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Abstract: Platelets play a significant role in hemostasis and perform essential immune functions, evi-
denced by the extensive repertoire of antimicrobial molecules. Currently, there is no clear description
of the presence of azurocidin in human platelets. Azurocidin is a 37 kDa cationic protein abundant in
neutrophils, with microbicidal, opsonizing, and vascular permeability-inducing activity. Therefore,
this work aimed to characterize the content, secretion, translation, and functions of azurocidin in
platelets. Our results show the presence of azurocidin mRNA and protein in α-granules of platelet
and megakaryoblasts, and stimulation with thrombin, ADP, and LPS leads to the secretion of free
azurocidin as well as within extracellular vesicles. In addition, platelets can translate azurocidin
in a basal or thrombin-induced manner. Finally, we found that the addition of low concentrations
of azurocidin prevents platelet aggregation and activation. In conclusion, we demonstrate that
platelets contain, secrete, and translate azurocidin, and this protein may have important implications
for hemostasis.
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1. Introduction

Platelets are small, disk-shaped, anucleated cells and the most abundant in blood
after erythrocytes. The main structural elements are the plasma membrane, the open
cannular system (OCS), a dense tubular system (DTS), a spectrin-based membrane skeleton,
and an actin-based cytoskeleton network. These cells also present a peripheral band of
microtubules and various organelles, such as α-granule, dense granules, peroxisomes,
lysosomes, and mitochondria. Moreover, several recent studies have reported that they
exert a pivotal role in several processes, from primary hemostasis to innate immunity [1].
Once released from their megakaryocytic precursors located in bone marrow, platelets
enter the bloodstream and circulate for 8 to 10 days. Despite lacking a nucleus, platelets
contain stable messenger RNA transcripts (mRNAs) and the translation machinery for
protein synthesis inherited from their cellular precursors [1–3].

The primary described function of platelets is in hemostasis; in this process, platelets
detect vascular damage by recognizing components of the subendothelium, such as colla-
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gen, von Willebrand factor, and extracellular matrix proteins, through glycoproteins present
on their surface. Platelet activation forms a hemostatic plug caused by their aggregation
and fibrin deposits [4,5]. As part of their participation in the innate immune response,
platelets contain molecules with antimicrobial activity, such as kinocidins; CXCL4, CXCL7,
and CCL5, and cationic host defense peptides (CHDPs); human neutrophil peptide (HNP)
1, human beta-defensins (HBD) 1–3, and cathelicidin LL-37. Different stimuli such as
lipopolysaccharide (LPS), Adenosine diphosphate (ADP), and mainly thrombin induce
the secretion of microbicidal molecules from platelets [6]. A clear example of a platelet
molecule with microbicidal action is CXCL4 (PF4, platelet factor 4), a very abundant protein
in platelet granule-α and one of its main secretion products; CXCL4 has a broad spectrum
of antimicrobial action, including on bacteria as E. coli, S. aureus, and S. typhimurium; fungus
as C. albicans, as well as the antiviral response against human immunodeficiency virus
(HIV) and influenza A virus (IAV) [6,7]. In addition to the above, it has been described
that those molecules with antimicrobial activity can induce [8,9] or inhibit [10] platelet
aggregation, increasing the evidence of the functional link between hemostasis and platelet
immune response.

Despite recent advances in the description of antimicrobial molecules in platelets,
their totality is not yet known, and such is the case of azurocidin (AZU1) or HBP (heparin-
binding protein), a 37 kDa protein, so-called because of its localization and abundance
in the azurophilic and secretory granules of neutrophils [11,12]. Azurocidin is vital in
inducing edema and vascular permeability; likewise, azurocidin is microbicidal, opsoniz-
ing, chemotactic, and activates monocytes and macrophages [13–16]. Serial analysis of
gene expression (SAGE) has reported the presence of the mRNA for azurocidin in human
umbilical cord cell-derived megakaryoblasts [17] and the protein in ADP-activated human
platelet-derived extracellular vesicles (pEVs) from the proteomic analysis [18]. However,
information about azurocidin in human platelets is still incomplete. Therefore, this re-
search aimed to demonstrate the presence, location, secretion, translation, and functions of
azurocidin in human platelets.

2. Results
2.1. Platelets and Megakaryoblasts Contain Azurocidin mRNA and Protein

Human platelets were purified as indicated in the materials and methods, and purity
was assessed by microscopy and flow cytometry using a mAb directed against CD41, which
defines platelet lineage. We used the mAb directed against CD11b (present on leukocytes)
to determine the degree of purity. Figure 1A shows that CD41+ platelets lack the presence
of contaminating leukocytes and that these cells contain intracellular azurocidin. Following
RNA extraction and using RT-PCR, the presence of the azurocidin transcript was identified
(Figure 1B). Finally, using mAbs directed against CD41, CD62P (stored in the α-granules),
and azurocidin, by confocal microscopy, azurocidin was shown to localize to the α-granules
of platelets (Figure 1C).

Like platelets, megakaryoblasts contain azurocidin in alpha granules (Figure 2C).
Using the same experimental tools, we found mRNA (Figure 2A) and azurocidin protein
(Figure 2B) in megakaryoblasts. Co-localization analysis between CD62P and azurocidin
indicates that Meg-01 cells have a correlation value of 0.698 ± 0.1, while platelets of
0.813 ± 0.08, considering that the maximum value of the correlation is 1.0. These results
indicate that azurocidin is mainly stored in the α-granules of platelets (Figure 2D).
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Figure 1. Human platelets express azurocidin mRNA, and the protein is localized in the α−granules. 
(A) flow cytometry analysis of platelets purified from peripheral blood of healthy donors. Surface 
staining with CD41 was used as a lineage marker and CD11b to exclude leukocyte contamination. 
Azurocidin expression comes from a prior selection of the CD41+ population, and the dark gray 
histogram represents intracellular staining with a mAb specific for azurocidin; the light gray 
histogram indicates staining with the isotype control mAb. (B) RT-PCR amplicons of azurocidin in 
platelets (P) and polymorphonuclear leukocytes (PMN) resolved on 2% agarose gels, and β-actin 
expression was used as housekeeping control. Both (A,B) data are representative of five 
independent experiments (C). Confocal microscopy of purified platelets stained intracellularly with 
mAbs against CD41 (blue), CD62P (green), and azurocidin (red). The scale bar equals 2 µm 
(Representative images of three independent assays). 

Figure 1. Human platelets express azurocidin mRNA, and the protein is localized in the α−granules.
(A) flow cytometry analysis of platelets purified from peripheral blood of healthy donors. Surface
staining with CD41 was used as a lineage marker and CD11b to exclude leukocyte contamination.
Azurocidin expression comes from a prior selection of the CD41+ population, and the dark gray
histogram represents intracellular staining with a mAb specific for azurocidin; the light gray his-
togram indicates staining with the isotype control mAb. (B) RT-PCR amplicons of azurocidin in
platelets (P) and polymorphonuclear leukocytes (PMN) resolved on 2% agarose gels, and β-actin
expression was used as housekeeping control. Both (A,B) data are representative of five independent
experiments (C). Confocal microscopy of purified platelets stained intracellularly with mAbs against
CD41 (blue), CD62P (green), and azurocidin (red). The scale bar equals 2 µm (Representative images
of three independent assays).

2.2. Platelets and Megakaryoblasts Secrete Azurocidin Free and within EVs

Considering the found localization of azurocidin in the α-granule of platelets and
Meg-01 cells, the ability of these cells to secrete this protein with stimuli that trigger granule
secretion, such as thrombin, ADP, and lipopolysaccharide, to benefit its baseline condition
of non-activation an apyrase treatment condition was used, and subsequently evaluated
by ELISA. Our results show that both cell types can secrete azurocidin in response to
stimulation, exhibiting different values according to the agonist employed (Figure 3A).
Azurocidin secretion by both cell types was significantly higher in the presence of thrombin.
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Figure 2. Meg−01 cells express azurocidin. (A) Intracellular staining for azurocidin was performed 
in the Meg-01 cell line using a specific mAb and analyzed by flow cytometry. In the figure, it is 
depicted in a dark gray histogram, while the light gray histogram indicates staining with the isotype 
control mAb. (B) Total RNA from Meg-01 cell cultures was extracted and analyzed for azurocidin 
expression by RT-PCR, amplicons of the expected size (228 bp) from cell line (M) and peripheral 
blood polymorphonuclear leukocytes (PMN) were resolved on 2% agarose gels, β−actin expression 
was used as housekeeping control. Both (A,B) data are representative of five independent 
experiments. (C) Confocal microscopy of Meg-01 cells, stained intracellularly with mAbs against 
CD41 (blue), CD62P (green), and azurocidin (red). Scale bar equals 100 µm (representative images 
of 3 independent assays). (D) The graphs show the averages ± SD of the Pearson correlation 
coefficient (PCC) value obtained for each image after background correction in the Regions of 
Interest (ROI) in five selected areas per slice of the co-localization visualized between CD62P and 
Azurocidin from 3 independent assays and analyzed with the Coloc-2 co-localization plug-in of FIJI. 

  

Figure 2. Meg−01 cells express azurocidin. (A) Intracellular staining for azurocidin was performed
in the Meg-01 cell line using a specific mAb and analyzed by flow cytometry. In the figure, it is
depicted in a dark gray histogram, while the light gray histogram indicates staining with the isotype
control mAb. (B) Total RNA from Meg-01 cell cultures was extracted and analyzed for azurocidin
expression by RT-PCR, amplicons of the expected size (228 bp) from cell line (M) and peripheral blood
polymorphonuclear leukocytes (PMN) were resolved on 2% agarose gels, β−actin expression was
used as housekeeping control. Both (A,B) data are representative of five independent experiments.
(C) Confocal microscopy of Meg-01 cells, stained intracellularly with mAbs against CD41 (blue),
CD62P (green), and azurocidin (red). Scale bar equals 100 µm (representative images of 3 independent
assays). (D) The graphs show the averages ± SD of the Pearson correlation coefficient (PCC) value
obtained for each image after background correction in the Regions of Interest (ROI) in five selected
areas per slice of the co-localization visualized between CD62P and Azurocidin from 3 independent
assays and analyzed with the Coloc-2 co-localization plug-in of FIJI.
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U/mL Apyrase at 37 °C for 30 min, and azurocidin secretion was quantified by ELISA. (B) 2 × 109 
platelets were treated with 1U thrombin, or in the absence of thrombin afterward, platelet-derived 
extracellular vesicles (pEVs) were obtained as indicated in materials and methods (Section 4.7) and 
characterized by transmission electron microscopy (TEM), a representative micrograph of pEVs is 
shown in the figure (top). Moreover, the proteins were used to perform a Western blot in search of 
characteristic markers of EVs, present in platelets treated with thrombin (Plt + Thr) or untreated (Plt 
W/Thr) and in EVs derived from platelets under basal conditions (bpEVs) or treated with thrombin 
(tpEVs). (C) Proteins derived from bpEVs and tpEVs were used to detect the presence of azurocidin 
by ELISA. (D) The supernatant of 2 × 109 thrombin-treated platelets (tSup) for 30 min, or without 
treatment (bSup), from which bpEVs and tpEVs were extracted by ultracentrifugation, as well as 
supernatants without pEVs (Sup-bpEV and Sup-tpEV) were obtained. Azurocidin concentration 
was measured by ELISA in all conditions. The graphs represent the mean ± standard deviation of 5 
(A), 4 (C), or 2 (D) independent experiments in the figure. Statistical significance was determined 
by Dunn Sidak multiple comparison test and is represented as * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001. 
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amount of azurocidin decreases from 0.5 h, and most of its maintenance depends on 
constitutive translation observed from 0.5 h onwards (Figure 4B). Interestingly, treatment 
with thrombin significantly increases the amount of azurocidin concerning the basal 
condition after 0.5 h of thrombin administration and maintains this effect subsequently, 
indicating a rapid and inducible translation by this agonist since treatment with 
puromycin decreases this activity (Figure 5B). The results obtained lead us to conclude 
that platelets translate azurocidin constitutive and inducibly at early times by thrombin 
stimulation. As part of these assays, platelet viability was assessed under all conditions 
and at all time points by incorporating trypan blue (data not shown). 

Figure 3. Platelets secrete azurocidin free and within EVs. (A) Stimulated 1 ×107 peripheral blood
platelets (top) and 1× 106 Meg-01 cells (bottom) with 1 U thrombin, 5 µM ADP, 1µg LPS, or 0.25 U/mL
Apyrase at 37 ◦C for 30 min, and azurocidin secretion was quantified by ELISA. (B) 2 × 109 platelets
were treated with 1 U thrombin, or in the absence of thrombin afterward, platelet-derived extracellular
vesicles (pEVs) were obtained as indicated in materials and methods (Section 4.7) and characterized
by transmission electron microscopy (TEM), a representative micrograph of pEVs is shown in the
figure (top). Moreover, the proteins were used to perform a Western blot in search of characteristic
markers of EVs, present in platelets treated with thrombin (Plt + Thr) or untreated (Plt W/Thr) and
in EVs derived from platelets under basal conditions (bpEVs) or treated with thrombin (tpEVs).
(C) Proteins derived from bpEVs and tpEVs were used to detect the presence of azurocidin by ELISA.
(D) The supernatant of 2 × 109 thrombin-treated platelets (tSup) for 30 min, or without treatment
(bSup), from which bpEVs and tpEVs were extracted by ultracentrifugation, as well as supernatants
without pEVs (Sup-bpEV and Sup-tpEV) were obtained. Azurocidin concentration was measured
by ELISA in all conditions. The graphs represent the mean ± standard deviation of 5 (A), 4 (C), or
2 (D) independent experiments in the figure. Statistical significance was determined by Dunn Sidak
multiple comparison test and is represented as * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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On the other hand, platelets are known to be one of the primary sources of EVs in
blood [19,20], and the presence of azurocidin in pEVs has been reported in proteomic analy-
ses [18]. Therefore, we decided to test this finding by purifying pEVs derived from thrombin
treatment (tpEVs) or basal conditions (bpEVs) for 30 min. Figure 3B (top) shows a micro-
graph obtained by transmission electron microscopy (TEM) of the pEVs obtained and the
characteristic CD9 and HSP90 markers of EVs (Figure 3B, bottom). The proteins obtained
from the pEVs were used to determine the presence of azurocidin by ELISA. The results
show that bpEVs and tpEVs contain similar azurocidin concentrations (32.8 ± 10.5 pg/mL
vs. 28.5 ± 13.4 pg/mL) (Figure 3C), demonstrating that platelets release azurocidin-
containing EVs under both basal and thrombin-activated conditions.

To determine the amount of azurocidin free or within pEVs, the total supernatant
obtained from platelets stimulated with thrombin (tSup) or without stimulation (bSup)
for 30 min was divided into two parts. One to obtain EVs by ultracentrifugation, and
the other to obtain EVs-depleted supernatants. Azurocidin concentration was measured
in EVs, and EVs-depleted supernatants separately. The results indicated that azurocidin
is basally released from platelets (432.4 ± 80.53 pg/mL), but stimulation with thrombin
enhances azurocidin secretion (679.7 ± 4.8 pg/mL). Interestingly, azurocidin concentration
in bSup was comparable to that in bpEVs (432.4 ± 80.53 vs. 390.4 ± 15.2 pg/mL), and a
low concentration was detected in bpEVs-depleted bSup (Sup-bpEVs) (26.94 ± 5.4 pg/mL),
suggesting that most of the azuricidin secreted by platelets under basal conditions are
found in EVs. The azurocidin concentration in the supernatant of thrombin-stimulated
platelets was distributed in tpEVs (360.7 ± 14.7 pg/mL) and in the supernatant depleted
from pEVs (Sup-tpEVs) (274.1 ± 21.53 pg/mL), suggesting that thrombin stimulation leads
to the secretion of free azurocidin as in tpEVs (Figure 3D). In conclusion, our results indicate
that human platelets secrete free azurocidin as in EVs.

2.3. Platelets Translate Azurocidin

Subsequently, we compared the amount of azurocidin mRNA in platelets and Meg-01
cells by qRT-PCR and found that platelets have, on average, 20-fold more of this transcript
by normalizing its expression with the actin gene (Figure 4A). Therefore, we wondered
whether peripheral blood platelets require protein translation to produce azurocidin. For
this purpose, unstimulated or thrombin-stimulated platelets were treated with the transla-
tion inhibitor puromycin, and the total amount of azurocidin (secreted and soluble) was
assessed at 0, 0.5, 1, 3, 6, and 8 h by ELISA. The results show that the amount of azurocidin
decreases from 0.5 h, and most of its maintenance depends on constitutive translation
observed from 0.5 h onwards (Figure 4B). Interestingly, treatment with thrombin signif-
icantly increases the amount of azurocidin concerning the basal condition after 0.5 h of
thrombin administration and maintains this effect subsequently, indicating a rapid and
inducible translation by this agonist since treatment with puromycin decreases this activity
(Figure 5B). The results obtained lead us to conclude that platelets translate azurocidin
constitutive and inducibly at early times by thrombin stimulation. As part of these assays,
platelet viability was assessed under all conditions and at all time points by incorporating
trypan blue (data not shown).

2.4. Azurocidin Inhibits Platelet Aggregation and Activation

As mentioned earlier, some microbicidal molecules present in platelets can modulate
platelet activation. For this reason, we evaluated the effect of azurocidin on this biological
function. Our findings show that different concentrations of azurocidin (150–1200 pg/mL) do
not induce aggregation of purified platelets (data not shown). However, when pretreated (30 s
before) with these same concentrations and stimulated with thrombin, concentration-dependent
platelet aggregation is significantly inhibited (Figure 5A). Similarly, pretreatment with azurocidin
(1200 pg/mL) inhibits aggregation of ADP-stimulated platelet-rich plasma (PRP) over time,
with the most significant effect observed at 5 min (Figure 5B). Finally, we found that azurocidin
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also inhibits the expression of platelet activation molecules CD62P and PAC-1 (Figure 5C). The
above results suggest a new role of azurocidin in regulating hemostasis.
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Statistical significance was determined by Dunn Sidak multiple comparison test (A) and 2-way 
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Figure 4. Platelets translate azurocidin. (A) Total RNA from Meg-01 cell line and peripheral blood
platelets was extracted to quantify azurocidin expression by qRT-PCR. Graphs show the average
expression values, calculated using the 2−∆∆Ct method and normalized for β-actin expression.
Data are representative of three independent experiments. (B) 50 × 106 washed platelets from
peripheral blood were treated with puromycin, and 0.5 h later received thrombin stimulation (the
arrow indicates the time at which the treatments were added). Platelets were not stimulated with
thrombin in the control condition, as indicated in the figure. Subsequently, we obtained total protein
(cell and supernatant) at different times and quantified the amount of azurocidin by ELISA. In the
figure, the graphs represent the mean± standard deviation of 3 (A) or 4 (B) independent experiments.
Statistical significance was determined by Dunn Sidak multiple comparison test (A) and 2-way
ANOVA with repeated measures (B) and is represented as * p < 0.05, ** p < 0.01.
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Figure 5. Inhibition of platelet aggregation and activation mediated by azurocidin. (A) Purified
platelets were stimulated with 2 U of thrombin or pretreated (30 s before) with different concentrations
of azurocidin, and platelet aggregation was subsequently evaluated. The figure shows the percentage
of aggregation concerning thrombin treatment (100%). (B) The figure represents platelet aggregation
over time of platelet-rich plasma (PRP) treated with 2 µM ADP or with the addition of 1200 pg/mL
azurocidin. (A,B) represent the mean ± standard deviation of 4 independent experiments. Statistical
significance was determined by a Dunnett’s (A) and Sidak’s (B) multiple comparison test, and is
represented as ** p < 0.01, *** p < 0.001, **** p < 0.0001. (C) Representative dot plots of 3 independent
experiments for surface expression of PAC-1 (upper) and CD62P (lower) in platelets that received the
treatments indicated in the figure. The tests are the result of a previous selection of CD41+ platelets.
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3. Discussion

Platelets are the smallest circulating cells primarily involved in hemostasis but have
gained interest due to their participation in divergent functions, including the immune
response. In innate host defense, platelets produce antimicrobial and chemoattractant me-
diators [6,21]. Nevertheless, the presence of azurocidin protein in platelets and megakary-
oblasts had not been fully characterized.

Our results confirm the presence of azurocidin mRNA in megakaryoblastic and pe-
ripheral blood platelets, suggesting that platelets could acquire this transcript from their
megakaryocyte precursor [22]. We subsequently confirmed the expression of azurocidin
protein, within the α-granule, of both platelets and Meg-01 cells, in the latter also in an
extra-granular manner. In addition to azurocidin, it is now known that α-granules contain a
variety of molecules with microbicidal activity, such as Basic Platelet Protein (PBP), CXCL4,
CCL5, and HNP-1 (defensin-α1) [6]. Recently, it has been shown that megakaryocytes
contain and transfer defensin-α1 to nascent platelets, although they can also acquire it from
plasma [23]. It would be relevant to study whether this acquisition system also occurs for
platelet azurocidin.

After knowing the presence of azurocidin in the α-granules of platelets and megakary-
oblasts, we demonstrated that the stimuli leading to degranulation (thrombin, LPS, and
ADP) lead to azurocidin secretion, at a time of 30 min, in addition, we corroborated the
presence of azurocidin inside and apparently also bonded at the surface de las tpEVs and
bpEVs. Our previous demonstrations open new possibilities to investigate the microbicidal
function of pEVs, as has been described for neutrophil-derived EVs, which are rich in
MPO (myeloperoxidase) and lactoferrin being able to inhibit the growth of S. aureus [24].
On the other hand, EVs derived from neutrophils stimulated with A. fumigatus increase
their azurocidin content, and the expression of this molecule from transfection inside A.
fumigatus reduces their growth [25]. However, the function that platelet azurocidin might
perform is still unknown.

In addition to releasing azurocidin, our results show that platelets constitutively trans-
late this protein, such that after 1 h, the azurocidin produced by platelets derives entirely
from translation. Contraction of basal translation has also been reported to maintain plas-
minogen activator inhibitor (PAI-1), reaching its highest production in platelets at 3 h
in vitro [26]. Similarly, other abundant platelet proteins such as myosin, actin, glycopro-
teins (GP) Ib, IIb/IIIa, fibrinogen, and thrombospondin also show constitutive de novo
synthesis [27,28]. On the other hand, we also found that platelets can perform inducible
translation of azurocidin, reaching its highest concentration at 30 min after thrombin stimu-
lation, which is interesting because reports on activation-inducible translation in platelets
have shown increased synthesis at 6 h for PAI-1 [26], and 18 h for IL-1β [29] and proteins
that regulate cytoskeleton and motility [30]. We do not know the mechanism of this finding,
and we suppose that some platelet mRNAs are translated at a different rate from each
other, probably some more rapidly, which could depend on their access to ribosomes and
the subsequent formation of polysomes [29,30]. The physiological impact of azurocidin
translation in peripheral blood platelets is still unknown, but it is known that the treatment
of platelets with translation inhibitors affects their ability to aggregate [31].

On the other hand, we found that azurocidin inhibits the induced aggregation of
both washed platelets and platelets in PRP in a concentration-dependent manner and
reduces the expression of the activation proteins CD62P and PAC-1. It has been previously
published those other molecules with microbicidal activity, HNP-1, and LL-37, induce
platelet aggregation by binding to their receptors on these cells, which correspond to GP
IIb/IIIa and FPR2/ALX, respectively [8,9]. Nevertheless, the treatment of platelets with
lactoferrin or fragments derived from it inhibits ADP-induced platelet aggregation due to
recognition of the lactoferrin receptor, a 105 KDa protein [10,32]. The azurocidin receptor is
so far unknown [13], although an interaction between azurocidin with CR3 (CD11b/CD18)
may occur [33]. Other authors have shown that the effects of azurocidin on vascular
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permeability depend on its cationic surface rather than receptor recognition [16]. Therefore,
it is essential to determine how azurocidin mediates its inhibitory effects on platelets.

4. Materials and Methods
4.1. Purification of Platelets from Peripheral Blood

The blood obtained for the development of this study came from clinically healthy
donors, without the use of aspirin or drugs that could affect platelet function, at least
two weeks before sample collection. Blood was collected from the antecubital vein using
Vacutainer tubes with ACD (BD Biosciences, Franklin Lakes, NJ, USA). PRP is obtained
by centrifuging the blood at 110× g for 15 min. The platelet purification was performed
using CGS-EDTA buffer (1.29 mM sodium citrate, 3.12 mM citric acid, 4.99 mM ethylene-
diaminetetraacetic acid, pH 6.5) at a 1:1 ratio (v/v), and centrifuged at 110× g for 15 min.
Subsequently, the supernatant was centrifuged at 480× g (TX-150 rotor, radius; 144 mm,
Thermo Fisher Scientific, Waltham, MA, USA) for 15 min, and the pellet obtained was
washed twice with GSG-EDTA, centrifuging at 480× g; the first wash was 15 min, and the
second wash was 8 min. The purity of the platelets was verified by light microscopy and
flow cytometry, the latter using the monoclonal antibodies (mAb) APC mouse anti-human
CD11b (clone: D12) and FITC mouse anti-human CD41 (clone: HIP8), and the isotype
controls APC mouse IgG2a, κ isotype control (clone: G155-178), and FITC mouse IgG3, κ
isotype control (clone: J606), all from BD Biosciences. Finally, platelets were fixed with
4% paraformaldehyde for 30 min and acquired in a MACSQuant flow cytometer (Milteny
Biotec, Bergisch Gladbach, Germany). The obtained data were analyzed using FlowJo
software Version 10 (FlowJo, Ashland, OR, USA).

4.2. Meg-01 Cell Line Culture

The megakaryoblastic cell line MEG-01 (CLR-2021 TM) (ATCC, Manassas, VA, USA)
was kept alive and proliferating in RPMI 1640 medium (ATCC). RPMI medium was sup-
plemented with L-glutamine and 10% fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis,
MO, USA) under 37 ◦C and 5% CO2 culture conditions.

4.3. Azurocidin mRNA Expression by RT-PCR and qRT-PCR

Total RNA was extracted from platelets and MEG-01 cells using the RNeasy Mini Hand-
book kit (Qiagen, Hilden, Germany) and treated with the DNA-free DNA removal kit (Invitro-
gen, Waltham, MA, USA). Reverse transcription of the RNA into cDNA was using the RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific, MA, USA). Subsequently, the PCR assay was
carried out with the Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Scientific, MA,
USA), azurocidin-specific primers (sense 5′-TCAGAATCAAGGCAGGCACT-3′) (antisense 5′-
TGAAGCAGCATCAGGTCGTT-3′), and primmer (sense 5′-GCGTTACACCCTTTCTTGAC-3′)
and (antisense 5′-TTGTGAACTTTGGGGGATGC-3′) for β-actin were used as control. Am-
plification products were resolved on a 2% (w/v) agarose gel and visualized by ethidium
bromide staining. The identity of the products was confirmed through Sanger sequencing.
The qRT-PCR assay was carried out using the Maxima SYBR Green/ROX qPCR Master
Mix (2X) (Thermo Scientific, MA, USA) on a Step One Plus Real-Time equipment (Applied
Biosystems, Foster City, CA, USA). Results were calculated using the formula 2−∆∆Ct,
and β-actin was used for normalization.

4.4. Identification of Azurocidin by Flow Cytometry in Platelets and Megakaryoblasts

Meg-01 cells and human peripheral blood platelets were collected and washed with
Tyrodes buffer and permeabilized with the Cytofix/Cytoperm kit (BD Biosciences). Subse-
quently, the cells were treated with a primary human anti-azurocidin mouse mAb (clone:
246,322) or the mouse IgG1 isotype control mAb (clone: 11,711) (both from R&D Sys-
tems, Minneapolis, MN, USA) and then with a polyclonal goat anti-mouse-IgG antibody
(Brillant Violet 421, BioLegend, San Diego, CA, USA). We used FITC mouse anti-human
CD41 and APC mouse anti-human CD11b mAbs or their respective isotype controls (indi-
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cated in Section 4.1) upon completion. Finally, the cells were fixed and analyzed by flow
cytometry (Section 4.1).

4.5. Localization of Azurocidin in Platelets and Meg-01 Cells by Immunofluorescence

Freshly purified platelets or Meg-01 cells were suspended in modified Tyrode’s buffer,
placed on histological slides, and fixed with IC fixation buffer (Thermo Fisher Scientific,
USA) at 4 ◦C for 30 min. Then the cells were treated with a blocking solution (1% BSA + 0.1%
Tween 20 in 1× permeabilization buffer) (Thermo Fisher Scientific, USA). Cells on slides
were incubated with the anti-human azurocidin mAb or its isotype control (indicated in
Section 2.4) at 4 ◦C for 12 h and then treated with goat anti-mouse-IgG secondary antibody
(Brillant Violet 421, USA) for 1 h at room temperature. Subsequently, the sample was
incubated with the mAbs FITC mouse anti-human CD41 or its isotype control (Section 2.4)
and BB700 Mouse anti-human CD62P (Clone: AK-4, BD Biosciences), or BB700 mouse
IgG1, κ isotype control (clone: X40, BD Biosciences). Finally, the samples were imaged
on the LSM 5 Pascal confocal microscope (Carl Zeiss: Oberkochen, Germany), using a
100× objective, and obtained analyzed images were with the Leica Application Suite X
software (LAS-X, Leica-Microsystems, Wetzlar, Hesse-Darmstadt, Germany).

Co-localization analysis was performed on each image after background correction in
the Regions of Interest (ROI) in five selected areas per slice of the co-localization visualized
between CD62P and Azurocidin in each of the three independent experiments and analyzed
with the Coloc-2 co-localization complement of FIJI. The results were represented as the
average ± standard deviation of the Pearson correlation coefficient (PCC).

4.6. Azurocidin Secretion Assay

Meg-01 cells (1 × 106) and platelets (1 × 107) were collected and stimulated with
1 unit of thrombin (Dade Behring, Deerfield, IL, USA), 5 µM of ADP (Sigma-Aldrich), or
1 µg of LPS (Sigma-Aldrich), and apyrase was used to benefit its baseline condition of
non-activation. (0.25 U/mL) (Sigma-Aldrich) was used, and all stimuli were incubated at
37 ◦C for 30 min. The supernatant was collected, and the secreted azurocidin was quantified
by ELISA using an optical density. Readings were performed at 450 nm using the Chromate
4300 microplate reader (Awareness Technology Inc.; Palm City, FL, USA) with the Leica
Suite 345 X software application (LAS-X, Leica-Microsystems).

4.7. Identification of Azurocidin in EVs

Platelets obtained as previously described (Section 4.1) and 2 × 109 were treated
with 1 U thrombin, or in the absence of thrombin (control condition), for 30 min, at
37 ◦C. Subsequently, platelets were removed by centrifugation at 100× g for 10 min,
followed by 650× g for 5 min at room temperature. The pellets obtained were removed and
discarded after each centrifugation step, and the supernatants were employed to obtain the
extracellular vesicles. According to the manufacturer’s instructions, extracellular vesicles
were isolated using the miRCURY Exosome Isolation Kit (Qiagen, Germany). Briefly, the
samples were centrifuged at 3200× g for 15 min at room temperature to remove cell debris.
The supernatants were transferred to a new tube and added precipitation buffer B. Then,
samples were vortexed and incubated at 4 ◦C overnight. After the incubation, all the
samples were centrifuged at 10,000× g for 30 min at 20 ◦C and discarded the supernatant.
The pellets of EV were resuspended in PBS or RIPA buffer. Employed fixed EV in PBS
with 2% glutaraldehyde for transmission electron microscopy and those in RIPA buffer
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) to obtain the proteins. Proteins derived
from EVs were used to assess azurocidin concentration by ELISA (Section 4.6). Additionally,
to evaluate in more detail the secretion of azurocidin, the supernatant of activated platelets
was subject to ultracentrifugation to get EV. The supernatant was centrifuged at 2000× g for
20 min twice and the pellets were discarded. The supernatant was centrifuged at 95,000× g
for 2 h. The supernatant was separated and employed to ELISA (Section 4.6) and the
pellet containing EVs was suspended in PBS and centrifuged at 95,000× g for 2 h. The
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supernatant was discarded and the EVs were treated with RIPA buffer, quantified, and
employed for ELISA.

4.8. Identification of EVs by Western Blot and TEM

The proteins from platelets and extracellular vesicles were extracted using RIPA buffer
(Santa Cruz Biotechnology, USA), and the concentrations were determined by the BCA
Protein Assay kit (Thermo Fisher Scientific, USA). Fifteen µg of each sample was loaded
on a 10% SDS-PAGE gel, and proteins were transferred to a polyvinylidene difluoride
membrane (Thermo Fisher Scientific, USA). The membrane was blocked with 5% non-fat
milk in 1× TBST (TBS, 0.05% Tween 20) for 2 h at room temperature and subsequently
incubated with primary antibodies anti-CD9 (1:250) (Santa Cruz Biotechnology, USA) and
anti-HSP70 (1:1000) (Santa Cruz Biotechnology, USA) overnight at 4 ◦C. The membranes
were washed three times (5 min each time) with TBST and subsequently incubated with
the secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA)
at a dilution of 1:5000 for 2 h at room temperature. Finally, the membranes were washed
three times with TBST before scanner the result. The results were scanned on a C-DiGit
Blot scanner (LI-COR Biosciences, Lincoln, NE, USA) using Immobilon Crescendo Western
HRP Substrate (Millipore, Burlington, MA, USA). Image Studio Digits v.5.2 software (LI-
COR Biosciences, USA) was employed for image acquisition. For transmission electron
microscopy, the fixed EV were placed onto carbon-coated copper grids to be negatively
stained with 2% uranyl acetate. Representative images were obtained with a JEM-1400
transmission electron microscope with an acceleration voltage of 80 kV.

4.9. Translation of Azurocidin into Platelets

Peripheral blood platelets were obtained as described in Section 4.1 and plated at a
5 × 107 cells/mL concentration in RPMI medium supplemented with 10% SFB. In some
conditions, the platelets received pretreatment with 8 µg/mL puromycin (Sigma-Aldrich),
and 30 min later received or did not receive stimulation with 0.5 U of thrombin, platelets
without any treatment were used as control. Incubation times were 0.5, 1, 1, 3, 6, and 8 h, at
37 ◦C and 5% CO2. After incubation time, total protein (cellular and secreted) was extracted
using RIPA buffer. Finally, azurocidin concentration was determined by ELISA.

4.10. Inhibition of Platelet Aggregation and Platelet Activation

Platelet-rich plasma (PRP) was obtained from 8 mL of whole blood anticoagulated
with ACD and centrifuged at 100× g for 15 min; platelet-poor plasma (PPP) was obtained
by centrifugation at 900× g for 10 min, and with it, adjusted the number of platelets for
the assay to 250 × 109/L, and then their aggregation was evaluated. For thrombin assays,
the platelets were purified according to Section 4.1 and adjusted the number of cells to
250 × 109/L with Tyrode’s buffer. Based on the Born method, the Light transmission
aggregometry (LTA) assays were performed using a Chrono-Log 500-CA 500CA platelet
aggregometer (Havertown, PA, USA). The incubation before performing the assay was
1 min at 37 ◦C, maintaining the speed of 1200 rpm for 6 min after pretreatment with
15 µL of azurocidin (Azu/CAP37 Protein, Human, Recombinant) (Chesterbrook, PA, USA)
with subsequent serial dilutions, the highest concentration being 1200 pg/mL, 0.9% saline
solution was used to control before aggregation with ADP (2 µM) in platelets suspended in
PPP or Thrombin (2 U) for purified platelets.

On the other hand, 5 × 106 platelets/mL in Tyrode’s buffer were treated with saline
solution or 1200 pg/mL Azurocidin for 5 min at 37 ◦C and 5% CO2, then ADP 20 µM or
0.9% saline for an additional 30 min, then the cells were fixed with 1% paraformaldehyde
for 30 min and stained with the mouse mAbs PE Cy5 anti-human CD41 (clone: HIP8)
(BD Pharmingen, San Diego, CA, USA), FITC anti-human CD62P (clone: AK4) or FITC
anti-human PAC-1 (clone: PAC-1) (both from BioLegend, San Diego, CA, USA). The mAbs
used as isotype control were PE-Cy5 Mouse IgG1 κ Isotype Control (clone: MOPC-21)
(BD Pharmingen) and FITC Mouse IgG1 isotype control, κ Isotype Ctrl (clone: MOPC-21)
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(BioLegend, San Diego, CA, USA). Finally, the cells were analyzed by flow cytometry
(Section 2.1).

5. Conclusions

Platelets and megakaryoblasts express azurocidin mRNA and protein, which is con-
tained in their granule-α, and upon stimulation with thrombin, ADP or LPS can secrete
it. In addition, platelets can also release azurocidin contained in EV. Moreover, platelets
translate azurocidin mRNA both under basal conditions and upon stimulation. Finally,
azurocidin inhibits platelet aggregation and platelet activation, which may be a new role of
azurocidin in hemostasis.
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