral immunity. Our study demonstrated that not only
single variants are important for resistance to COVID-19, but also the cumulative impact of several
SNPs within the same pathway matters.

Keywords: KEGG pathways; allograft rejection; GWAS; COVID-19 infection; susceptibility; resistance;
genetic variants; single nucleotide polymorphism; whole genome sequencing; immunisation
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1. Introduction

COVID-19 infections pose a serious global health concern, so it remains crucial to iden-
tify the biomarkers for the susceptibility to and resistance against this disease that could
help in a rapid risk assessment and reliable decisions being made on patients’ treatment
and their potential hospitalisation. The knowledge of genomic variants that are associated
with the susceptibility to and resistance against COVID-19 infections is essential for under-
standing the metabolic pathways and regulatory factors related to different presentations
of the disease and, in consequence, for developing new drug targets [1].

Several studies investigated factors associated with severe COVID-19 outcomes that
can be either environmental, population based, or genetic. For instance, a geographic and
population variation in the disease course and outcome has demonstrated that individuals
representing Black, Hispanic, or Asian ethnicities have a higher risk of death compared
to Caucasians [2,3]. The identified risk factors of COVID-19 infection are advanced age,
male sex, and comorbidities (especially: renal disease, oncological pathologies, chronic
respiratory disease, and cardiovascular disease—excluding hypertension and dementia),
but they do not fully explain the wide spectrum of disease manifestations [2,4–6]. Moreover,
the viral load can play a role in the COVID-19 severity, as demonstrated for mortality,
especially in combination with advanced age [7,8]. On the other hand, many studies have
supported the hypothesis that there are patients who have a natural resistance to COVID-19
infection. For instance, children or adolescents were barely affected [9] and they showed
antibody responses up to four months after infection [10]. Thus, some children appear to
be able to either repel the infection without the need to strongly engage adaptive immunity
or are resistant to infection.

It was also demonstrated that the genetics of the host plays an important role in
the various immune responses and, therefore, in the different clinical presentations of
COVID-19 infection. Risk and protective variants were associated with multiple loci on
chromosomes 3, 9, 6, 12, 19, and 21 [11,12] including a segment on chromosome 9 that
defines the ABO blood groups [13], a segment on chromosome 12 that contains OAS1,
OAS2, and OAS3 [14], and an isoform p41 of CD74, which is a part of the MHC-II that
blocks the endosomal entry pathway of the virus [15]. Further significant genes were ACE2
located on chromosome X and human leukocyte antigens (HLA).

The main aim of our study was to use variant descriptive statistics from GWAS and
variant genomic annotations to identify metabolic pathways that are associated with a
severe COVID-19 infection as well as pathways related to resistance to COVID-19. For
this purpose, we applied a custom-designed mixed linear model implemented in custom-
written software.

2. Results

The raw number of SNPs amounted to 43,469,928; out of these, after filtering, 9,767,423 SNPs
remained for GWAS analysis (Figure 1). The most significant SNP from GWAS was located on
chromosome 7 (p = 7.10547× 10−9) within the intron of RAPGEF5 gene (ENSG00000136237);
however, this gene is not assigned to any KEGG pathway. In total, 12,736 SNPs were included
in the pathway model. Out of the 288 KEGG pathway effects predicted, none were signifi-
cant in the SEVERE analysis, while the Allograft rejection pathway (hsa05330) was significant
(p = 0.01087) in the RESISTANT analysis. All 27 SNPs, each representing one gene constituting
hsa05330, were significant in GWAS (Table 1, Figure 2). The majority of them were located on
chromosome 6 (19 SNPs) and the remainder were mapped to chromosomes 2, 3, 10, 12, 20, and
X. The summary of read depth quality underlying each variant in each sample is summarised
in Supplementary Figure S1. Interestingly, the comparison of p-values of all SNPs from GWAS
with p-values of the subset of SNPs included in the KEGG model showed that genic SNPs have
lower p-values than intergenic SNPs (Figure 3).



Int. J. Mol. Sci. 2022, 23, 6272 3 of 16

Figure 1. Manhattan plot (a) for 9,767,423 SNPs analysed in GWAS. SNPs significant in the Allograft
rejection pathway (hsa05330) are marked by green dots. The inside plot (b) shows the subset of
12,736 genic SNPs used for the prediction of KEGG pathway effects. The red line indicates the
threshold for genome-wide significance (p < 5 × 10−8) and the blue line for suggestive associations
(p < 1 × 10−5).

Figure 2. Additive genetic effects of 27 SNPs constituting hsa05330 KEGG pathway on the resistance
to COVID-19 infection.
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Table 1. SNPs representing genes within the Allograft rejection pathway (hsa05330).

Chromosome Position (bp) Gene ID Gene Name Mutation Genomic Annotation SNP ID Median DP SD

2 203709432 ENSG00000178562 CD28 G>A intron rs984981241 28 4.145465441

3 119551547 ENSG00000121594 CD80 G>A intron novel 26 4.063210675

3 122057921 ENSG00000114013 CD86 G>A intron rs186115804 30 5.143266314

6 29725272 ENSG00000204642 HLA-F C>T exon rs374197706 33 6.119863999

6 29827086 ENSG00000204632 HLA-G T>C intron rs538982928 33 6.636027363

6 29945505 ENSG00000206503 HLA-A C>T 3′UTR rs746262450 32 10.17326727

6 30493031 ENSG00000204592 HLA-E T>C 3′UTR rs192326720 29 5.059734473

6 31271736 ENSG00000204525 HLA-C C>T exon rs41548913 39 8.517438111

6 31356411 ENSG00000234745 HLA-B G>A exon rs151341222 43 9.575215658

6 31576590 ENSG00000232810 TNFa C>T intron rs763838774 28 4.933491701

6 32441500 ENSG00000204287 HLA-DRA T>G intron rs1338070938 35 6.726123187

6 32528966 ENSG00000198502 HLA-DRB5 C>T intron rs1168566689 39 12.87413207

6 32583693 ENSG00000196126 HLA-DRB1 T>TC intron novel 31 8.339663173

6 32643698 ENSG00000196735 HLA-DQA1 A>G Exon of a non-coding
transcript rs1459153928 36 7.155148333

6 32664633 ENSG00000179344 HLA-DQB1 C>T intron rs1184841282 36 7.686703581

6 32746600 ENSG00000237541 HLA-DQA2 GAGA>G 3′UTR novel 29 5.463038801

6 32813318 ENSG00000241106 HLA-DOB CAG>C intron novel 25 4.576624558

6 32935042 ENSG00000242574 HLA-DMB G>A intron rs779280356 25 4.040525561

6 32964115 ENSG00000204257 HLA-DMA T>C intron novel 27 4.697217326

6 33009100 ENSG00000204252 HLA-DOA G>A intron Novel 33 5.700484494

6 33078874 ENSG00000231389 HLA-DPA1 G>A intron rs146322130 28 5.622143954

6 33086775 ENSG00000223865 HLA-DPB1 CTGTT>C 3′UTR novel 31 8.032764829

10 70599302 ENSG00000180644 PRF1 G>A intron novel 31 4.807858254

10 88956063 ENSG00000026103 FAS T>C intron novel 28 4.145442918

12 68156786 ENSG00000111537 IFNG C>T intron rs745989394 28 4.229532615

20 46121566 ENSG00000101017 CD40 G>A intron novel 26 3.808906036

X 136659930 ENSG00000102245 CD40L C>T 3′UTR rs879041317 12 6.017283757

Figure 3. SNP significance of all 9,767,423 SNPs (GWAS model) and the subset of 12,736 (KEGG model).
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3. Discussion

An important property of the human immune system is natural resistance, defined as
the inability of pathogens, viruses included, to infect the host or as an ability of the host to
limit the disease burden after infection [16]. Two mechanisms of natural resistance have
been suggested [17]. The first mechanism comprises genetic variants in genes important
for entry mechanisms, especially in the receptors. The second mechanism is the rapid
elimination of the pathogen by host resistance mechanisms. As for the host’s survival, the
balance between resistance mechanisms aiming to eliminate host pathogens and tolerance
mechanisms aiming to avoid collateral damage induced by inflammation is crucial; natural
resistance is mostly related to the immune system, either to its robustness or on the genetic
level [17].

In our study, we used GWAS and custom-designed models to identify molecular
pathways related to different presentations of COVID-19 infections and to describe sig-
nificant genetic variants within these pathways. Interestingly, the comparison between
the full dataset (all SNPs analysed in GWAS) and the subset used in the estimation of
KEGG pathway effects, demonstrated that the majority of most significant p-values were
assigned to intergenic SNPs (Figure 3), which can only be used as markers for a potential
association with genes, but not as causal mutations. Moreover, although the most common
cause of such a significant association is linkage, it is not exclusive proof that an associated
SNP always points to the closest located gene as the functional cause of a phenotype (see,
e.g., [18]). It was demonstrated that SNP density across the human genome is reduced
in conserved regions [19]. However, both exonic and intronic regions are constrained to
the same degree and they contain a reduced density of SNPs in comparison to intergenic
regions [19]. Therefore, the custom-designed models for the KEGG pathways’ analysis
used in this study allowed us to consider additional aspects of the genetic background in
COVID-19 infections that were not identified in single SNP GWAS analyses.

Our analysis did not indicate any significant pathway in the case of a severe COVID-19
phenotype. However, in the case of a resistant phenotype, the Allograft rejection pathway
(hsa05330) was identified as significant, with 27 SNPs marking genes constituting this
pathway. The Allograft rejection pathway (Figure 4), associated with resistance to COVID-
19 infection, comprises several immune system components crucial for self versus non-self
recognition, but also the components of antiviral immunity [20]. Molecules involved in
this pathway play pivotal roles in many other physiological and pathological processes,
including allergies or even an anticancer response [20]. For all those processes the interplay
between at least two cells is crucial, one of which remains the immune cell. The majority
of the significant SNPs from the Allograft rejection pathway marked genes from the HLA
complex (18 SNPs on chromosome 6, Table 1) that encode proteins forming the major
histocompatibility complex (MHC), and several of them were already indicated as proteins
protective against COVID-19 infection [21].

Considering the genomic location of the 27 SNPs from the Allograft rejection path-
way (Table 1), five SNPs were identified in CD (cluster of differentiation—classification
determinant of immune cells) protein-coding genes, as depicted in the table below (Table 2).
CD40 is a member of the TNF superfamily, constitutively expressed on B cells and APC
cells [22,23]. CD40 binds its ligand CD40L, which is transiently expressed on T cells and
other non-immune cells under inflammatory conditions [24]. CD28 is expressed on T cells,
providing signals required for T cell activation and survival, and CD80 and CD86 are its lig-
ands [25–28]. The activity of CD80–CD28 complex stimulates the activation of transcription
factors NF-κB, promoting IL-2 production [22,26,29,30]. CD80 is also a ligand for cytotoxic
T-lymphocyte antigen 4 (CTLA-4, also known as CD152), which remains constitutively
expressed on most of the T cells, for example, on Tregs, in which CTLA-4 expression in-
creases upon activation [25,27,29]. CD28 competes with CTLA-4 for binding to CD80 and
CD86 [26,29,31]. Interestingly, CD80 and CD86 proteins may act as receptors for some
adenoviruses [22]. Malfunctioning CD80 molecules are also involved in some pathological
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conditions, such as lupus erythematosus. CD86 is also associated with myocarditis and
gallbladder squamous cell carcinoma [22].

Figure 4. The Allograft rejection pathway (Figure adapted from the KEGG database. Copyright:
Paula Dobosz & Wojciech Górski 2022.) with the most significant SNPs from each gene indicated. If
the molecule appears on the figure more than once, relevant SNPs have been depicted only once to
maintain the clarity of the scheme. Novel SNPs are indicated by their position in bp.

One SNP on chromosome 12 pointed out interferon IFN-gamma, which is a cytokine
produced mostly by activated T cells and NK cells and that can induce MHC expression,
which makes it an important factor in transplantation. IFN plays a dual role in COVID-19
infections, on one side aggravating the symptoms, and on the other alleviating the disease
course, depending on the disease stage and types of the interferon involved and on the
personal predispositions [31]. This occurred in some patients shown to be associated with
higher mortality [31], whereas in others poor IFN responses were associated with a more
severe disease course [32,33]. In immunosuppressed patients, IFN has a beneficial effect
and was applied as an adjuvant treatment [34]. It was shown in mice models that a lack of
IFNg led to the failure of microcirculation and necrosis of transplants, which suggested that
IFNg modulates allogenic responses and could have a protective role in the early stages of
the response to an organ allograft. On the other hand, IFNg promoted graft vessel disease
at the later stages [35]. Therefore, the effect of IFNg on an organ allograft depended on the
time after transplantation and graft type [36]. The pivotal role of IFNg in allograft rejection
has been suggested also in humans. High rates of primary and secondary rejection after
hematopoietic stem cell transplantation were reported in a cohort of eight HLA-identical
paediatric patients [37]. Already at day +3 after hematopoietic stem cell transplantation in
15 children experiencing graft rejection, the levels of IFNg were significantly higher than in
the control group, and IFNg has been suggested to be a marker of early graft rejection [38].



Int. J. Mol. Sci. 2022, 23, 6272 7 of 16

Table 2. Cluster of differentiation proteins with significant impact on the allograft rejection pathway,
identified as being significant in the current project.

Cluster of Differentiation Protein Function References

CD28

is one of the proteins expressed on T cells, providing costimulatory
signals required for T cell activation and survival; provides a potent

signal for the production of various interleukins, especially IL-6;
molecules CD80 and CD86 are its ligands; the activity of CD80–CD28

complex stimulates the activation of transcription factors NF-κB,
promoting IL-2 production

[25–29]

CD40

is a costimulatory protein, a member of the TNF superfamily,
constitutively expressed on B cells and antigen-presenting cells; CD40
binds its ligand CD40L, which is transiently expressed on T cells and
other non-immune cells under inflammatory conditions; essential in
mediating a broad variety of immune and inflammatory responses

including T cell-dependent immunoglobulin class switching, germinal
centre formation memory B cell development, to name just a few

[22,23]

CD80

is an immunoglobulin, also a ligand for cytotoxic T-lymphocyte antigen 4
(CTLA-4, also known as CD152), which remains constitutively expressed
on most of the T cells; present at APCs and their receptors present on the

T cells; present specifically on dendritic cells, activated B cells, and
macrophages, but also T cells; malfunctioning CD80 molecules are also
involved in some pathological conditions, such as lupus erythematosus

[22,25–29]

CD86

is a costimulatory protein, immunoglobulin, constitutively expressed on
dendritic cells, pancreatic Langerhans cells, macrophages, B cells
(including memory B cells), and on other antigen-presenting cells;

provides costimulatory signals crucial for T cell activation and survival;
it is also associated with myocarditis and gallbladder squamous

cell carcinoma

[22,25–29]

CD152

also known as CTLA-4 (cytotoxic T-lymphocyte-associated protein); it is
a receptor that functions as an immune checkpoint protein and

downregulates immune responses; it is constitutively expressed on
regulatory T cells but found to be upregulated in conventional T cells

after activation, being a phenomenon particularly significant in cancers,
thus, being important as a background of immunotherapy utilising

checkpoint inhibitors

[25,27,29]

Unsurprisingly, the outcome of COVID-19 has been reported to be more severe in
patients with co-existing pathologies, especially those associated with an impaired immune
system [39,40]. The complex relationship existing between the immune system compo-
nent, cancer, and COVID-19 brings about the possibility of continuing immune checkpoint
inhibitors treatment among COVID-19 positive cancer patients, as well as the use of im-
munotherapy for the treatment of severe COVID-19 infection. In fact, several attempts
have already been made, some of which are undoubtedly very promising [40–42]. It is
known now that cancer patients have an increased risk of developing severe COVID-19
infection often leading to hospitalization and intensive care [43,44]. Given the fact that
the SARS-CoV-2 virus might potentially trigger immune system over-reactivity in some
patients, T cell exhaustion has also been observed in a subset of patients. Immune check-
point inhibitors remain a useful tool used to modulate the immune reaction [43]. It is worth
emphasizing that some COVID-19 patients exhibit lymphocytopenia and suffer from T cell
exhaustion, a phenomenon very common in advanced cancer disease, which—in the case
of COVID-19 infection—may lead to viral sepsis and an increased mortality rate [39,42,43].
It has been observed that in cancer patients, especially among immunocompromised indi-
viduals, treatment with the immune checkpoint inhibitors may restore their antitumoral
immune response [42]. The use of immune checkpoint inhibitors in COVID-19 cases has
been reviewed well in [42].
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Despite the promising results, we must bear in mind the fact that severe COVID-19
might also be triggered by immune system aberrations, such as inborn errors of the inter-
feron pathways [45]. The human immune system remains extremely complex and involves
many genes and genomic elements, including those genes encoding cytokines: individu-
als that lack specific cytokines, such as interferons, or possessing gene alleles potentially
impairing immune system functioning, can be more susceptible to certain infectious dis-
eases, including COVID-19. In these people, immunotherapy should be administered with
particular caution, including cancer patients.

The immunological synapse is an important element in the Allograft rejection pathway.
The structure of the immunological synapse, i.e., the gap between the immune cell and
another cell, such as antigen-presenting cells, APC, together with its complex molecular
interactions and canonical, means the step-manner organisation has been known as “the
bull’s eye structure”, with the central complex made of MHC-TCR (major histocompatibility
complex–T cell receptor), leading to it providing the first signal [29,46–49]. The interaction
between MHC and TCR controls the specificity and accuracy of the immune response,
as the TCR genes undergo several complicated rearrangements similar to those known
from antibody genes [46,48]. Furthermore, a central element of the synapse might be a
directed secretion of soluble molecules into the synaptic cleft [46,50]. All other molecules,
such as the LFA-1-ICAM adhesion complex, or checkpoint molecules, form distal rings
and clusters around the MHC-TCR complex. The rings are required to modulate the
response by providing secondary signals since the interaction between MHC and TCR is
insufficient [46,49,51]. If no secondary signal is provided, the T cell becomes anergic or
even undergoes apoptosis [49]. Summing up, at least two signals are required to activate
a T cell: the first is an antigen recognition by the T cell receptor and MHC complex, the
second is provided by the multitude of co-stimulatory and co-inhibitory receptors and
ligands interactions, all of which are crucial in the allograft rejection pathway cell to cell
interconnections [52]. Interestingly, studies have reported the relationship between anti-
COVID-19 immunisation and acute corneal graft rejection, regardless of the vaccine or graft
type [53–56]. Moreover, acute allograft rejection after immunisation was observed in the
case of kidney and liver transplants [57]. However, a direct causative effect is hard to prove
and needs further studies.

Furthermore, two SNPs were found on chromosome 10 (Table 1). The first of those
SNPs was located within the Fas receptor (CD95), which plays an important role in the
maintenance of immune tolerance. Fas-induced apoptosis (induced by Fas–FasL interac-
tions) is involved in the cytotoxic activity of T cells and NK cells [58,59]. Studies conducted
in mice models showed that mutations in Fas or FasL that inactivated their function led to
disturbances in the immune response to infections with multiple different viruses, such
as the influenza virus [60], herpes simplex viruses, mouse hepatitis virus or, mousepox
virus [61]. Moreover, it was shown that Fas could play a role in the destruction of graft
tissue. Although mechanisms for allograft injury remain unclear, the contribution of Fas
and Fas ligand (FasL) was verified in the case of different commonly transplanted organs
(e.g., liver, lungs, kidneys) that were probably targeted by FasL-expressing cytotoxic T
lymphocytes [62]. In humans, it was shown in vivo that an increased sCD95 is related to
the rejection in liver-transplanted recipients [63,64].

The most significant SNP from GWAS, marking the RAPGEF5 gene, with an out-
standing p-value of 7.10547 × 10−9, was not assigned to any KEGG pathway. RAPGEF5
encodes Rap guanine nucleotide exchange factor 5 protein and belongs to the Ras family
of GTPases that plays an important role in cell growth, differentiation, and malignant
transformation [65]. The gene has not been associated with severe COVID infection in
previous GWAS.
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4. Material and Methods
4.1. Sample Collection

Blood samples were collected from 1235 individuals across Poland between April 2020
and April 2021. In our analysis, a subset of 1076 samples from unrelated individuals was
used. For all individuals, basic clinical data including age, gender, BMI, and comorbidities
(diabetes, hypertension, ischemic heart disease, stroke, heart failure, cancer, kidney disease,
hepatitis B, chronic obstructive pulmonary disease) were collected. For some participants,
additional data on genetic disorders, flu, tuberculosis, and measles vaccination status,
smoking habits, as well as hepatitis C infection were ascertained. Only individuals without
diagnosed severe health disorders (till the moment of sample collection), such as cancer,
were qualified for this study. Within this cohort, the SEVERE group (N = 235) was com-
posed of patients with severe, life-threatening outcomes of COVID-19 infection including
respiratory insufficiency, requiring intensive medical care and artificial ventilation, and
NEWS (National Early Warning Score) less than 5 [66]. The RESISTANT group (N = 306)
was composed of volunteers who did not contract the disease or develop any symptoms
despite being highly exposed to COVID-19. This group had multiple antibody blood-based
tests conducted to confirm the lack of anti-SARS-CoV-2 antibodies.

Detailed information about the cohort, including demographic and clinical features,
can be found in our previous paper by Kaja et al. [67].

4.2. Ethical Policy

All participants of this study provided informed consent before the collection of blood
samples and clinical data. The ethical approval was granted by the Ethics Committee of
the Central Clinical Hospital of the Ministry of Interior and Administration in Warsaw
(decisions 41/2020 from 3 April 2020 and 125/2020 from 1 July 2020). The study complied
with the 1964 Helsinki declaration and its later amendments and adhered to the highest
data security standards 140 of ISO 27001 and the General Data Protection Regulation
(GDPR) act.

4.3. Total Quality Management

The project was carried out following the Total Quality Management (TQM) method-
ology, which ensures the quality of results and analyzes the risk and possible difficulties
of the planned methodology. TQM involves defining all critical points of the procedures:
reference ranges for collected biological material, material preparation, DNA isolation,
DNA concentration and quality, genome sequencing, and quality control of the data. The
legal and ethical transparency of the entire project was ensured, including confidentiality,
integrity, and impartiality of the data.

4.4. Whole Genome Sequencing

Whole genomes of 1076 unrelated participants were sequenced in this study. Four mL
of K-EDTA peripheral blood from participants were collected according to the standardised
Quality Management System protocol. Genomic DNA was isolated from the peripheral
blood leukocytes using a QIAamp DNA Blood Mini Kit, Blood/Cell DNA Mini Kit (Syngen
Biotech, Wrocław, Poland) and Xpure Blood Kit (A&A Biotechnology, Gdańsk, Poland)
according to the manufacturers’ protocols. The concentration and purity of isolated DNA
were measured using the NanoDropTM spectrophotometer and the quality of the DNA
was evaluated using gel electrophoresis. The sequencing library was prepared by Macrogen
Europe (Amsterdam, The Netherlands) using TruSeq DNA PCR-free kit (Illumina Inc.,
San Diego, CA, USA) and 550 bp inserts. The quality of DNA libraries was measured
using 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA, USA. The Whole Genome
Sequencing (WGS) was performed on the Illumina NovaSeq 6000 platform using 150 bp
paired-end reads, yielding a mean depth of coverage of 35.26X in the cohort.
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4.5. Pre-Processing of Whole Genome Sequence Data

The quality of sequenced reads was assessed using FastQC v0.11.7 (github.com/s-
andrews/FastQC) and reads were subsequently mapped to the GRCh38 human reference
genome using Speedseq framework v.0.1.2 [68], encompassing alignment with BWA-MEM
0.7.10 [69], using SAMBLASTER v0.1.22 [70] duplicate removal, and Sambamba v0.5.9 [71]
for sorting and indexing. Mapping coverage was calculated for reads with MQ > 0 using
Mosdepth v0.2.4 [71]. Single nucleotide variants in the nuclear genome were detected using
DeepVariant v0.8.0 [72] and jointly genotyped with GLnexus v1.2.6-0-g4d057dc [73]. Next,
multiallelic variant calls were decomposed into monoallelic and normalised using BCFtools
v1.9 [74]. The raw SNP-set was edited by excluding SNPs that did not meet the following
criteria: SNP call rate > 95%, p-value for HWE test > 0.0001, Minor Allele Frequency > 0.001,
and being biallelic. Filtering was performed using PLINK 1.9 [75].

4.6. Phenotype Encoding

The original classification of the infection outcome was divided into five categories:
control, resistant, benign, mild, and severe. However, in GWAS, binary phenotypes were
defined. For the analysis of the resistance to COVID-19 infection (hereafter termed RE-
SISTANT analysis) the resistant group was coded as “1”, the control group was removed
from the analysis, and all the other groups were coded as “0”. For the analysis of the
susceptibility to severe COVID-19 infection (hereafter termed SEVERE analysis) the severe
group was coded as “1”, the control group was removed from the analysis, and all the other
groups were coded as “0”.

4.7. Genome-Wide Association Study

The mixed linear model, simultaneously fitting effects of all 9,767,423 SNPs for the
1076 individuals, was applied for GWAS. In this model the genetic similarity between
individuals was partitioned into a component that is due to the variation in SNP genotypes
among patients and a “rest” component, that was not assessed by SNPs and thus represents
a pure polygenic part of the total phenotypic variation. The model is given by

y = µ + Xβ + Z1u + Z2a + e, (1)

where y (1076) represents a vector of binary phenotypes representing the SEVERE or the
RESISTANT phenotype, µ (1076) is a general mean, β (3) is a vector of fixed effects repre-
sented by sex and age at data sampling with a corresponding design matrix X (1076 × 3),
u (1076) is a vector of random additive polygenic effects of individuals assessed by the
variation in SNP genotypes, with a corresponding design matrix Z1 (1076 × 9,767,423),
while a (1076) is a vector of the rest component of random additive polygenic variation
among individuals that were not assessed by SNPs, with a corresponding design matrix
Z2 (1076 × 1076), e (1076) is a vector of residuals with e ∼ N(0, Iσ̂2

e ), where I is an identity
matrix and σ̂2

e represents the residual variance. The additive genetic covariance between
patients (A) was calculated based on their kinship coefficients defining a ∼ N(0, Aσ̂2

a ) as
well as on the similarity of patients’ SNP genotypes—u ∼ N(0, Gσ̂2

a ), where G is given by

G =
MMT

2 ∑
N∗SNP
i=1 piqi

, (2)

where Mij ∈ {2− 2pi, 1− 2pi,−2pi}, respectively, stand for homozygous, heterozygous,
and alternative homozygous genotypes at ith SNP of jth individual, pi/qi represent fre-
quency of the reference/alternative allele for ith SNP, and N∗SNP is a total number of SNPs
considered in the model (here, 9,767,423).

In the next step the additive effects of particular SNPs (v) were calculated based on
patient SNP additive component (u) using the back-solve method proposed by [76]
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v =

((
1− k
N∗SNP

)−1
+

1
k

MA−1MT

)−1
1
k

MA−1û, (3)

where k is a tuning parameter, here k = 0.2. The significance of ith SNP (vi) was assessed by
the Wald test: vi

σ̂
2

a

, and the resulting nominal p-values were transformed to False Discovery

Rates to account for the multiple testing. The above GWAS model was implemented by the
GTCA software [76], while the back-solving of SNP effects and hypotheses testing were
conducted based on custom-written scripts in R [77] and Python.

4.8. Estimation of KEGG Pathway Effects

SNPs were annotated to genes and KEGG pathways using David software [77]. The
downstream analysis was carried out separately for RESISTANT and SEVERE phenotypes.
In this context of statistical modelling, as compared to GWAS, the goal is to estimate the
joint effects of multiple genes (here represented by SNPs) acting functionally together
within a metabolic pathway. Individual effects of many of the genes would have been
disregarded in a conventional GWAS as nonsignificant, but they may play a role in a joint
metabolic response to infection.

The estimation of KEGG pathway effects was based on the following mixed lin-
ear model

|v| = µ + Wt + ε, (4)

where, |v| (12,736) is the vector of absolute values of SNP effects estimated from GWAS
that were mapped to genes; µ (12,736) is the general mean; t (288) is the random ef-
fect KEGG pathway effect with a pre-imposed normal distribution defined by N

(
0, Vσ2

t
)
;

W (12,736 × 288) is the corresponding incidence matrix for t assigning SNPs to KEGG
pathways; ε (12,736) is a vector of residuals distributed as N

(
0, Iσ2

ε

)
. The covariance matrix

between KEGG pathways (V) was expressed by the Jaccard similarity coefficient J(i, j) = K
N ,

where K represents the number of genes shared between KEGG i and j, while N represents
the total number of genes involved in KEGG i and j. Variance components were assumed
as known, amounting to σ2

t = 0.3σ2
y and σ2

e = 1− σ2
y . Note that to avoid confounding,

within each gene, only one SNP with the highest effect from GWAS was selected for the
analysis. The mixed model equations (Henderson C.R. 1984 University of Guelph) were
used to obtain solutions for µ and tµ̂

t̂

 =

[
1TR−11 1TR−1W
WR−11 WTR−1W + G−1

∗

]−1[
1TR−1|v|

WTR−1|v|

]
, where R = Iσ̂

2

ε and G∗ = Vσ̂
2

t . (5)

To maximise the computational performance of the estimation (µ̂) and prediction (t̂)
process, a custom Python program implementing the NumPy library was used [78]. Since
all calculations were carried out on a high-performance server, the NumPy library was also
used to set the array indexing and ordering, which further improved the computing time

as compared to a native Python application. Each element of t̂ was assessed for significance
(H0 : ti ≤ 0 vs. H1 : ti > 0) by calculating the probability of obtaining a more extreme
value using the N

(
0, σ2

t
)

density function.

5. Conclusions

The GWAS studies provide a reliable method to profile patients susceptible to a severe
course of COVID-19 by, for instance, the identification of putative genes associated with
COVID-19 severity [11,79]. Moreover, the Next-Generation Sequencing (NGS) evaluations
provided a full characterization of the entire genome of SARS-CoV-2, and nowadays it is
used not only for the discovery of novel molecular variants of this virus, but also to detect
novel emerging strains that might pose a threat to public health. The identification of new



Int. J. Mol. Sci. 2022, 23, 6272 12 of 16

mutations in the genome of the SARS-CoV-2 virus is also crucial for the development of
novel vaccines [80].

Here, we used GWAS analysis to identify metabolic pathways that are associated with
a severe COVID-19 infection as well as pathways related to resistance to COVID-19. The
main finding of this study were:

(1) the Allograft rejection pathway (hsa05330) was significant for the resistance to the
COVID-19 infection;

(2) 27 SNPs marking genes constituting the Allograft rejection pathway, and the majority
of these were located on chromosome 6 (19 SNPs), while the remainder were mapped
to chromosomes 2, 3, 10, 12, 20, and X.

(3) the Allograft rejection pathway comprises several immune system components crucial
for the self versus non-self recognition, and also the components of antiviral immunity;

(4) no significant metabolic pathway was indicated in the case of susceptibility to COVID-
19 and its severe course.

Our study showed that not only are single variants important, but also the cumulative
impact of several SNPs within the same pathway seems to matter in the case of severe
COVID-19 disease. This evidence supports the notion of a multifactorial background
of a disease course. Moreover, as previously indicated by us and others, accumulating
evidence suggests inborn errors of the immune system components, especially IFN and
TNF superfamily members, are crucial when it comes to the COVID-19 severe course.
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