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Abstract: Nicotine is the predominant addictive compound of tobacco and causes the acquisition of
dependence through its interactions with nicotinic acetylcholine receptors and various neurotrans-
mitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II
(CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity
in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies
the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other
psychostimulant-induced addiction still require further investigation. This article reviews the molec-
ular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced
addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction
in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated
fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced
addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug
abuse affecting dopaminergic systems.

Keywords: nicotine-induced addiction; Ca2+/calmodulin-dependent protein kinase II; extracellular
signal-regulated kinase; dopamine D1 receptor; dopamine D2 receptor; fatty acid-binding protein 3

1. Introduction

Smoking was the second leading cause of early death and disability in 2015 [1]. It
caused approximately 6.4 million deaths, which accounted for 11.5% of all deaths world-
wide, and led to 150 million people becoming disabled in 2015 [2]. In developed countries,
inhalation of smoking is considered the largest single cause of early death. Smoking is the
reason for 20% of all premature deaths and more than one-third of all deaths in men aged
35–69 years [3]. Accumulated evidence suggests that regular smoking can enhance the
risk of coronary heart disease, chronic obstructive pulmonary disease, and cancers of the
upper aerodigestive tract and lung [4]. Nicotine in tobacco is considered the predominant
addictive component, and it causes continued use in humans [5–7]. Nicotine-induced
addiction is reported to be difficult to quit. More than 80% of attempts to quit fail within a
year, and some highly addicted smokers are able to quit smoking only for a few hours [8,9].
Therefore, people are inclined to use tobacco continually despite the harmful consequences.
Other psychostimulant drugs, such as morphine, cocaine, and amphetamine, are similar to
nicotine: they participate and modulate the brain reward system and motivation though
they have different interaction sites and chemical structures [10].

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is involved in synaptic plas-
ticity, long-term potentiation (LTP), and memory consolidation in the hippocampus [11,12].
However, the engagement of CaMKII in the brain reward system and psychostimulants,
including nicotine-induced addiction, has not been entirely elucidated. In this review, we
focus on the mechanisms of CaMKII and extracellular signal-regulated kinase (ERK), which
is mediated by CaMKII function in the brain reward system, in the context of nicotine and
other psychostimulant-induced addiction. We also consider the participation of CaMKII in
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both dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R) signaling, provide fatty
acid-binding protein 3 (FABP3) as a novel target, and clarify the underlying mechanisms in
terms of nicotine and other psychostimulant-induced addiction affecting the dopaminergic
(DAergic) system.

2. Mechanisms Involved in Nicotine-Induced Addiction in the Brain

Nicotine in tobacco is inhaled into the lung and is subsequently moved to the brain
through arterial circulation. Nicotine initiates its biological function by interacting with
nicotinic acetylcholine receptors (nAChRs) through binding with pentameric ligand-gated
ion channels, leading to the rotation of the receptors as well as the opening of cation
channels [13,14]. Nicotine in tobacco plays a role as an extrinsic agonist of nAChRs, binds
at the boundary surface between two subunits of the receptor, and causes the opening
of the ion channel, which provides a water-filled pathway through the membrane, and
the influx of calcium and sodium [15]. The nAChR is composed of five polypeptide sub-
units, and a diverse combination of subunits causes the formation of various nAChR
subtypes [16]. Nine α (α2–α10) and three β subunits (β2–β4) are mainly expressed in
the mammalian brain [17,18]. According to its high affinity to nicotine and abundance in
the midbrain dopamine (DA) pathways, α4β2 nAChR is considered the dominant target
in nicotine-induced addiction [19,20]. The α4 or β2 subunit null mice exhibit impaired
nicotine-seeking behaviors; reinserting these ablated genes into the α4 or β2 null mice
ventral tegmental area (VTA) can rescue the dysfunction of behavioral effects in response
to nicotine, which suggests that VTA α4β2 nAChRs are crucial for nicotine-induced addic-
tion [21–23]. Chronic nicotine administration leads to an increase in the number of α4β2
nAChR binding sites in the rat brain [24]. Some studies reported that the reinsertion of
low levels of α4β2 nAChRs could not produce significant conditioned place preference
(CPP) in mice, suggesting that the β2 subunit needs a threshold level to fulfill biological
functions [25]. The α7 homomeric receptors are extensively expressed in the mammalian
central nervous system (CNS) and have higher permeability to calcium as well as faster
kinetics than other nAChRs [16,26]. The administration of the α7 nAChR agonist improved
learning and working memory in rats [27]. The α7 nAChRs are able to regulate long-term
potentiation (LTP) to DAergic neurons at glutamatergic inputs [28–30].

The activation of nAChRs promotes various neurotransmitter releases in the CNS [15,31].
Dopamine (DA), a predominant neurotransmitter involved in drug abuse, plays a critical
role in reinforcing behaviors in the drug reward system [32–34]. The results of microdial-
ysis using freely moving rats suggested that stimulant drugs such as nicotine, cocaine,
and amphetamine increase extracellular DA concentrations in the mesolimbic system [35].
DA neuron stimulation is a fundamental characteristic of drug abuse and causes drug
dependence [35,36]. Some studies have revealed that the brain has specific regions for
reward functions, and electrically stimulating these regions has a high reward since rats
made operational responses when these regions were stimulated [37]. The mesolimbic
DAergic projections originating from the ventral tegmental area (VTA) and projected to the
nucleus accumbens (NAc) and the prefrontal cortex (PFC) are particularly susceptible to
electrical stimulation. This system has been represented as a neurochemical substrate in
reward functions since it is fully involved in the stimulant drug reward system [38]. The
DAergic projections also include the olfactory tubercle, septal region, and amygdala. Many
investigations have revealed that DA levels in the NAc are elevated not only by the action
of natural rewards, such as water, food, and sex, but also by stimulant drugs, including nico-
tine, cocaine, and amphetamine, especially in the dependence acquisition phase [6,39–41].
Mesolimbic DAergic system lesions produced by the microinfusion of 6-hydroxydopamine
into the NAc leads to a significant reduction in nicotine self-administration in rats [42]. The
impairment of food-induced DA release in the NAc shell provoked by the microinjection of
naloxonazine into the VTA in rats suggests that mesolimbic DAergic projections are critical
in DA release and the process of dependence [43]. The NAc is a heterogeneous structure
composed of two major subdivisions, the NAc core and NAc shell, which can be considered
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as a part of the extended amygdala [44]. Although both of these subdivisions play an
essential role in learning behaviors and classical conditioning, as they are anatomically
different and have distinct projection areas, they are considered to have different contri-
butions [45,46]. The NAc core projects to the extended amygdala, lateral hypothalamus,
and central gray matter, and plays a critical role in the response of induced or reinforced
conditioned stimulation [45,47,48]. However, the NAc shell is correlated with the acqui-
sition of responding engaged in stimulant drug reinforcement [49]. Some investigations
have reported that DA overflow in the medial NAc shell is stimulated by acute nicotine
administration, while the extracellular levels of DA in the NAc core were not obviously
increased following the same administration [41,50,51]. Intravenously administration with
other addictive drugs such as cocaine, morphine, and amphetamine also preferentially
enhance extracellular DA levels in the NAc shell relative to the NAc core, demonstrating
that the NAc shell has a priority for the effect of psychostimulant drugs at doses that could
maintain intravenous drug self-administration [40].

Nicotine stimulation also promotes the release of glutamate (Glu) and γ-aminobutyric
acid (GABA), of which the former facilitates and the latter suppresses DA release [28,29].
Some of the nAChR subtypes reach desensitization states following chronic nicotine expo-
sure, while the other receptors do not. In one study, the GABA-mediated inhibitory function
was weakened while Glu-mediated excitatory function was still sustained, resulting in
the elevation of the excitation of DAergic neurons and enhancement of responsiveness to
nicotine [52]. The nAChRs become desensitized under long exposure to nicotine, which
seems to be the reason for their increase [53,54]. Nicotine withdrawal causes excessive
nAChRs to ameliorate from the state of desensitization and leads to hyperexcitation in the
nicotinic cholinergic systems, thereby promoting patients or nicotine-induced dependent
rodents to obtain more nicotine. Nicotine relapse contributes to the desensitization of an
excessive number of nAChRs to normal levels [16].

3. CaMKII in Nicotine and Other Psychostimulant-Induced Addiction

CaMKII plays a critical role in the molecular pathway of the reward system in drug
addiction, including nicotine dependence, and affects animal responses to drug abuse [55].
Previous investigations demonstrated that 14 or 28 consecutive days of chronic nicotine
administration significantly increased CPP scores in conditioning, nicotine withdrawal,
as well as relapse phases and CaMKII autophosphorylation levels in the mouse NAc and
hippocampal CA1 region [56]. The number of CaMKII autophosphorylation-positive cells
in the NAc was also elevated following chronic nicotine administration relative to saline-
administered mice [56]. Intracerebroventricular infusion of CaMKII antagonists KN-62
and KN-93 into mice showed impaired nicotine-induced CPP [57]. CaMKIIα heterozygous
(+/−) mice failed to show nicotine-induced CPP behavior, and the increased CaMKII
activity in the NAc and VTA in wild-type (WT) mice were blocked by the administration
of KN-62 [57]. Nicotine induces significant CPP and elevation of CaMKII activity in a
concentration-dependent manner. Some studies identified that intraperitoneal injection of
nicotine at doses of 0.25 mg/kg and 1.0 mg/kg could not produce nicotine-induced condi-
tioning, whereas that at a dose of 0.5 mg/kg could [58,59]. The concentration at 2 mg/kg
induced conditioned place aversion but not CPP in mice [58]. Nicotine concentration lower
than 0.1 mg/kg or higher than 1.4 mg/kg could not induce CPP in subcutaneously injected
rats [60]. Although different neurochemical outcomes can be observed with different
concentrations of nicotine, our previous data suggest that the daily dose of nicotine at
0.5 mg/kg could execute its functions that induce significant CPP, and elevate CaMKII
autophosphorylation level as well as the phosphorylation level of its downstream targets in
the NAc and hippocampal CA1 region using an immunoblotting technique [56]. Consistent
with nicotine, other addictive drugs such as morphine and methamphetamine have a simi-
lar effect with regard to the interaction with CaMKII. CaMKII modulates memory retention
in an N-methyl-D-aspartate receptor (NMDAR)-dependent manner in morphine-sensitized
rats [61]. Reduced activations of CaMKII and cAMP response element-binding protein
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(CREB) were observed in the morphine self-administered rat NAc following treatment with
a TRPV1 antagonist, which is from the transient receptor potential (TRP) cation channel
family [62]. The autophosphorylation level of CaMKII in the limbic forebrain was increased
in mice administered with morphine, and this upregulation was blocked by the intracere-
broventricular infusion of KN-93 [63]. The CaMKII signal is fully involved in the effect of
cocaine- and amphetamine-regulated transcript (CART) peptide, which is a neuropeptide
associated with brain reward circuits, in the context of cocaine reward [64]. In the NAc,
CaMKIIα contributes to the psychomotor effects induced by cocaine [65], reinstatement
of cocaine-seeking behaviors [66], and cocaine-induced CPP behaviors [67,68]. CaMKIIα
expressed in other brain regions such as the prefrontal cortex (PFC) and amygdala is also
correlated with cocaine-induced CPP and cue-induced cocaine-seeking behaviors [67,69].
Furthermore, CaMKIIα autophosphorylation levels were significantly elevated in the PFC,
hippocampus, and ventral striatum in rats following ketamine self-administration [70].
Here, we introduce some evidence suggesting that the activities of CaMKII (Table 1) are
fully involved in certain brain regions located in the brain reward circuitry. Exposure to
the stimulant drugs does not cause addiction immediately; it involves various neuronal
adaptations that develop over time.

Table 1. Evidence of CaMKII activity fully involved in the brain regions of circuitry with various drugs of abuse.

Drug Region CaMKII Activity

Nicotine
Nucleus accumbens Phosphorylation level increased [56]
Hippocampal CA1 Phosphorylation level increased [56]
Ventral tegmental area Activity increased [57]

Morphine
Nucleus accumbens shell Activity is crucial for morphine-seeking [71]
Hippocampus CaMKIIα level increased in synaptosomes [72]
Prefrontal cortex Phosphorylation level increased [73]

Cocaine
Nucleus accumbens shell Activity is crucial for cocaine-seeking [65,66]
Hippocampal dentate gyrus CaMKIIα phosphorylation mediates neuronal activation [72]
Medial prefrontal cortex CaMKIIα phosphorylation level increased after cocaine withdrawal [69]

Amphetamine
Nucleus accumbens shell Activity is crucial for amphetamine-induced DA release [74]
Hippocampus Activity is crucial for amphetamine-induced CPP [75]
Striatum Phosphorylation level increased [76]

These stimulant drugs have been reported to activate and alter the reward circuitry
of the brain, and affect synaptic plasticity, learning acquisition, and glutamatergic inputs
into the brain neuronal circuit [77,78] (Figure 1). The brain reward circuitry underlying the
addiction process is complicated, which mainly includes DA release from DAergic neurons
in the VTA of the midbrain and projections to the NAc and PFC region. CaMKIIα au-
tophosphorylation levels were significantly elevated in the PFC of morphine-administered
mice [73]. VTA plays a critical role in the initial stimulant drug exposure and causes long-
term adaptation in DAergic neurons in the projection regions [79]. Stimulant drug exposure
increases DA signaling in the NAc and functionally regulates glutamatergic excitatory pro-
jections to the NAc medium spiny neurons (MSNs). Addictive drugs trigger and modulate
synaptic plasticity in the brain reward circuitry involved in addiction. Some studies have
suggested that alterations in synaptic plasticity at glutamatergic inputs from the cortex to
the NAc may be the underlying mechanism in stimulant drug addiction [77,80]. CaMKII is
critically associated with the NAc shell DA and glutamatergic inputs involved in synaptic
plasticity [66].
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the VTA through the subiculum are highlighted [81]. Since CaMKIIβ regulates synaptic activity in 
the Hb in the context of depressive behaviors, it increases glutamatergic inputs onto VTA GABAer-
gic interneurons to inhibit VTA DAergic neurons, thereby decreasing the DA release in the NAc 
[82,83]. VTA, ventral tegmental area; NAc, nucleus accumbens; PFC, prefrontal cortex; HP, hippo-
campus; Hb, habenula. 
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Figure 1. Simplified schematic representation of the mouse brain reward circuitry. The scheme of
the mesolimbic DAergic projections (purple) of the mouse brain sagittal section emphasizes the
predominant afferents that originate in the VTA and input into the NAc as well as the PFC, which are
modulated by stimulant drug exposure through CaMKII functions. Glutamatergic inputs (red) that
regulate neuronal circuits in response to drug abuse from the PFC to the NAc and from the HP to the
VTA through the subiculum are highlighted [81]. Since CaMKIIβ regulates synaptic activity in the
Hb in the context of depressive behaviors, it increases glutamatergic inputs onto VTA GABAergic
interneurons to inhibit VTA DAergic neurons, thereby decreasing the DA release in the NAc [82,83].
VTA, ventral tegmental area; NAc, nucleus accumbens; PFC, prefrontal cortex; HP, hippocampus;
Hb, habenula.

4. ERK in Nicotine and Other Psychostimulant-Induced Addiction

ERK is a serine-threonine protein kinase and a member of the mitogen-activated
protein kinase (MAPK) family. It has been reported to play essential roles in cellular
proliferation, differentiation, neuronal survival, and synaptic plasticity [84,85]. ERK has
two isoforms, ERK1 (p44 MAPK) and ERK2, which are both expressed throughout the
mesolimbic system in the mouse brain, including the regions such as the PFC, NAc,
amygdala, and VTA [86]. ERK is recruited for signaling transfer in response to extracellular
stimulations and the initiated signal cascade. BDNF activates receptor tyrosine kinases
(RTKs), which are correlated with adapter protein recruitment such as Shc, and causes
the activation of GTPase Ras, serine-threonine kinase Raf, and MAPK-ERK kinase (MEK),
which in turn, phosphorylate and activate ERK. Moreover, Ras is also activated through
L-type calcium channels and NMDAR. The Ca2+ influx evoked by the electrical and
pharmacological activation of these channels and receptors plays a critical role in the
signal cascade. Furthermore, dopamine D1 receptors (D1Rs) could also elevate Ca2+ influx
and lead to the activation of protein kinase A (PKA) and Raf, which further causes ERK
phosphorylation [87]. The phosphorylation of ERK leads to the activation of downstream
targets such as Elk-1 transcription factor [88], and CREB through mitogen- and stress-
stimulated kinase 1 (MSK1) and ribosomal S6 kinase (RSK) [89,90]. Since ERK is regulated
by DAergic and glutamatergic signals, it has been suggested that ERK is involved in
psychostimulant-induced addiction and plays a crucial role in the brain reward system and
learning process [91]. Here, we provide a simplified schematic representation of the ERK
signal cascade involved in psychostimulant-induced addiction (Figure 2).
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ERK evokes the activation of downstream targets such as Elk1 and MSK1. The latter could activate 
and phosphorylate CREB. These transcriptional factors cause the transcription of IGEs such as c-Fos 
and zif268, which become the underlying mechanism of psychostimulant-induced addiction. D1R, 
dopamine D1 receptor; DA, dopamine; PKA, protein kinase A; NMDAR, N-methyl-D-aspartate re-
ceptor; Ras-GRF1, Ras protein-specific guanine-nucleotide releasing factor; BDNF, brain-derived 
neurotrophic factor; TrkB, tropomyosin receptor kinase B; MEK, MAPK-ERK kinase; MSK1, mito-
gen- and stress-stimulated kinase 1; CREB, cAMP response element-binding protein; IGEs, imme-
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The activation of ERK is mediated by CaMKII in stimulant drug-induced addiction. 
Nicotine-induced elevation of ERK phosphorylation was found to be blocked in mouse 
primary cortical neurons following treatment with the CaMKII inhibitor KN-93 [94]. 
Treatment with KN-93 also significantly reduced nicotine-induced ERK phosphorylation 
levels in PC12h cells [95]. The calcium chelator BAPTA completely blocked nicotine-in-
duced ERK phosphorylation, and L-type calcium channel blocker significantly decreased 

Figure 2. Simplified schematic diagram of ERK signal cascade in the mouse brain involved in psychostimulant-induced
addiction. Nicotine and other stimulant drugs activate D1R and facilitate DA release in the DA terminals, leading to
PKA and Raf activation. D1R activation causes L-type Ca2+ channels activation [92], contributing to Ca2+ influx and
elevation of Ca2+ level, which leads to the activation of Raf. Raf is also activated by Ca2+ influx through NMDAR,
which is mediated by the stimuli of Ras-GRF1 [93], and by BDNF through the binding and activation of TrkB. In turn,
Raf activation leads to the phosphorylation and activation of MEK and ERK. The phosphorylation of ERK evokes the
activation of downstream targets such as Elk1 and MSK1. The latter could activate and phosphorylate CREB. These
transcriptional factors cause the transcription of IGEs such as c-Fos and zif268, which become the underlying mechanism
of psychostimulant-induced addiction. D1R, dopamine D1 receptor; DA, dopamine; PKA, protein kinase A; NMDAR,
N-methyl-D-aspartate receptor; Ras-GRF1, Ras protein-specific guanine-nucleotide releasing factor; BDNF, brain-derived
neurotrophic factor; TrkB, tropomyosin receptor kinase B; MEK, MAPK-ERK kinase; MSK1, mitogen- and stress-stimulated
kinase 1; CREB, cAMP response element-binding protein; IGEs, immediate early genes.

The activation of ERK is mediated by CaMKII in stimulant drug-induced addiction.
Nicotine-induced elevation of ERK phosphorylation was found to be blocked in mouse
primary cortical neurons following treatment with the CaMKII inhibitor KN-93 [94]. Treat-
ment with KN-93 also significantly reduced nicotine-induced ERK phosphorylation levels
in PC12h cells [95]. The calcium chelator BAPTA completely blocked nicotine-induced ERK
phosphorylation, and L-type calcium channel blocker significantly decreased ERK phos-
phorylation levels following nicotine treatment, which suggests that Ca2+ is critical in the
ERK phosphorylation process [94]. Moreover, the crosslinking and co-immunoprecipitation
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experiments proved that CaMKII forms a tight complex and interacts with NMDAR in
living cells [96,97]. ERK phosphorylation induced by cocaine treatment is in accordance
with the NMDAR function that NMDAR activation plays a role in neuronal adaptions
involved in drug abuse [98]. Based on the evidence that Raf, the upstream target of
ERK, is activated by Ca2+ influx through NMDAR, it is reasonable that CaMKII mediates
and plays a critical role in ERK phosphorylation, which is involved in psychostimulant-
induced addiction. Consistent with CaMKII, the activation of ERK is also involved in
nicotine and other drugs of abuse. Some studies revealed that seven consecutive days
of nicotine administration successfully elevated ERK phosphorylation levels in the rat
NAc [99]. Subcutaneous administration of nicotine into adolescent rats caused a robust
increase in ERK1/2 phosphorylation levels in the nucleus accumbens shell [100]. ERK1/2
phosphorylation levels were significantly upregulated following nicotine treatment in
PC12h cells, while this elevation was inhibited by treatment with the MEK inhibitor,
U0126 [95]. Furthermore, morphine induced significantly increased mice CPP behaviors,
and ERK phosphorylation levels in the VTA were inhibited following treatment with the
inhibitor, compound 511 [101]. Methamphetamine administration significantly increased
the behavioral sensitization evaluated by the total distance in mice, and elevated ERK
phosphorylation and ∆FosB levels in the mouse NAc [102]. Methamphetamine injection
also elevated the expression of GluN2B, which in turn caused a significant increase in
ERK, CREB phosphorylation, and BDNF levels [103]. Ethanol-induced enhancement of
ethanol sensitization and ERK phosphorylation levels were observed in the mouse NAc
shell, and these elevations were inhibited by pretreatment with MPEP, which is an mGluR5
antagonist [104]. Here, we summarize some evidence revealing that ERK activity is related
to nicotine and other psychostimulant-induced addiction in the brain reward circuitry
(Table 2). As a consequence of nicotine and other psychostimulants in activation of CaMKII
and ERK signaling pathways, some clinical signs and symptoms of drug withdrawal were
also introduced (Table 3).

Table 2. Evidence that ERK activity is fully involved in the circuitry of brain regions for various drugs of abuse.

Drug Region ERK Activity

Nicotine
Nucleus accumbens Phosphorylation level increased [56]
Prefrontal cortex Phosphorylation level increased [105,106]
Hippocampal CA1 Phosphorylation level increased [56]

Morphine
Nucleus accumbens Phosphorylation level increased [105]
Prefrontal cortex Phosphorylation level increased [105]
Ventral tegmental area Phosphorylation level increased [107]

Cocaine
Nucleus accumbens Phosphorylation level increased [105]
Prefrontal cortex Phosphorylation level increased [10,105]
Striatum Activity increased [88]

Amphetamine
Nucleus accumbens Activity is crucial for amphetamine-induced CPP [108]
Medial prefrontal cortex Phosphorylation level increased at synaptic sites [109]
Striatum Phosphorylation level increased [76,110]

Table 3. Clinical signs and symptoms as a consequence of various drugs of abuse in activation of CaMKII and ERK
signaling pathways.

Drug Clinical Signs of Drug Withdrawal

Nicotine Anxiety, Depression, Craving, Restlessness and impatience, Increased appetite and body weight [111]

Morphine Anxiety, Nausea, Emesis, Diarrhea, Body aches, Restlessness, Agitation and dysphoria [112,113]

Cocaine Anxiety, Depression, Craving, Restlessness, Vivid, unpleasant dreams, Fatigue and exhaustion, Increased
appetite [114]

Amphetamine Anxiety, Depression, Irritability, Body aches, Impaired social functioning Vivid, unpleasant dreams, Fatigue,
Increased appetite [115]
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5. Involvement of CaMKII and ERK in the DAergic System in the Nucleus Accumbens

Dopamine receptors are members of the G protein-coupled receptor superfamily. They
are divided into two predominant groups, the D1-like (D1, D5) and D2-like (D2, D3, D4)
receptors, based on the characteristic that activates adenylyl cyclase (AC) through binding
with Gs/olf and inhibits AC through binding with Gi/o [116,117]. Almost 95% of neurons
in the NAc are GABAergic MSNs [118]. The subpopulations of D1Rs and D1 MSNs in the
NAc project to the substantia nigra and VTA via direct pathway, which leads to the basal
ganglia nuclei that innervate non-basal ganglia areas, and project to the ventral pallidum
(VP) via an indirect pathway, in which the nuclei innervate the basal ganglia areas [119].
D2 MSNs project to the VP through a direct and an indirect pathway, suggesting that some
D1 MSNs and D2 MSNs have different projections [119]. Some studies have indicated
that D1R and dopamine D2 receptor (D2R) are co-expressed in medium spiny projection
neurons in the NAc and globus pallidus and form D1R-D2R heteromers in cell bodies and
presynaptic terminals [120,121]. Our investigations showed that more than one-half of DA
receptor-positive neurons are colocalized with both D1R and D2R in the mouse NAc.

D1R and D2R are both crucial in the context of drug abuse, including nicotine, cocaine,
and other stimulant drugs. Passive inhalation of cigarette smoke significantly elevates the
mRNA levels of both D1R and D2R in the rat NAc [122]. Subcutaneous administration
of a mixed D1R and D2R antagonist cis-flupenthixol suppressed the escalation behavior
in cocaine self-administration in rats [123]. D1 MSNs play an important role in learning
acquisition based on the reward, and D2 MSNs are required for the switch when the
learning strategy is altered [124]. CaMKII activity is elevated via Ca2+ release from the
intracellular pool due to the stimulation of the D1 and D2 heteromer [125]. The stimulation
of D1Rs in the NAc causes DA release, which activates cyclic adenosine monophosphate
(cAMP) and protein kinase A (PKA), provoking cocaine-induced reinforcement and re-
instatement [126,127]. Cocaine reinstatement behaviors induced by self-administration
elevate CaMKII autophosphorylation and GluR1 phosphorylation levels in a D1R-mediated
manner in the rat NAc shell and also increase the cell-surface expression level of GluR1-
containing AMPA receptors in the NAc shell, suggesting that D1R activation and CaMKII
are critical in drug addiction [60]. hM4D-CNO rats, animal models exhibiting elevated
responses to methamphetamine relative to the vehicle, showed increased D1R and CaMKII
expression levels in the dorsal striatum [128]. D1R mutant mice show impaired spatial
memory acquisition and significantly decreased CaMKII and CREB phosphorylation levels
relative to WT mice [129]. In addition, an epidemiologic study revealed that the DRD1 gene
is correlated with nicotine addiction by investigating the relationship between five single-
nucleotide polymorphisms within or near the DRD1 gene and nicotine addiction [130].
Administration of the D1R antagonist SCH-23390 blocked nicotine-induced single-pulse
stimulation of DA release and locomotor sensitization in rats [131,132] and nicotine-induced
dendritic remodeling in the NAc of adolescent rats [133]. The intracerebral infusion of the
D1R antagonist SCH-39166 into the rat NAc shell could inhibit nicotine-induced CPP [134].
Taken together, D1R signaling in the NAc is essential for stimulant drug exposure through
CaMKII activities.

D1R signaling also participates in the ERK signaling cascade. DA release is promoted
by exposure to the stimulant drug, which contributes to the activation of D1R and increase
of Ca2+ influx [87], and further activates PKA and Raf, which in turn activate Ras-Raf-MEK
signaling and result in ERK phosphorylation. Some studies have reported that DARPP-32
is involved in D1R-mediated ERK phosphorylation in the mouse striatum, and DARPP-
32 is activated by PKA and indirectly regulates ERK activity [135]. DARPP-32 mutant
mice exhibit reduced ERK phosphorylation levels in the NAc and dorsal striatum [135].
Furthermore, the activation of D1R increases ERK phosphorylation induced by cocaine in
the caudate-putamen [136]. The antagonism of D1R and NMDAR by pretreatment with
SCH-23390 and MK801 significantly inhibits the phosphorylation of ERK in the NAc and
dorsal striatum [88]. Systemic administration of SL327, an MEK inhibitor, prior to the
administration of cocaine, blocks the cocaine-induced increase in ERK phosphorylation
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levels and hyperlocomotion [88]. ∆9-tetrahydrocannabinol-(THC) induces elevation of ERK
phosphorylation levels in the NAc of rats, and the dorsal striatum is partially abrogated
by MK801 and completely blocked by SCH-23390 treatment [137]. These observations
indicate that the activation of D1R and NMDAR plays a critical role in the process of
ERK phosphorylation.

D2R is divided into two spliced isoforms, the long isoform and the short isoform,
which is based on the difference of a 29 amino acid insert in the third cytoplasmic loop [138].
Arginine-abundant domains of the N-terminal fraction in the third cytoplasmic loop of D2R
are CaM-interacting sites. CaM, as a cellular Ca2+ sensor, plays a crucial role in activating
ion channel-regulating enzymes that are involved in the cell cycle and development [139].
CaMKIIα interacts with D2R via the IL3 domain to regulate intracellular signaling, such
as CaM-dependent signaling and ERK [140]. D2Rs are highly expressed in the striatum,
NAc, and olfactory tubercle [117,141]; have an inhibitory function in regulating AC and cal-
cium channels; and activate inhibitory G-protein-activated inwardly rectifying potassium
channels (GIRK) [142]. D2Rs mediate various brain functions and modulate cognition,
movement, and motivation, suggesting that D2Rs are crucial in the DAergic system and
become pharmacological targets in the context of Parkinson’s disease, schizophrenia, and
drug abuse [117,143]. D2R signaling contributes to opiate memory acquisition in the phases
of chronic opiate exposure and withdrawal, while D1R signaling is necessary for acute
opiate memory in the drug-naïve condition [144]. Significant Ca2+ signaling was detected
in NG108-15 cells stably expressing D2L receptor following transfection relative to the D2S
receptor [145]. An increase in intracellular Ca2+/CaMKII signals induced by D2R stimula-
tion using quinpirole was observed in N108-15 cells overexpressing the D2L receptor [145].
Impaired locomotor activities and significantly decreased reinforcement to the reward
effects of drug exposure, including ethanol and cocaine, were observed in D2R knockout
(D2R−/−) mice [146–148]. Ca2+-dependent signaling is required for CaMKII activation, and
ERK and BDNF are also altered in drug abuse through Ca2+ signaling stimulation [139,149].
Our previous investigations showed that chronic nicotine administration robustly elevates
CaMKII and ERK phosphorylation levels as well as BDNF level in the WT mice in both the
NAc and hippocampal CA1 region, whereas D2R−/− mice show resistance in response to
nicotine administration and failure of upregulation of above protein levels [56].

6. Involvement of LCPUFAs and the Novel Target FABP3 in Nicotine and Other
Psychostimulant-Induced Addiction

Long-chain polyunsaturated fatty acids (LCPUFAs), which are abundant in the brain
and retina, play an essential role in composing neuronal membrane phospholipids and
developing the brain [150,151]. LCPUFAs including ω-3, such as docosahexaenoic acid
(DHA) and eicosapentaenoic acid (EPA), andω-6, such as arachidonic acid (AA), are not
only involved in Alzheimer’s disease [152,153], schizophrenia [154] and other neurode-
generative diseases, but are also essential in psychostimulant-induced addiction. Rats
receiving soybean oil, which is abundant with ω-6 fatty acids, exhibited significantly
higher preference scores than the control group in amphetamine-induced CPP behavior,
and showed anxiety-like behaviors in the elevated plus maze test [155]. A marked increase
in protein carbonyl level was observed in the cortex and hippocampus in rats supple-
mented with food rich inω-6 fatty acids, suggesting that uptake ofω-6 facilitates stimulant
drug-induced addiction since protein carbonyl level is correlated with psychostimulant-
induced preference and withdrawal behavior [155]. The endocannabinoid system, which
regulates the pharmacological effects of cannabis, plays a role as a modification factor in
the reinstatement effect of methamphetamine seeking behavior through the mediation
of the AA cascade [156]. The administration of the selective D2R agonist quinpirole ele-
vated AA metabolism and signaling in the vehicle group of rats, while these elevations
were blocked by valproate treatment [157]. The results of analyzing regional brain incor-
poration coefficients following intravenous administration of radiolabeled AA suggest
that D-amphetamine activates D2R signaling via the involvement of AA signaling [158].
However, the supplementation of fish oil, which is abundant in ω-3 fatty acid, led to a



Int. J. Mol. Sci. 2021, 22, 3189 10 of 18

decreased preference score in amphetamine-induced CPP and the reduction of D1R and
D2R expression levels [159]. Clinical investigations have demonstrated that six cocaine
addicts with a history of aggressiveness show significantly decreasedω-3 fatty acid DHA
in the measurement of plasma levels, suggesting that there is a possible correlation between
ω-3 fatty acid deficiency and aggressiveness in humans [160]. These findings established
thatω-3 LCPUFAs DHA, EPA, andω-6 LCPUFA AA are involved in, have negative effects,
and have positive effects in the context of psychostimulant-induced addiction, respectively.

Since LCPUFAs are insoluble in water, fatty acid-binding proteins (FABPs), which
play the role of cellular shuttles, are necessary for intracellular trafficking [161]. FABPs
interact with and as intracellular transporters of THC and cannabidiol in decreasing the
metabolism of endocannabinoids [162]. Pretreatment with the FABP inhibitor SBFI26
significantly reduced ethanol consumption in mice as FABP5 and FABP7 inhibited the
transport of anandamide to fatty acid amide hydrolase and elevated anandamide levels in
the mouse brain, thereby increasing the preference and consumption of ethanol [163]. FABP
5/7 double knockout mice exhibit similar acquisition of cocaine-induced CPP relative to
WT mice, whereas these mice do not exhibit stress-induced preference and show decreased
levels of serum corticosterone under stress relative to WT mice [164]. Recent studies have
reported that FABP5 knockdown in the adult rat NAc shell with RNA interference via
adeno-associated viral vector attenuates cocaine self-administration and modulates the
excitability of MSNs in the NAc shell [165]. FABP3 binds to ω-6 PUFAs [166], forms a com-
plex, and colocalizes with D2R in the glutamatergic terminals and cholinergic interneurons
in the dorsal striatum of mice [167]. FABP3−/− mice show increased haloperidol-induced
catalepsy, suggesting that FABP3 is involved in DAergic signaling [167]. In addition,
FABP3−/− mice exhibit cognitive dysfunction, hyperlocomotion, and impairment of fear
extinction, which demonstrates that FABP3−/− mice exhibit post-traumatic stress disorder
(PTSD)-like behaviors [168].

The involvement of FABP3 in stimulant drugs, including nicotine-induced addiction,
has not yet been fully investigated. Since there is no specific evidence suggesting that
FABP3−/− mice show D2R dysfunction and exhibit behaviors related to the DAergic sys-
tem, we demonstrated that FABP3−/− mice exhibit impaired CPP behaviors following
chronic nicotine administration. This impairment was correlated with the lack of respon-
siveness of both CaMKII and ERK phosphorylation in the NAc. In FABP3−/− mice, the
number of D2R-positive neurons was obviously elevated, whereas the number of D1R-
positive neurons and the responsiveness of c-Fos level in response to nicotine, which is
closely correlated with CaMKII autophosphorylation levels, were significantly reduced,
implying that FABP3−/− mice show aberrant D2R signaling and further affect D1R and
c-Fos signaling. These data suggest that FABP3 could be a novel target in nicotine-induced
addiction and other drug abuses affecting DAergic signaling and provide evidence for
developing novel therapies in the future. Intriguingly, the basal levels of CaMKII au-
tophosphorylation and its downstream target are decreased in the D2R−/− mice NAc and
hippocampal CA1 region. However, significantly increased CaMKII autophosphorylation
levels were observed in the NAc of FABP3−/− mice. FABP3 is also a target in terms of
PTSD-like symptoms as it is correlated withω-3 andω-6 PUFA transport [169], andω-3
PUFA supplements ameliorate PTSD-like symptoms in patients [170]. FABP3−/− mice
show increased locomotor activities related to PTSD-like behaviors [168], whereas D2R−/−

mice exhibit hypolocomotion, implying a disturbance of DA receptor signaling [56]. Al-
though an increase in intracellular Ca2+/CaMKII signaling induced by D2R stimulation is
observed in NG108-15 cells overexpressing the D2L receptor, D2R partially but not com-
pletely colocalizes with FABP3 and mediates Ca2+/CaMKII signals independent of FABP3.
FABP3 is possibly required to inhibit the function of D2R in D1R signaling since CaMKII
autophosphorylation in D2R-positive neurons was increased in the NAc of FABP3−/− mice.
Consecutive nicotine administration produces DA level elevation and causes enhanced
basal levels of cAMP/Ca2+ signaling through D1R activation, whereas this signaling nega-
tively regulates D2R/FABP3 signaling. D1R activation provokes calcium influx, causing
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CaMKII activation and its migration to the nucleus, subsequently inducing enhancement
of CREB/c-Fos signaling, which underlies the process of nicotine-induced addiction and
other drug abuse. However, in FABP3−/− mice, D2R/FABP3 signaling is impaired due
to FABP3 deficiency, which eliminates the negative regulation of D2R/FABP3 signaling
and leads to elevated cAMP/Ca2+ levels and CREB phosphorylation, as well as c-Fos
activities. This constitutively increased signaling could not trigger nicotine addiction and
possibly become the underlying mechanism of the failure of nicotine-induced addiction in
FABP3−/− mice (Figure 3).
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Figure 3. Schematic model of dopamine signaling pathways underlying nicotine-induced addiction
in the FABP3−/− mice NAc. In FABP3−/− mice, the lowered cAMP/Ca2+ levels regulated by
D2R/FABP3 signaling derepresses due to the impaired D2R function through the lacking FABP3,
which provokes elevated cAMP/Ca2+ levels and increases CREB/c-Fos signaling. These constitutive
elevated cAMP/Ca2+ levels and signals underlie the mechanism of failed acquisition of nicotine-
induced addiction in FABP3−/− mice.

7. Conclusions

This article reviewed the underlying brain mechanisms involved in nicotine-induced
addiction and the fundamental function of CaMKII and mediated kinase ERK in nicotine-
induced addiction and other drug abuse. The DA receptor-related signals in the NAc
are crucial in the exposure to stimulant drugs, and perturbation of these signals causes
impaired acquisition of psychostimulant-induced addiction. Finally, we introduced a
novel protein target, FABP3, in nicotine-induced addiction, and elucidated the underlying
mechanisms of the failed process in nicotine-induced addiction, demonstrating that FABP3
is an anticipated therapeutic target in nicotine addiction and other drugs of abuse affecting
DAergic systems.
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