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Abstract: Amyloidosis is a rare disease caused by the misfolding and extracellular aggregation of
proteins as insoluble fibrillary deposits localized either in specific organs or systemically throughout
the body. The organ targeted and the disease progression and outcome is highly dependent on the
specific fibril-forming protein, and its accurate identification is essential to the choice of treatment.
Mass spectrometry-based proteomics has become the method of choice for the identification of the
amyloidogenic protein. Regrettably, this identification relies on manual and subjective interpretation
of mass spectrometry data by an expert, which is undesirable and may bias diagnosis. To circumvent
this, we developed a statistical model-assisted method for the unbiased identification of amyloid-
containing biopsies and amyloidosis subtyping. Based on data from mass spectrometric analysis of
amyloid-containing biopsies and corresponding controls. A Boruta method applied on a random
forest classifier was applied to proteomics data obtained from the mass spectrometric analysis of
75 laser dissected Congo Red positive amyloid-containing biopsies and 78 Congo Red negative
biopsies to identify novel “amyloid signature” proteins that included clusterin, fibulin-1, vitronectin
complement component C9 and also three collagen proteins, as well as the well-known amyloid
signature proteins apolipoprotein E, apolipoprotein A4, and serum amyloid P. A SVM learning
algorithm were trained on the mass spectrometry data from the analysis of the 75 amyloid-containing
biopsies and 78 amyloid-negative control biopsies. The trained algorithm performed superior in the
discrimination of amyloid-containing biopsies from controls, with an accuracy of 1.0 when applied to
a blinded mass spectrometry validation data set of 103 prospectively collected amyloid-containing
biopsies. Moreover, our method successfully classified amyloidosis patients according to the subtype
in 102 out of 103 blinded cases. Collectively, our model-assisted approach identified novel amyloid-
associated proteins and demonstrated the use of mass spectrometry-based data in clinical diagnostics
of disease by the unbiased and reliable model-assisted classification of amyloid deposits and of the
specific amyloid subtype.
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1. Introduction

Amyloidosis is a term used to describe a group of rare and serious diseases that are
characterized by deposition of abnormal proteins in a characteristic fibrillary form in the
extracellular matrix of various vital tissues and organs. Presently, more than 35 proteins
have been shown to form amyloid deposits in humans [1]. The specific amyloidogenic
protein determines the sub-classification of the amyloidosis with immunoglobulin light
chain (AL), transthyretin (ATTR), and serum amyloid A (AA) as the most important and
frequent ones.

Where the symptoms and the clinical presentation of amyloidosis may be very differ-
ent and organ or tissue-dependent, they are almost identical across amyloid subtypes [2,3].
Thus, as treatment—spanning from chemotherapy for AL amyloidosis to organ transplan-
tation of the liver or heart for ATTR-related amyloidosis—and the prognosis are radically
different for each of the individual amyloid subtypes, precise and accurate diagnostic
sub-classification of the amyloid fibrillary protein in each identified subject is of outmost
importance for selection of treatment regime.

Traditionally, sub-type determination of the amyloidogenic protein was based on
immune-histochemical analysis of biopsies from the affected organ or tissue [4,5]. This
method has, however, been discarded in many clinical pathology departments due to low
sensitivity and low specificity [5–8], the latter presumably caused by unspecific staining.
Although, some diagnostic laboratories routinely achieve a sensitivity higher than 90%
using immunohistochemistry (IHC) [9]. Recently, other methods for identifying the amyloid
fibril proteins include laser microdissection (LMD) of amyloid deposits visualized by Congo
Red (CR) staining combined with mass spectrometry (MS) or immune electron microscopy
(IEM) [10,11] for the classification of localized amyloidosis and mass spectrometry-based
shotgun proteome analyses of fat biopsies for the classification of systemic amyloidosis [12].
A major advantage with mass spectrometry-based methods for amyloidosis subtyping
is that this method not only measures the amyloidogenic protein in question but also
measures an amyloid protein signature that is shared across all amyloidosis subtypes in
various tissues in a highly specific and quantitative manner. Common for these methods
is, however, that evaluation of the amyloid protein signature characteristics for amyloid
plaques, and the identification of the subtype-specific protein in question relies on manual
inspection of MS-data and is, therefore, highly reliant on the person interpreting the results
from the analysis. In clear-cut cases with severe levels of the amyloidogenic protein, this
is not of concern. Oftentimes, however, the MS-data are ambiguous, and a certain degree
of subjective interpretation by an MS expert is required. This subjective interpretation is
undesirable as it may bias the result leading to the wrong subtype diagnosis.

In the present work, we hypothesized that subjective interpretation can be avoided
by developing classification models for the subtyping of amyloidosis by training machine
learning algorithms on mass spectrometry proteomics data. Classification models were
trained and tested on proteomics data from the analysis of amyloid-containing biopsies
with known amyloidogenic proteins and validated by the application of the developed clas-
sification models on proteomics data from the analysis of 103 blinded amyloid-containing
laser dissected biopsies.

2. Results

The 75 CR-positive amyloid-containing samples and the 78 CR-negative samples
without amyloid were measured by nano-LC-MSMS which identified 1862 proteins across
all samples. Spectral counts (i.e., PSMs) for each of the identified proteins served as
quantitative measures (Supplementary Table S2). Quantitative data from the proteomic
analysis of the 153 biopsies were divided into a training set (70% of the 153 samples) and a
test set (30% of the 153 samples) randomly chosen among the 75 CR-positive and 78 CR-
negative samples. A Boruta feature selection method applied to a random forest classifier
was applied to estimate the capacity of each of the 1862 identified proteins of the merged
dataset to differentiate between the CR-positive and CR-negative samples. Among the
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10 proteins with the highest capacity to differentiate between CR-positive and CR-negative
samples, we identified ApoA4, ApoE, SAP and Complement component C9, as well as
Clusterin and Vitronectin (Table 1). Moreover, three collagen chains, as well as fibulin-1,
also demonstrated a high capacity to discriminate amyloid-containing tissue biopsies from
non-amyloid tissue samples.

Table 1. Signature proteins for amyloid deposits. The Boruta feature selection method was applied to
estimate the capacity of specific proteins to differentiate between Congo Red-positive and negative
samples determined by the calculated “mean importance score “. The quantitative readout from
the proteomic analysis (number of peptide spectrum matches for each protein) of the 153 biopsies
divided into a training set (70% of the biopsies randomly chosen among CR+ and CR− samples) and
a test set (30% of the biopsies randomly chosen among CR+ and CR− samples).

Rank #Accession Protein Name Mean Importance

1 P10909 Clusterin 10.94

2 P02743 Serum amyloid P-component 10.47

3 P06727 Apolipoprotein A-IV 9.99

4 P04004 Vitronectin 9.20

5 P02649 Apolipoprotein E 8.94

6 P02748 Complement component C9 7.25

7 P12109 Collagen alpha-1(VI) chain 6.25

8 P12110 Collagen alpha-2(VI) chain 5.19

9 P12111 Collagen alpha-3(VI) chain 4.93

10 P23142 Fibulin-1 4.83

Next, we evaluated the capability of the identified amyloidosis signature proteins
shown in Table 1—either alone or in combinations—to identify CR-positive amyloid-
containing biopsies from and CR-negative biopsies by using a model based on the SVM
algorithm (Table 2 and Supplementary Table S3). Classification models were developed
by training the algorithms on proteomics data from each of the 10 proteins shown to be
associated with amyloid deposits (Table 1) using proteomics data from the analysis of the
training set samples. The developed models were then tested on proteomics data from the
test dataset. Clearly, each of the proteins ApoA4, ApoE, SAP and Clusterin demonstrated
a great ability to discriminate between CR-positive and CR-negative samples displaying
overall accuracies > 0.96 (Table 2), whereas combinations of the well-known amyloid-
associated proteins and novel amyloid-associated proteins demonstrated overall accuracies
between 0.93 and 1.00. Moreover, the combination of ApoA4, ApoE and Clusterin appeared
with a similar performance as the well-established amyloid-signature (ApoA4, ApoE
and SAP).
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Table 2. The capability of the identified amyloid signature proteins, and combinations of these,
to discriminate amyloid-containing biopsies from CR-negative samples. Support Vector Machine
algorithm was developed based on the quantitative readout (number of peptide spectrum matches)
of each of the identified amyloid signature protein (Table 1) from the proteomics analysis of the
biopsies from the training set. The test data set consisted of 22 amyloid-containing biopsies (“+”) and
23 corresponding controls without amyloid (“−”).

Signature Protein (s) Correct/Total Sensitivity Specificity PPV NPV Accuracy

ApoA4 +: 21/22
−: 22/23 0.95 0.96 0.95 0.96 0.96

ApoE +: 22/22
−: 22/23 1.00 0.96 0.96 1.00 0.98

SAP +: 21/22
−: 23/23 0.95 1.00 1.00 0.96 0.98

Clusterin +: 20/22
−: 23/23 0.90 1.00 1.00 0.92 0.96

Vitronectin +: 6/22
−: 23/23 0.27 1.00 1.00 0.59 0.64

Complement C9 +: 2/22
−: 23/23 0.09 1.00 1.00 0.53 0.56

Collagen alpha-1(VI) chain +: 14/22
−: 21/23 0.64 0.91 0.88 0.72 0.78

Collagen alpha-2(VI) chain +: 13/22
−: 20/23 0.59 0.87 0.81 0.69 0.73

Collagen alpha-3(VI) chain +: 13/22
−: 20/23 0.59 0.87 0.81 0.69 0.73

Fibulin-1 +: 7/22
−: 23/23 0.32 1.00 1.00 0.61 0.67

ApoA4 and ApoE +: 20/22
−: 22/23 0.91 0.96 0.95 0.92 0.93

ApoA4, ApoE, Clusterin +: 22/22
−: 23/23 1.00 1.00 1.00 1.00 1.00

ApoA4, ApoE, Vitronectin +: 22/22
−: 22/23 1.00 0.96 0.96 1.00 0.98

ApoA4, ApoE, Complement
C9

+: 22/22
−: 22/23 1.00 0.96 0.96 1.00 0.98

ApoA4, ApoE, Collagen
alpha−1(VI) chain

+: 20/22
−: 22/23 0.91 0.96 0.95 0.92 0.93

ApoA4, ApoE, Collagen
alpha−2(VI) chain

+: 20/22
−: 23/23 0.91 1.00 1.00 0.92 0.96

ApoA4, ApoE, Collagen
alpha−3(VI) chain

+: 21/22
−: 22/23 0.95 0.96 0.95 0.96 0.96

ApoA4, ApoE, Fibulin−1 +: 20/22
−: 23/23 0.91 1.00 1.00 0.92 0.96

ApoA4, ApoE and SAP +: 22/22
−: 23/23 1.00 1.00 1.00 1.00 1.00

A validation dataset consisting of 103 tissue samples with amyloid deposits prospec-
tively collected from various organs was applied to validate the SVM-based models.
(Table 3). The models based on either ApoA4 or ApoE alone performed equally well
by classifying 99 out of 103 correctly. By contrast, the model based on SAP alone accurately
classified all samples correctly as amyloid-containing tissue samples. The model based on
Complement component C9 performed considerably worse than the models for remaining
proteins by classifying only 26 tissue samples out of 103 biopsies correctly. The model
based on ApoA4 and ApoE only marginally improved with the inclusion of each of the
eight other identified signature proteins except for the model for the combination of ApoA4
and ApoE with SAP that identified all amyloid-containing tissue samples.
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Table 3. Validation of the SVM-based models for recognizing tissue samples with amyloid deposits
by testing on blinded validation data set consisting of 103 amyloid-containing tissue samples of
different organ origin collected from amyloidosis patients.

Amyloid Signature Proteins Correct/Total Accuracy

ApoA4 99/103 0.96

ApoE 99/103 0.96

SAP 103/103 1.00

Clusterin 97/103 0.94

Vitronectin 64/103 0.62

Complement C9 26/103 0.25

Collagen alpha-1(VI) chain 83/103 0.81

Collagen alpha-2(VI) chain 82/103 0.80

Collagen alpha-3(VI) chain 84/103 0.82

Fibulin-1 72/103 0.70

ApoA4 and ApoE 100/103 0.97

ApoA4, ApoE, Clusterin 101/103 0.98

ApoA4, ApoE and Vitronectin 102/103 0.99

ApoA4, ApoE and Complement C9 102/103 0.99

ApoA4, ApoE and Collagen alpha-1(VI) chain 102/103 0.99

ApoA4, ApoE and Collagen alpha-2(VI) chain 102/103 0.99

ApoA4, ApoE and Collagen alpha-3(VI) chain 102/103 0.99

ApoA4, ApoE, and Fibulin-1 101/103 0.98

ApoA4, ApoE and SAP 103/103 1.00

Model-Assisted Typing of Amyloidosis Based on Proteomics Data

An SVM-based model for subtyping of amyloid-containing tissue biopsies (CR-positive
laser dissected samples was trained on 54 randomly chosen amyloid-containing samples
(70% of 75 the amyloid-containing tissue samples with known amyloidogenic proteins)).
Quantitative measures (based on spectral counting) from seven proteins that have the
capacity to differentiate between the four amyloidosis subtypes, AA, ATTR, AL-kappa, and
AL-lambda light chain amyloidosis, were selected (Table 4).

Table 4. Subtype-specific proteins included in subtype classification model. These proteins are
commonly observed in high levels in relation to their respective subtype and were, therefore, selected
for the classifier.

#Accession Protein Name Subtype

P0DJI8 Serum amyloid A-1
AAP0DJI9 Serum amyloid A-2

P0DOX7 Immunoglobulin kappa light chain AL-kappa
P01834 Immunoglobulin kappa constant

P0DOX8 Immunoglobulin lambda-1 light chain
AL-lambdaP0DOY2 Immunoglobulin lambda constant 2

P02766 Transthyretin ATTR

When testing our model on the training data set and the test data set it demonstrated
a cross-validation accuracy of 1.00, i.e., all samples were correctly subtyped (results not
shown). When applying our model to the subtyping of the 103 blinded samples from
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the validation dataset, the model using the four most prominent amyloidogenic proteins
(four-protein model) correctly subtyped 99 samples misclassifying four ATTR cases as AL-
lambda, whereas the seven-protein model correctly subtyped 102 samples demonstrating
accuracy of >0.99. Only one sample diagnosed as ATTR by IEM was incorrectly annotated
as AL-kappa by the seven-protein model (Table 5).

Table 5. SVM-based classification of prospectively collected amyloid-containing samples. The
validation set consisted of 103 Congo positive cases with confirmed diagnosis by IEM. In total,
69 ATTR cases, 21 AL-L cases and 4 AL-K was included in the validation set. For the 4-protein model,
four ATTR-cases were misclassified as AL-L, whereas for the 7-protein model one ATTR sample was
misclassified as AL-K.

Subtype
Classification Amyloidogenic Proteins Correct/Total Sensitivity Specificity PPV NPV Accuracy

AA
Serum amyloid A-1 protein (SA) 6/6 1.00 1.00 1.00 1.00

0.96 */0.99

SA and Serum amyloid A-2 protein 6/6 1.00 1.00 1.00 1.00

AL-K
Immunoglobulin kappa light chain (IgK) 4/4 1.00 1.00 1.00 1.00
IgK and Ig kappa constant 4/4 1.00 0.99 0.80 1.00

AL-L
Ig lambda-1 light chain (IgL-1) 25/25 1.00 0.95 0.86 1.00
IgL-1 and Ig lambda constant 2 25/25 1.00 1.00 1.00 1.00

ATTR
Transthyretin (four-protein model) 64/68 0.94 1.00 1.00 0.90
Transthyretin (seven-protein model) 67/68 0.99 1.00 1.00 0.97

* Accuracy for the four protein model.

3. Discussion

Amyloidosis is a disease, which requires skilled professionals to diagnose. The appli-
cation of LMD and MS in the diagnosis of amyloidosis has greatly increased the efficiency
of diagnosis and its application has gained a complementary role to IHC and IEM. A major
drawback of mass spectrometry-based methods is, however, that the evaluation of the
amyloid protein signature and the identification of the subtype-specific protein is highly
reliant on the person interpreting the results of the analysis. In this study, we hypothesized
that the application of a machine learning-based algorithm for recognition of the distinct
patterns associated with amyloidosis could provide the MS expert with an unbiased tool
that enables the accurate diagnosis of amyloidosis. The need for an unbiased tool for
subtyping of systemic amyloidosis based on MS analysis of subcutaneous adipose tissue
was previously addressed by Brambilla et al. [12] and Canetti et al. [13]. They developed an
algorithm for the calculation of a diagnostic α-value for the subtyping of amyloidosis based
on MS data and a simple empirical algorithm based on Mascot scores, respectively. The
α-value aiming at systemic amyloidosis subtyping of the four most commonly occurring
amyloidosis subtypes (AL-Lambda, AL-Kappa, ATTR, and SAA) should be 70 or higher
for correct diagnosis. The α-value is a normalized parameter that is calculated based on the
measured spectral counts for each of the four amyloidogenic proteins from the analysis
of the CR-positive fat aspirates and a number of CR-negative samples. We applied this
method to our data set but found that it was not applicable to MS data from the analysis
of laser-dissected samples, presumably due to sampling inhomogeneity of CR-negative
control samples, both within and particular across tissue types (results not shown). A
major drawback with this method is, however, that the calculation of the α-value relies on
MS data from the analysis of a number of CR-negative biopsies along with the analysis
of a CR-positive sample, which is not always readily available in routine diagnostics. We,
therefore, aimed to develop an algorithm that enabled the classification of CR-positive
cases. We applied a feature selection method to identify specific proteins in a data set
comprised of quantitative readout for 1862 proteins resulting from the analysis of 153
laser-dissected CR-positive and CR-negative biopsies. Among the proteins that showed
the highest mean important score (i.e., with the feature to identify CR-positive cases), we
expectedly identified the well-known amyloid-deposit signature proteins, ApoAIV, ApoE,



Int. J. Mol. Sci. 2022, 23, 319 7 of 11

and SAP. Interestingly, our feature selection algorithm identified seven additional proteins
that characterized amyloid-containing tissue biopsies. These included complement C9,
Clusterin, COL6A1, COL6A2, COL6A3, Fibulin-1 and Vitronectin. Clusterin, known to
interact and mediate the clearance of Aβ, and Vitronectin have both already been associated
with various subtypes of amyloidosis [14]. By contrast, Complement C9 has previously
been associated with Alzheimer’s disease [15], but all three proteins are associated with
the soluble membrane attack complex (SC5b-9) [16,17], but their role in amyloidosis fib-
rillogenesis remain elusive. Recently, Lux and co-workers noticed that Complement C9
was a dominating protein in the MS analysis of CR-positive routine diagnostic samples.
Based on this observation they systematically explored the presence of Complement C9
in 118 tissue samples from 18 different tissue types with amyloid deposits [18]. They
found that the immune reactivity of Complement C9 covered more than 80% of the CR
positive area in more than 90% of the cases across all biopsy types, which confirms the
appearance of this protein in our statistical analysis. Collagen is known to be stained by
CR and display birefringence that can be mistaken for amyloid plaques [19,20]. It is likely
that collagen-rich areas of the biopsies are laser-dissected along with amyloid plaques
as it is not possible to distinguish between these two types of fibrils during excision of
fibrillary areas of the biopsies in the laser microscope. We tested the capability of the
ten proteins with the highest mean importance score to differentiate between CR-positive
and CR-negative samples individually or in combination with each other by building
models based on SVM-based algorithms. All individual proteins demonstrated a relatively
high capacity to identify CR-negative samples (specificities ranging from 0.86 to 1.0). By
contrast, only ApoA4, ApoE, SAP and Clusterin demonstrated a high capacity to identify
CR-positive samples (sensitivities ranging from 0.9 to 1.0). Application of models based on
the amyloid signature proteins ApoE and ApoA4 either alone or in combination with each
of the other proteins tested showed that addition of Clusterin, Vitronectin, Complement
C9, or SAP increased the sensitivity of the model from 0.91 to 1.0, whereas the addition of
Clusterin, Fibulin-1 or SAP to the model increased the specificity from 0.96 to 1.0. When
applying the model on data from the proteomic analysis of the 103 CR-positive samples
from the blinded validation dataset, only the models that were built on SAP alone, or SAP
in combination with ApoA4 and ApoE were capable of identifying all 103 blinded samples
as CR-positive samples, in all confirming APOE, SAP and APOA4 as excellent surrogate
biochemical markers for the presence of amyloid [21]. Although Clusterin, Vitronectin,
or Complement C9 slightly improved the classification of CR-negative and CR-positive
samples their role in the formation of amyloid deposits remains unclear. The second step
focused on creating a model for accurate subtyping of amyloid positive cases. The model
showed a high degree of accuracy as only a single ATTR case was misclassified as AL-K
among the 103 cases of the blinded validation data set. The misclassified case in question
had similarly low levels of both AL-K and ATTR-related proteins, which demonstrates the
difficulties in diagnosing patients with amyloidosis. Although machine learning-based
algorithms applied to the diagnosis of amyloidosis are not new. Machine learning-based
algorithms have previously been applied to identify heart failure-related cardiac amyloido-
sis patients from heart failure-unrelated cardiac amyloidosis patients by the utilization of
basic laboratory methods [22].To the best of our knowledge, the current study is the first to
apply machine-learning to proteomics-based data for subtype classification of amyloidosis.
In this work, SVMs were employed as it is a robust learning algorithm for classification
with high discriminative power and insensitive to outliers. Nonetheless, evaluation of
the performance of each model on a test dataset limits the risk of over-fitting the model
and the further validation on an independent blinded validation dataset ensures that the
tendencies seen in the test data set are robust.
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4. Materials and Methods
4.1. Clinical Specimens

Two independent sets of amyloidosis specimens of various tissue types received as a
part of the routine clinical practice at the Amyloidosis Centre at Odense University Hospital,
Odense, Denmark were studied. The first set comprised 75 amyloid-containing CR-positive
sections from various tissues, and 78 Congo-negative areas dissected from Congo positive
samples of various tissue origins (Supplementary Table S1). These specimens were in a
recent study characterized by standard laser dissection microscopy mass spectrometry
analysis and immune-electron microscopy [10], and only specimens with 100% concor-
dance between the LMD-MS analysis and IEM analysis were included in the present study.
The second set consisting of 103 Congo-positive amyloid-containing specimens from vari-
ous tissue types prospectively analyzed the combination of LMD-MS and the developed
classification models in a blinded fashion. The project was approved by the local Ethics
Committee (J.nr. S-20180128) and registered at the Danish Data Protection Agency (J.nr.
18/54959).

4.2. Immuno-Electron Microscopy and Mass Spectrometry
4.2.1. Microdissection and Sample Processing

Preparation and processing of samples for IEM analysis and mass spectrometry anal-
ysis were performed as previously described [10]. Briefly, for IEM analysis, ultrathin
(70 nm) sections stained with toluidine blue containing histological structures regions
with potential amyloid deposits as identified by light microscopy were probed by the
antibody of interest (anti-Serum amyloid A, anti-Kappa- and Lambda Light chains, and
anti-Prealbumin (Transthyretin) followed by incubation with Protein A—10 nm gold conju-
gate and visualization of amyloidogenic fibrils by electron microscopy. Immunostaining
quality was validated by examination of positive controls stained in parallel with the
investigated samples.

For LMD-MS analysis 8 µm thick sections of formalin-fixed, paraffin-embedded (FFPE)
patient specimens were fixated onto membrane slides, de-paraffinized, and CR stained
for visualization of amyloid deposits. From each CR-positive patient biopsy, CR-negative
areas were collected and used as controls together with dissected areas from CR-negative
patient biopsies. Dissected areas (the total area was approx. 0.2 mm2) were prepared for
proteome analysis as described in the previous study. Briefly, samples were incubated in
35 µL 10 mM Tris with 1 mM EDTA and 0.002% Zwittergent at 98 ◦C for 90 min followed
by reduction (50 mM DTT, 50 ◦C, 30 min) and alkylation (150 mM IAA, RT in the dark,
30 min). Proteins were then acetone precipitated and re-dissolved in 20 µL, 200 mM
triethylammonium bicarbonate (TEAB) followed by overnight digestion with 0.1 µg trypsin
at 37 ◦C. Purification of the resulting tryptic peptides were carried out using custom
made C18 microcolumns and the eluate was vacuum-centrifuged to dryness (SpeedVac,
Thermo Scientific, Waltham, MA, USA) and reconstituted in 0.1% TFA for analysis by
nano-LC-MSMS, as described below.

4.2.2. Liquid Chromatography and Mass Spectrometry

LC-MSMS was performed on an UltiMate3000 UHPLC unit coupled online to a Q-
Exactive mass spectrometer fitted with a nano-electrospray ion source. Samples were
loaded onto a custom-made, fused capillary pre-column (2 cm length, 360 µm OD, 75 µm
ID packed with ReproSil Pur C18 3 µm resin (Dr. Maish, GmbH)) with a flow of 0.3 µL/min
for 7 min. Trapped peptides were subsequently separated with a custom-made fuse
capillary column (20 cm length, 360 µm OD, 100 µm ID, packed with ReproSil Pur C18
3 µm resin) employing a linear gradient from a 95% solution A (0.1% FA) toward a 28%
solution B (100% acetonitrile in 0.1% FA) over a 52-min interval with a subsequent 5-min
interval at 90% B and 5-min 95% A, with a flow rate of 0.3 µL/min. The Orbitrap MS scan
was set to a target value of 1,000,000 ions at a resolution of 70,000 at m/z 200 and the MS/MS
scan was set to a target value of 50,000 ions at a resolution of 17,500 at m/z 200 (fixed first
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mass 110 m/z). Fragmentation occurred at a normalized collision energy of peptides in
the HCD cell at 32 eV and the intensity threshold for data-dependent MSMS analysis was
27,000 counts/s.

4.3. Data Analysis

All raw data files were processed using the Proteome Discoverer software (v. 2.4.0.305)
and searched with the Sequest HT search algorithm. The search parameters were set to an
MS accuracy of 8 ppm, MSMS accuracy of 0.05 Da for HCD data, with two missed cleavages
allowed. Fixed modifications included carbamidomethylation at cysteine residues and
variable modifications included methionine oxidation, deamidation of asparagine and
glutamine and N-terminal acetylation. Raw data files were searched against the Swiss-Prot
database restricted to the human proteome (downloaded on the 12th of December 2019,
containing 20,303 entries). Proteins identified with at least one unique peptide and with a
high confidence (FDR < 1%) were permitted in the final dataset.

For all patient samples, the number of peptide spectrum matches (PSMs) for the
amyloid signature proteins (ApoA4, ApoE, and SAP) and the proteins associated with the
four subtypes included in this study (IG-K, IG-L, SAA, and TTR) were used to determine
the true disease-state of a patient. The amyloid-associated protein with the highest number
of PSMs was determined to be the pathogenic protein, a prerequisite that at least two out
of the three amyloid signature proteins were also detectable in the patient sample.

4.4. Statistical Analyses

A Support Vector Machine (SVM), which is a supervised machine learning technique,
implemented in the public available R package e1071, was applied for the classification of
disease-state (amyloid-containing tissue or not) and classification of amyloidosis subtype.
All SVM classifiers are based on linear kernel functions and variables are by default scaled
to zero mean and unit variance by the svm function, included in the e1071 package, prior
to classifier training. Selecting the optimal parameters of C and gamma for each SVM
classifier was done using the tune.svm function (e1071). Feature selection was performed
primarily as a pre-processing step to eliminate redundant and noisy protein data and
secondly to evaluate proteins that could differentiate between amyloidosis-positive and
amyloidosis-negative patients. Feature selection was performed using the Boruta feature
selection algorithm [DOI: 10.18637/jss.v036.i11]. All prediction classifiers were optimized
on the training dataset and performance was evaluated on a separate test dataset, as well
as validated on a blinded, independent validation dataset. Computation of sensitivity,
specificity, positive prediction value (PPV), negative prediction value (NPV), as well as
diagnostic accuracy was achieved using the confusionMatrix function in the caret R package.
The work was carried out under R (v. 4.02) in RStudio (V. 1.2.5001). All the applied R codes
and datasets are available to download from the GitHub repository associated with this
study (https://git.io/JMIqS, accessed on 30 November 2021).

5. Conclusions

In this study, we aimed to improve the diagnosis of amyloidosis by developing
unbiased models based on proteomics data for the recognition of amyloid-containing
biopsies followed by the accurate subtyping of amyloidosis. We demonstrated that the
utilization of machine learning on proteomics data can identify and classify patients with
high accuracy on a blinded validation data set of more than a hundred patients. Future
studies should focus on the implementation of classification models in mass spectrometry-
based amyloidosis subtyping.
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