
 International Journal of 

Molecular Sciences

Review

Involvement of IL-4, IL-13 and Their Receptors in
Pancreatic Cancer

Jingwei Shi , Xujun Song, Benno Traub, Michael Luxenhofer and Marko Kornmann *

����������
�������

Citation: Shi, J.; Song, X.; Traub, B.;

Luxenhofer, M.; Kornmann, M.

Involvement of IL-4, IL-13 and Their

Receptors in Pancreatic Cancer. Int. J.

Mol. Sci. 2021, 22, 2998. https://

doi.org/10.3390/ijms22062998

Academic Editor: Mohd W. Nasser

Received: 15 February 2021

Accepted: 9 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23,
89081 Ulm, Germany; shijingwei555@126.com (J.S.); 101012268@seu.edu.cn (X.S.);
benno.traub@uniklinik-ulm.de (B.T.); michael.luxenhofer@uni-ulm.de (M.L.)
* Correspondence: marko.kornmann@uniklinik-ulm.de; Tel.: +49-731-500-53560

Abstract: Interleukin (IL)-4 and IL-13 are known as pleiotropic Th2 cytokines with a wide range
of biological properties and functions especially in immune responses. In addition, increasing
activities have also been determined in oncogenesis and tumor progression of several malignancies.
It is now generally accepted that IL-4 and IL-13 can exert effects on epithelial tumor cells through
corresponding receptors. Type II IL-4 receptor (IL-4Rα/IL-13Rα1), predominantly expressed in non-
hematopoietic cells, is identified to be the main target for both IL-4 and IL-13 in tumors. Moreover,
IL-13 can also signal by binding to the IL-13Rα2 receptor. Structural similarity due to the use of the
same receptor complex generated in response to IL-4/IL-13 results in overlapping but also distinct
signaling pathways and functions. The aim of this review was to summarize knowledge about IL-4
and IL-13 and their receptors in pancreatic cancer in order understand the implication of IL-4 and
IL-13 and their receptors for pancreatic tumorigenesis and progression and for developing possible
new diagnostic and therapeutic targets.

Keywords: interleukin-4; interleukin-13; interleukin-4 receptor; interleukin-13; cytokine; pancre-
atic cancer

1. Introduction

Despite advances in treatment, cancer is globally the second-leading cause of death [1,2].
The 5-year relative survival rate is lowest for cancers of the pancreas due to aggressive
local growth combined with the rapid development of distant metastases and very lim-
ited improvement of surgical and medical treatments over recent decades [3]. Therefore,
innovative diagnostic and therapeutic options are desperately needed for the management
of this dismal disease. To reach this target it is vital to understand pancreatic cancer de-
velopment and progression, in which the tumor microenvironment (TME) has received
significant attention [4–7]. Many studies have identified heterogeneous components of
the TME in epithelial cancers, containing fibroblasts of several phenotypes, extracellular
matrix, immune and inflammatory cells, blood and lymph vessels, and nerves [8–10], all
capable of influencing malignant behavior [11,12]. Among the immune cells recruited
to a tumor site, tumor-associated macrophages (TAMs) are particularly plentiful and are
present at all stages of tumor progression [13,14]. Polarized in the environment of chronic
inflammation, M2-like phenotype TAMs [15,16] have been shown to facilitate angiogenic
responses, promote tumor proliferation, and ultimately bring out tumor metastasis, instead
of diminishing inflammation and helping to eradicate tumor cells [17–19]. In addition, the
presence of specific receptors and the production of cytokines by the tumor cells as well as
the surrounding microenvironment [20–22] have been directly linked to aggressive tumor
growth, invasion, metastasis, and suppression of tumor-directed immune surveillance
mechanisms [23–25].

Considering the cytokines produced in the TME, the role of the interleukin-4 (IL-
4)/interleukin-13 (IL-13) cytokine-receptor system [26–28] has shown significant influence
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on cancer cell survival, progression, and metastasis [29–31]. The aim of this review was
to summarize the present knowledge about the IL-4/IL-13 cytokine-receptor system fo-
cusing on pancreatic cancer to help to develop attractive targets for novel diagnostic and
therapeutic approaches for pancreatic cancer.

2. Methods

A literature search was performed in PubMed in May 2020 by using the terms “IL-4”,
“interleukin-4”, “IL-13”, “interleukin-13”, “IL-4R”, “interleukin-4 receptor”, “IL-13R”, or
“interleukin-13 receptor” in combination with “pancreatic cancer”. In total, 146 articles were
identified through this database search. After screening the titles and abstracts, 76 articles
related to the topic were included, while 70 articles were excluded because of irrelevance.
An additional 67 articles were identified through references cited in the retrieved articles.
Only abstracts, manuscripts, and reviews in the English language were included in this
review. The flow-chart of relevant references included is as follows (Figure 1):
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3. IL-4 and IL-13 Cytokines and Their Receptors

IL-4 and IL-13, encoded by adjacent genes and sharing similar transcriptional regula-
tory elements [32], are widely recognized as pleiotropic Th2 cytokines [33,34] with 25–30%
sequence homology and many similar characteristics [35,36]. Studies demonstrated that
IL-4 and IL-13, secreted by epithelial cells, lymphocytes, eosinophils, basophils, and mast
cells [37–41], have a wide range of overlapping but also distinct biological functions, partic-
ularly in inflammatory and allergic diseases [41,42]. Nevertheless, increasing activities of IL-
4 and IL-13 in cancers such as lymphoma [43,44], breast [45,46], lung [19], colorectal [47,48],
and oral squamous cell [49], as well as pancreatic [50] have been found closely associated
with tumorigenesis and metastasis. It has been determined that the overexpression of
IL-4 and/or IL-13 in the microenvironment of carcinomas, produced by stroma or tumor
cells can promote tumor progression in autocrine and paracrine ways [51–54] through
multiple mechanisms such as stimulating the polarization of macrophages to the alterna-
tively activated M2 phenotype [16,55], initiating oncogenesis [56], enhancing survival via
mediating resistance to apoptosis and strengthening metabolism [30,53,57,58], facilitating
proliferation, migration, and invasion via participating in intricated pathways [54,59–61],
and increasing the metastatic tumor burden [18,62].
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The multiple functions of IL-4 are initiated through the binding of IL-4 to its respective
transfer membrane receptor chain (Figure 2), IL-4-receptor (IL-4R), in both the type I
receptor complex, comprising of IL-4-receptor alpha (IL-4Rα) and the common gamma
chain (γc) (IL-4/IL-4Rα/γc) [41], predominantly expressed on hematopoietic cells, and
the type II receptor complex, comprising of IL-4Rα and IL-13-receptor alpha (IL-13Rα) 1
(IL-4/IL-4Rα/IL-13Rα1) [63,64], predominantly expressed on non-hematopoietic cells [65].
IL-13 is commonly identified to bind to two different IL-13-receptors, IL-13Rα1 and IL-
13Rα2 [66]. IL-13Rα1, recruited to IL-4Rα, binds IL-13 with high affinity and forms a
functional receptor for IL-13 (IL-13/IL-13Rα1/IL-4Rα) [63,66]. Thus, the type II IL-4R is
generated by the binding of IL-13 to IL-13Rα1 and subsequent heterodimerization with
IL-4Rα. IL13Rα2 was hypothesized to be a decoy receptor for IL13Rα1 and the type II IL-4R
complex [67,68], but updated evidence suggests that IL-13 may signal through IL-13Rα2 to
promote pancreatic cancer cell proliferation and invasion [68–70].
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In response to IL-4/IL-13, the diverse receptor heterodimers induce the phosphoryla-
tion of janus tyrosine kinases (JAKs, JAK1, and JAK2) or tyrosine kinase 2 (Tyk2) [71,72],
which activates further downstream signaling (Figure 2). The proline-rich box regions in the
intracellular domain of the receptors thereby mediate association with the JAKs instead of
exhibiting an intrinsic kinase activity [73]. Signal transducer and activator of transcription
(STAT)6 [74], insulin receptor substrate (IRS)/phosphoinositide 3-kinase (PI3K)/protein
kinase B (AKT) [75], IRS/extracellular signal-regulated kinase (ERK) [41], and the mecha-
nistic target of rapamycin (mTOR) [62] are supposed to be the main downstream signaling
pathways [52,76]. In addition, IL-13 appears to play its own distinct role in cancer cells
through binding to IL-13Rα2 with high affinity [77] and mediating invasion and metastasis
via IL-13Rα2, ERK/activator protein 1 (AP-1) signaling, and matrix metalloproteinases
(MMPs) pathways [78]. Besides, Song summarized the structure of IL-4R, IL-13R, and the
downstream complex web where IL-4/IL-13 initiated signal transduction through three
types of IL-4 receptors and three types of IL-13 receptors [79].

4. IL-4 in Pancreatic Cancer

It was reported that the IL-4 protein level was significantly higher in the plasma of
pancreatic ductal adenocarcinoma (PDAC) patients compared with control participants [80,81].
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Piro et al. demonstrated that circulating IL-4 was an independent prognostic factor for
disease-free survival in PDAC patients after surgical resection, where a level of IL-4
higher than a defined cutoff was significantly associated with worse prognosis [82]. These
data indicate the possible association between the excessive presence of IL-4 and PDAC
development and progression. Expression of endogenous IL-4 has also been determined
in total cell lysates from pancreatic cell lines COLO-357, MIA PaCa-2, PANC-1, ASPC-1,
Capan-1, and T3M4 on the protein level by ELISA, and on the mRNA level by real-time PCR
analysis [54], which points to possible autocrine and paracrine actions in pancreatic cancer.

Studies demonstrated that IL-4 exerts stimulating effects on pancreatic cancer cell
proliferation and survival. For example, previous work showed that exogenous human
IL-4 (5 nM) enhanced the growth of COLO-357 [50], and further studies confirmed that IL-4
exerted dose-dependent increases in the growth of four other cultured pancreatic cancer cell
lines [54]. Considering the close relationship of IL-4 with TAMs, there is little surprise that
IL-4 was shown to induce the ability of TAM-derived cathepsin protease, leading to cancer
progression, invasion, and angiogenesis [83]. In an indirect coculture system, M2-polarized
TAMs induced by IL-4-treatment enhanced the malignant phenotypes of pancreatic cancer
cells, promoting epithelial–mesenchymal transition (EMT), and eventually leading to
increased cell proliferation and migration [84]. These findings support the dual role
of IL-4 exerting paracrine functions in pancreatic cancer tissue in addition to autocrine
actions. Furthermore, the interactions of IL-4 with other cytokines appear to generate
synergistic effects for tumorigenesis. Wu et al. reported that IL-4 alone or combined
with IL-17A strongly induced the expression of dual oxidase 2 and its cognate maturation
factor, leading to long-lasting H2O2 production and DNA damage in pancreatic cancer
cells, while increased expression of dual oxidase 2 and IL-4R in clinical tumor tissues was
conversely associated with overall patient survival [85]. IL-6 was found to stimulate the
cancer-promoting macrophage phenotype change through regulating the level of receptors
for IL-4 [86]. In addition, IL-4-blockade had a significantly inhibitory impact on pancreatic
cancer progression, where IL-4 neutralizing antibody was proven to inhibit the basal growth
of COLO-357, PANC-1, and MIA PaCa-2 cells [54]. Even more, suppression of IL-4 mRNA
in the liver of cachexia patients with pancreatic cancer [87] and improved performance
of carcinoma-bearing mice treated by IL-4 [88] may provide beneficial approaches for
pancreatic cancer patients suffering from tumor-induced cachexia in the future.

It is important to understand the signaling pathways of IL-4 in pancreatic cancer as
possible therapeutic targets. Pancreatic cancer cells were determined to express the tran-
scription factors STAT1, STAT3, and STAT6 at various levels, while Stat3 phosphorylation
was enhanced in response to IL-4 stimulation [54], and STAT6 nuclear translocation was
increased after exposure to IL4 [85]. IRS-2 was found to overexpress in human pancreatic
cancer and might stimulate tumor growth through enhancing mitogenic signaling via the
PI3-kinase pathway [89]. Prokopchuk et al. showed that IL-4 induced strong tyrosine phos-
phorylation of IRS-1 and IRS-2 and enhanced mitogen-activated protein kinase (MAPK)
and Akt activity [54]. In addition, Traub et al. determined that the strong phosphorylation
of pro-oncogenic pathways containing c-Jun, ERK-1/2, and STAT3 in Capan1 cells were
induced by exogenous IL-4 stimulation [90], while the specific molecular inhibitor of STAT3
phosphorylation LLL12 [91], showed inhibition of pancreatic cancer cell survival.

5. IL-13 in Pancreatic Cancer

A significant elevation of IL-13 protein detected in the plasma of pancreatic cancer
patients was reported [92]. In addition, increased IL-13 levels were correlated with elevated
levels of myeloid-derived suppressor cells that were associated with increased risk of death
from pancreatic cancer. IL-13 protein has also been detected in both total cell lysates and
conditioned medium of COLO-357, MIA PaCa-2, PANC-1 ASPC-1, Capan-1, and T3M4
cells by ELISA, while the presence of IL-13-mRNA transcript was examined by Northern
blotting [93], indicating that pancreatic cancer cells can produce and also secrete IL-13
to exert autocrine and paracrine effects. In addition, high IL-13 immunoreactivity was
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determined in the ductal cancer cells in 43% (30 of 70) of pancreatic cancer tissues [93].
IL-13 immunoreactivity was not present in normal ductal, acinar, or islet cells [93].

It has also been shown that IL-13 enhanced the growth of ASPC-1, Capan-1, and COLO-
357 cells in a dose-dependent manner along with the percentage of cells increased in S-phase
and reduced in G0/G1 [50,93]. There was no correlation between the expression level of
IL-13-receptor and cell proliferation induced by exogenous IL-13 [50,93], which indicates
the intricate interactions between IL-13 with its receptors may exert complicated effects
on proliferation depending on cancer cell types. Moreover, it was reported that synthetic
thyalpha1 promoted PANC-1 cell proliferation with increased secretion of IL-13 [94], which
further confirmed the close association between IL-13 with pancreatic cancer cell growth.
Besides the direct mitogenic effects of IL-13 on pancreatic cancer cells, tumor-cell-derived
IL-13 along with IL-13 produced by other cells in the TME-like mast cells [95] stimulated
the proliferation of pancreatic stellate cells (PSCs). PSCs are known to participate in
successfully reducing the effect of cancer-cell directed therapeutic drugs and regulating the
interactions of immunosuppressive cells with stromal cells, overall promoting the growth
of pancreatic cancer. In this context, IL-13 was also identified to induce tissue fibrosis
in the liver [92] and lung [96,97] with the involvement of AP-1, transforming growth
factor beta 1 (TGF-β1) and IL-13Rα2. Furthermore, IL-13 secreted by activated PSCs was
found to initiate the polarization of TAMs in the TME [98], to promote pancreatic fibrosis,
and to mediate pancreatic tumorigenesis [99]. Thus, there is the possibility that IL-13, in
addition to imposing direct stimulating effects on pancreatic cancer cell progression, may
also contribute to the inhibition of anti-tumor immune mechanisms, thereby facilitating
tumor spread. Similar to the blockade of IL-4, incubation of ASPC-1 and Capan-1 cells with
increasing concentrations of IL-13 neutralizing antibody showed an inhibitory effect on cell
growth in a dose-dependent manner, while the mitogenic activity of IL-13 was significantly
suppressed due to preincubation with the neutralizing antibody in Capan-1 cells [93].
In addition, the treatment of mast-cell-conditioned medium with neutralizing anti-IL-13
antibody showed a suppressive impact on the proliferation of pancreatic stellate cells [95].

It has been shown that IL-13 promoted pancreatic cancer cell proliferation in associa-
tion with the increased phosphorylation of p44/42 MAPK (ERK1/2) in ASPC-1, Capan-1,
and COLO-357 cells, and that both the tyrosine phosphorylation of IRS-1 and IRS-2 and PI3-
kinase activity was enhanced by IL-13 in pancreatic cell lines [93]. Li et al. demonstrated
that thymosinalpha1 stimulated pancreatic cancer cell proliferation with the increase in
IL-13 accompanying the activation of ERK1/2 and c-Jun N-terminal kinase (JNK) [94].
Furthermore, it was determined that IL-13 stimulation induced the activation of AP-1 tran-
scription factors like c-Fos, c-Jun, and Fra-2 [100] involved in inducing TGF-β1 promoter
activity, and ERK1/2 [90], which acted as upstream cytokine of the AP-1/MMP pathways
through IL-13Rα2. Exogenous IL-13 was shown to induce the expression of MMPs includ-
ing MMP-9, MMP-12, and MMP-14, which were related to pancreatic cancer invasion in
IL-13Rα2-positive pancreatic cancer cells independent of STAT6 phosphorylation [101].

The possible roles of IL-13 and IL-4 in pancreatic cancer within the TME and metastatic
spread are summarized in Figure 3. IL-4 and IL-13 can display a stimulating influence
on tumor progression and metastasis through interactions with various cells in the TME
including TAMs [19,21,47]. Irrespective of their original functions IL-4 and IL-13 cytokines
are capable of promoting tumor cell growth via autocrine and paracrine mechanisms, while
inhibiting attacking immune cells at the same time. Interestingly, 15 of 16 (94%) specimens
resected from PDAC patients exhibiting high-level co-expression of IL-13 and IL-4R had
lymph node metastases [93], which reveals that IL-13 in conjunction with IL-4R in the
pancreatic cancer cells seems to facilitate lymph node metastasis. During the process of
metastatic spread circulating tumor cells may find optimal environmental conditions in
surroundings rich with these cytokines.
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6. IL-4R in Pancreatic Cancer

The overexpression of IL-4R in cultured pancreatic cancer cell lines and in tumor
specimens resected from pancreatic cancer patients has been determined by different
research groups. Therefore, IL-4R might be targeted for pancreatic cancer therapy. Our
group demonstrated the expression of IL-4Rα in pancreatic cancer cell lines ASPC-1,
Capan-1, MIA PaCa-2, COLO-357, PANC-1, and T3M4 by Northern blot and Western blot
(WB) analysis [50]. Furthermore, it was demonstrated that not only AsPC-1, Capan-1,
MIAPaCa-2, COLO-357, PANC-1, and T3M4 but also BxPC-3, expressed IL-4Rα at various
levels [90]. RNA expression of IL-4Rα was also detected in AsPC-1 and BxPC-3 cells by
quantitative RT-PCR [85]. Shimamura et al. reported that six of eight examined pancreatic
cancer cell lines expressed various levels of IL-4Rα mRNA, whereas human pancreatic
duct epithelial cells showed no expression [102]. Kawakami et al. determined that IL-4R
was overexpressed not only in the membrane of cultured pancreatic cancer cells, but also
in tumor samples derived from patients diagnosed with pancreatic cancer and was barely
present in normal pancreatic tissues [103]. The existence of high IL-4R immunoreactivity
was detected in the ductal cancer cells in 40% (28 of 70) of primary PDAC samples [93].
Immunohistochemical analysis for the expression of IL-4Rα in PDAC specimens showed
60% (42 of 70) cases expressing moderate to high levels of IL-4Rα, whereas only weak
staining for IL-4Rα was observed in 2 of 15 (13%) normal pancreas tissues [102]. Immuno-
fluorescence staining showed an increase not only in the expression of IL-4Rα in pancreatic
cancer cells, but also in the M2 macrophages expressing IL-4Rα in the samples from
pancreatic cancer patients compared with normal tissues [86]. Thus, it is not surprising
that IL-4Rα is involved in the etiology of pancreatic cancer as a risk factor, where a variant
of IL-4 (G3017T) might influence the risk of pancreatic cancer development according to
the presence of allergies [104].

Cell surface receptors provide targets for tumor therapies like cytotoxins and immuno-
toxins, which have the advantage of improved specificity and direct toxicity to tumor cells
overexpressing the receptors with limited toxicity to normal tissues. That IL-4Rα is overex-
pressed in pancreatic cancer and downregulation of IL-4Rα by shRNA plasmids resulted
in reduced cell growth and migration abilities, combining the impaired IL-4 signaling in
pancreatic cancer cells and inhibition on subcutaneous xenograft tumors [90], suggests that
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IL-4Rα may serve as an attractive target for novel approaches to treating pancreatic cancer.
Recombinant IL4-Pseudomonas exotoxins (IL-4-PE), like IL-4-PE38QQR [50] and IL4(38-37)-
PE38KDEL [103], were shown to suppress the progression of pancreatic cancer in vivo and
in vitro. Another IL-4 cytotoxin, composed of IL-4 and truncated Pseudomonas exotoxin,
exhibited specifical and efficient cytotoxicity to pancreatic cancer cells and when com-
bined with gemcitabine showed synergistic anti-tumor activity in vitro and in metastatic
and orthotopic mouse models [102]. Molecules targeting the combination of receptors
for cytokines may show efficient toxicity in cancer. Mohammed et al. described that
the transgenic expression of a molecule comprised of IL-4-receptor exodomain linked to
IL-7-receptor endodomain in a chimeric antigen receptor–prostate stem cell antigen T cells
inverted the inhibitory effects of IL-4 on T cell proliferation, and then reversed immuno-
suppressive TME, leading to the depression of tumor activity in vitro and in vivo [105].
In addition, a hybrid peptide (IL-4Rα-lytic) containing a target moiety to bind to IL-4Rα
and a cellular toxic lytic peptide that selectively kills cancer cells showed anticancer po-
tential in pancreatic cancer cell lines expressing IL-4Rα and in a xenograft mice model of
BXPC-3 cells [106].

7. IL-13R in Pancreatic Cancer

Several studies have shown the excessive existence of the IL-13Rα1 and IL-13Rα2
chains in pancreatic cancer [50,90,100,107,108]. The expression of IL-13Rα1 in pancreatic
cancer cells including ASPC-1, Capan-1, MIA PaCa-2, COLO-357, PANC-1, T3M4, and
BxPC-3 was determined on both protein and mRNA levels [50,90,107]. It has been demon-
strated that high levels of IL-13Rα2 mRNA were expressed in SW1990, MIA-PaCa-2, KLM,
HS766T, and BxPC3 pancreatic cancer cell lines [100,108], while extremely low expression
of IL-13Rα2 was examined in normal pancreatic cells including fibroblasts and ductal
epithelial cell lines. Moderate-to-high density of IL-13Rα2 was found in 52 of 73 (71%)
PDAC samples, while only weak staining of IL-13Rα2 was shown in normal acinar and
ductal cells [100]. In addition, it has also been detected that higher levels of IL-13Rα2 were
expressed in lymph node metastasis [101] and areas of perineural invasion [109], which in-
dicates that IL-13Rα2 may be associated with invasion and metastasis in pancreatic cancer.

The fact that silencing of IL-13Rα2 inhibited invasion of HS766T cells in a Matrigel
invasion assay [101] points out that IL-13Rα2 may be a therapeutic target for pancreatic
cancer treatment. Anti-tumor abilities of IL-13 cytotoxins have been shown in vivo, par-
ticularly in IL-13Rα2-positive pancreatic cancer cell lines, and also in animal models of
human pancreatic cancer [100,108,110]. IL13-PE displayed significant inhibition on tumor
growth, leading to longer survival time, in both orthotopic and xenograft mouse models
of pancreatic cancer [100]. Furthermore, gene transfer of IL-13Rα2 into tumors dramati-
cally sensitized tumors to IL-13 cytotoxin therapy [111–114], which was also observed in
pancreatic cancer [115]. Similar to the synergistic anti-tumor activity of IL-4 cytotoxin and
gemcitabine, the combination of IL-13 cytotoxin with gemcitabine exhibited a remarkable
and specific anti-tumor impact in pancreatic cancer cells and advanced pancreatic cancer
animal models [116]. In addition, it was reported that bispecific ligand-directed toxins
DTEGF13 (catalytic fragment of diphtheria toxin linked to human EGF and IL-13) had high
efficacy and decreased toxicity in PANC-1 and MIAPaCa-2 cells and in a mouse model
of human pancreatic cancer [117,118]. IL-13E13K, in which a glutamic acid (E) residue at
position 13 was substituted by a lysine (K) residue, was shown to competitively inhibit
cell proliferation and signal transduction induced by IL-4/IL-13 through preventing the
formation of type II IL-4R and the phosphorylation of STAT6 [119,120].

8. Future Directions of Research

The overexpressed IL-4/IL-13 cytokine-receptor system in cancers including pancre-
atic cancer may provide an attractive target for novel diagnostic and prognostic tools. For
example, IL-4 was considered to be closely related to the poor outcome of breast cancer
according to the correlation between hormone receptor negativity and an increase in IL-4
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in patients who died from breast cancer [121]. Increased IL-13Rα2 expression might be an
independent prognostic factor for decreased overall survival in gastric cancer patients after
surgical resection [122]. In addition, the polymorphisms of IL-4R involved in the etiology
of pancreatic cancer have been examined [104]. Consequently, increased levels of protein
and mRNA of the IL-4/IL-13-receptor axis may be useful biomarkers for disease activity
and prognosis in patients with pancreatic cancer [123–125].

Increasing evidence supports the critical roles for IL-4 and IL-13 in the progression of
pancreatic cancer. The mechanisms of how the IL-4/IL-13 cytokine-receptor system can
influence the pathogenesis of other cancers may also provide new insights for further in-
vestigating their roles in pancreatic cancer. Todaro and colleagues discovered that stem-like
colon tumor cells produced and utilized IL-4 to protect themselves from apoptosis [57],
which signposts that the correlation of IL-4 with stem-like tumor cells in pancreatic cancer
has to be taken into account. They also found that tumor-derived IL-4 increased the ex-
pression levels of antiapoptotic proteins and prevented cell death upon TRAIL exposure
and chemotherapy in primary epithelial cancer cells from colon, breast, and lung carcino-
mas, while IL-4 blockade sensitized them [53]. Shirota et al. determined that IL-4 from T
follicular helper cells downregulated antitumor immunity by inducing myeloid cells to
differentiate into M2 macrophages [126], corroborating the cooperation of IL-4 and TAMs
in modulating tumor progression in the TME. In addition to the signaling transduction
mentioned above multiple tumor-promoting functions mediated by IL-4 are supposed to be
triggered by the activation of transcription factors like T-box 21 in lung carcinogenesis [127].
IL-4-induced gene 1 selectively expressed by regulatory B cells was determined to promote
B-cell-mediated immunosuppression in melanoma progression [128]. Moreover, it has
been demonstrated that downregulation of IL-4/IL-13 receptors showed suppression of
tumor activity in other cancers. Guo et al. showed that downregulation of IL-4R led to
enhanced apoptosis, diminished proliferation, and reduced invasion of hepatocellular
carcinoma cells, and abolished IL-4-induced activation of JAK/STAT6 and JNK/ERK1/2
signaling pathways [129]. Venmar and colleagues reported that IL-4Rα-downregulation
decreased metastatic capacity in breast cancer [62]. Hsi and coworkers demonstrated that
IL-13Rα2 knockdown with siRNA dramatically induced 15-lipoxygenase-1 expression,
promoted apoptosis, and reduced tumor growth in glioblastoma [130]. In addition, Jain
et al. found that direct IL-13Rα2-downregulation decreased cellular proliferation and
invasion of adrenocortical carcinoma cells [131].

Considering the overexpression of IL-4/IL-13 and their respective receptors in cancers,
their stimulative roles for tumor progression [53,60,132] coupled with the property that
cytokines bind to respective receptors with high efficacy and specificity, it is reasonable to
design novel therapeutic approaches targeting the IL-4/13 axis. IL-4/IL-13 neutralizing
antibodies and IL-4/13 cytotoxins utilizing their tight connection with ligands or receptors to
improve the efficiency of molecular drugs with degraded toxicity to normal tissues [133–135]
are thought to be appealing options. Actually, several clinical studies have been performed
to assess the safety and efficiency of these molecular drugs [136,137].

Ito et al. demonstrated that IL-4 neutralizing antibodies enhanced anti-tumor im-
munity, delayed tumor progression, and synergistically augmented cancer immunothera-
pies [26]. DeNardo and coworkers showed that mice treated with murine IL-4 neutralizing
antibodies exhibited decreased numbers of metastatic foci in the lungs and overall attenua-
tion of total pulmonary metastasis of mammary adenocarcinomas [18]. Surana et al. deter-
mined that IL-4 neutralization enhanced the efficacy of monoclonal antibody trastuzumab
by influencing the phenotype of myeloid cells in the TME, which suggests neutraliza-
tion of IL-4 in the TME takes part in suppressing generation of the productive antitumor
immune response [51]. Balyasnikova et al. determined that a novel anti-IL-13Rα2 anti-
body improved the survival of mice intracranially implanted with a human U251 glioma
xenograft [138]. Takenouchi et al. showed that combination of anti-IL-13Rα2 with DNA
methyltransferase inhibitor, 5-aza-2′-deoxycytidine, which augmented IL-13Rα2 expres-
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sion with epigenetic modulation in malignant mesotheliomas, significantly prolonged the
survival of mice with mesothelioma xenografts [139].

In addition to neutralizing antibodies, it has been determined that IL13Rα2 D1 peptide
inhibited the viability and mobility of metastatic colorectal and glioblastoma cancer cells
treated with IL-13, while the enantiomer D-D1 peptide significantly increased survival
in vitro [140]. In addition, IL-4-binding fusion protein APG598 and IL-4R antagonist
APG201 (R121D/Y124D) improved the chemosensitivity of Hodgkin lymphoma cells [141],
which indicates that the combination of classical chemotherapy with IL-4/IL-13 antagonists
may improve the efficacy of the both in cancer treatments. To inhibit the aggressive tumor
behavior enhanced by radiation-induced IL-4, Kim and colleagues downregulated the
expression of IL-4 by miR-320/429 [136], which indicates that combining radiotherapy with
IL-4-inhibiting treatment may provide an efficient strategy for decreasing post-radiation
recurrence and metastasis.

Instead of blocking the binding of cytokines to receptors, targeting these receptors
with cytotoxins or/and the molecules mentioned above is an attractive method for the
development of promising cancer therapies, the safety and efficiency of which should be
carefully monitored. In a phase II study, it was demonstrated that recombinant human IL-4
was tolerated by patients as subcutaneous administration [136]. The safety and tolerability
of IL-4 cytotoxin in patients with various advanced solid tumors were determined in phase
I clinical trials [137]. Clinical trials determined that direct infusion of IL-4(38-37)-PE38KDEL
into recurrent malignant high-grade gliomas showed activity and safety, without systemic
toxicity [142]. Results from a phase I trial in patients with metastatic adrenocortical
carcinoma showed that systemic intravenous infusion of IL-13-PE was safe at 1 µg/kg,
while high levels of neutralizing antibodies against PE were found in serum samples of all
patients tested [143].

9. Conclusions

IL-4 and IL-13, produced by multiple components in the TME, mediate a wide range of
functions in a variety of cancers through appropriate receptors. The IL-4/IL13-receptor axis
is believed to be overexpressed and play an important role in pancreatic cancer. This roles
include participating in inducing neoplasm occurrence, promoting cancer cell proliferation,
and producing apoptotic resistance. In view of studies determining that both cytokines
exhibit effects on tumor progression dependent on cell type and amounts of receptors
expressed on the cell surface, individualized therapies should be designed for patients,
which may directly target cytokines or the receptor–ligand interactions. Furthermore, the
combination of inhibiting the IL-4/IL-13-receptor axis with chemotherapeutics, radiother-
apy, and/or other small inhibiting molecules may provide attractive possibilities with
high efficiency and specificity for pancreatic cancer treatment. In fact, clinical trials have
demonstrated the safety and efficacy of several cytotoxins targeting IL-4/IL-13 receptors,
although further research is needed to decrease their toxicity to normal tissues.
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AKT Protein kinase B
AP-1 Activator protein 1
ELISA The enzyme-linked immunosorbent assay
EMT Epithelial–mesenchymal transition
ERK Extracellular signal-regulated kinase
IL Interleukin
IL-4Rα IL-4-receptor alpha
IL-13Rα IL-13-receptor alpha
JAK Janus tyrosine kinase
JNK c-Jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MMPs Matrix metalloproteinases
mTOR The mechanistic target of rapamycin
PCR Polymerase chain reaction
PDAC Pancreatic ductal adenocarcinoma
PE Pseudomonas exotoxins
PSCs Pancreatic stellate cells
Γc Common γ chain
RNA Ribonucleic acid
STAT Signal transducer and activator of transcription
TAMs Tumor-associated macrophages
TME Tumor microenvironment
Tyk2 Tyrosine kinase 2
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