
 International Journal of 

Molecular Sciences

Review

Macrophage Function and the Role of GSK3

Sarvatit Patel 1,2 and Geoff H. Werstuck 1,2,3,*

����������
�������

Citation: Patel, S.; Werstuck, G.H.

Macrophage Function and the Role of

GSK3. Int. J. Mol. Sci. 2021, 22, 2206.

https://doi.org/10.3390/ijms22042206

Academic Editor: Michael Henein

Received: 6 February 2021

Accepted: 19 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L9L 2X2, Canada;
sarvatit.patel@taari.ca

2 Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W,
Hamilton, ON L8S 4L8, Canada

3 Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
* Correspondence: geoff.werstuck@taari.ca; Tel.: +1-905-521-2100 (ext. 40747)

Abstract: Macrophages are present in nearly all vertebrate tissues, where they respond to a com-
plex variety of regulatory signals to coordinate immune functions involved in tissue development,
metabolism, homeostasis, and repair. Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed
protein kinase that plays important roles in multiple pathways involved in cell metabolism. Dysreg-
ulation of GSK3 has been implicated in several prevalent metabolic disorders, and recent findings
have highlighted the importance of GSK3 activity in the regulation of macrophages, especially with
respect to the initiation of specific pathologies. This makes GSK3 a potential therapeutic target for the
development of novel drugs to modulate immunometabolic responses. Here, we summarize recent
findings that have contributed to our understanding of how GSK3 regulates macrophage function,
and we discuss the role of GSK3 in the development of metabolic disorders and diseases.

Keywords: macrophage function; glycogen synthase kinase (GSK)-3; molecular mechanisms; inflam-
matory response; atherosclerosis

1. Macrophages

Macrophages are the first line of defense in the innate immune system. While most
macrophages differentiate from circulating monocytes, a distinct embryonically derived
population of resident macrophages exists in many tissues, including the heart, lung,
and liver [1]. Macrophages play versatile phagocytic, endocytic, and secretory roles as
a central part of the maintenance of tissue homeostasis [2], wound healing [3], muscle
regeneration [4], and limb regeneration [5] (Figure 1). In response to chemotactic signals,
they migrate toward sites of inflammation, where they ingest and degrade cell debris
and orchestrate inflammatory responses. Macrophage function is dysregulated in several
diseases, including tuberculosis [6], chikungunya [7], cardiovascular disease [8], HIV
infection [9], cancer [10], and obesity [11].

Tissue-specific macrophage activity is regulated by microenvironmental stimuli that
direct distinct transcriptional programming to modulate macrophage function [12]. There
are three broad groups of receptors that are particularly relevant for macrophage activa-
tion (Figure 1): (i) receptors coupled to the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) and activator protein 1 (AP-1) family of transcription factors,
which regulate most inflammatory genes; (ii) receptors coupled to signal transducer and
activator of transcription (STAT) family transcription factors; and (iii) nuclear receptors
(NR) regulating transcriptional activity [12]. Signaling through these pathways determines
macrophage polarization and phenotype.

Macrophages can be polarized into several different subtypes that have distinct char-
acteristics/functions. The extreme phenotypes are pro-inflammatory (M1) macrophages
and anti-inflammatory (M2) macrophages [13]. Pro-inflammatory macrophages can be
induced by exposure to interferon-gamma (IFNγ) and/or lipopolysaccharide (LPS). These
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macrophages play an important role early in a crisis by mobilizing a response to local-
ized injury. Pro-inflammatory macrophages express transcription factors such as NF-κB,
AP-1, STAT1, and interferon regulatory factor (IRF)-5, which leads to increase secretion
of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β,
IL-6, and IL-12 [13]. This amplifies the inflammatory response and directs host-defenses
against invading pathogens. Anti-inflammatory, or alternatively activated, macrophages
can be induced by exposure to IL-4 or IL-13. Alternatively, activated macrophages pro-
duce anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-
β [13]. These anti-inflammatory macrophages are important for resolving inflammation,
initiation of tissue repair, and return to tissue homeostasis [14]. There are two main
groups of anti-inflammatory macrophages, regulatory macrophages, and wound-healing
macrophages [15]. Regulatory macrophages facilitate the resolution of inflammation
through the secretion of the immunosuppressive cytokine IL-10 [15]. The wound-healing
macrophages produce IL-4 and exhibit enhanced arginase activity to produce polyamines
and collagen in order to facilitate the redevelopment of the damaged tissue [15]. Several
intermediate macrophage subtypes, including Mox, Mhem, and M4, have been identified
that each expresses a unique combination of markers [16]. The role and importance of these
macrophage subtypes are less well understood [16]. Exogenous control over macrophage
polarization may facilitate modulation of the inflammatory response and more efficient
wound healing and tissue regeneration.

Figure 1. Macrophage: polarization, function, and associated diseases. Three main families of
receptors regulate macrophage polarization and function. These are (1) the toll-like receptors (TLRs)
that signal through nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and AP-1, (2)
the interferon receptor (IFNR) and interleukin (IL)-4 receptors that signal through signal transducer
and activator of transcriptions (STATs), and (3) the nuclear receptors. Macrophage stimulated
with lipopolysaccharide (LPS) and/or interferon-gamma (IFNγ) polarize to pro-inflammatory (M1)
macrophages. Stimulation with IL4 induce polarization to anti-inflammatory (M2) macrophages.
Regulation is important for proper physiological responses; however, dysregulation can contribute
to the pathogenesis of diseases.

2. Glycogen Synthase Kinase 3

GSK3 is a serine/threonine kinase that plays a central role in several pathways that
regulate cell metabolism, proliferation, and viability [17]. There are two ubiquitously
expressed forms of GSK3 in mammals (GSK3α (51 kDa) and GSK3β (47 kDa)), as well as
the GSK3β splice variant, GSK3β2, which is expressed primarily in the central nervous
system [18]. Isoforms GSK3α and GSK3β are 98% homologous within the kinase domain
and appear to possess both overlapping and unique functions [19]. Over one hundred
putative substrates for GSK3α/β have been identified [20]; however, the physiological
relevance of most of these is not known.

Whole-body GSK3α-deficient mice are viable and develop normally with very mild or
no overt phenotype [21]. Genetic deletion of GSK3β results in severe hepatic and cardiac
abnormalities during development leading to embryonic lethality [22,23]. Recent evidence
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suggests that GSK3α and GSK3β play unique and independent roles in skeletal muscle cell
insulin signaling [24–26], cardiomyocyte development and proliferation [19], and Th cell
polarization [26]. GSK3α/β also plays a role in a variety of biological processes, including
glycogen metabolism, inflammatory response, migration, proliferation, protein translation,
T cell activation, and apoptosis (Figure 2) [17].

Figure 2. GSK3α/β: regulation, cellular functions and diseases. Three cellular signaling pathways
are directly involved in GSK3α/β regulation: (1) insulin binds to the insulin receptor and activates
the PI3-Akt pathway leading to GSK3α/β inhibition; (2) endoplasmic reticulum stress (ER stress)
signaling and/or unfolded protein response (UPR) activation promotes the activation of GSK3α/β
through the endoplasmic reticulum kinase (PERK) pathway; and (3) Wnt ligands bind to the Frizzled
receptor and induces the formation of a complex of the scaffold protein axin, APC, CK1 and the kinase
Dishevelled, which phosphorylates and inactivates GSK3α/β. The complex interplay between these
pathways regulates the network of signaling pathways that modulate cell viability and metabolism.

GSK3α/β is an atypical kinase as it is usually found in a constitutively active state. It
is well established that signaling through the insulin and Wnt pathways inhibit GSK3α/β
activity [20,27]. A recent study from our lab shows that the presence of endoplasmic
reticulum stress (ER stress) in Thp-1 macrophages activates the protein kinase R-like
endoplasmic reticulum kinase (PERK) signaling branch of the unfolded protein response
(UPR) to promote GSK3α/β activity [28]. The mechanism underlying this effect is still
being delineated. GSK3α/β activity is predominantly regulated by phosphorylation
(Figure 2). Autophosphorylation of tyrosine (Tyr) 279 or Tyr216 is required for activation
of GSK3α and GSK3β, respectively [17]. Protein kinase B (PKB/Akt) [29], PKA [30], and
MAP kinase activated protein (MAPKAP) kinase-1 (p90rsk) [31,32] inhibit GSK3α/β by
phosphorylation of serine (Ser) 21 of GSK3α and Ser9 of GSK3β. Protein phosphatase (PP)
1 dephosphorylates Ser21/9 of GSK3α/β and increases GSK3α/β activity [20].

GSK3α/β is also regulated through the formation of distinct protein complexes.
GSK3β forms complexes with axin, adenomatous polyposis coli (APC), casein kinase 1
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(CK1), and β-catenin, which facilitate the phosphorylation of β-catenin at Thr41, Ser37,
and Ser33, leading to its ubiquitylation and degradation [20,27]. Wnt signaling inhibits
this complex of proteins, which leads to changes in cellular functions such as cell growth,
survival, and differentiation [27,28]. p38MAPK phosphorylates Ser9 of GSK3β and regu-
lates the canonical Wnt–β-catenin signaling pathway [33]. GSK3α/β mainly resides in the
cytoplasm but it is also present in mitochondria and the nucleus, as well as other subcellular
compartments, where it can be regulated by localized signaling activities [20,27,34,35].

GSK3α/β has been linked to several disorders and diseases, including cancer [36],
bipolar mood disorder [37], diabetes [38], Alzheimer’s disease [39], and atherosclerosis [40]
(Figure 2). Because of its involvement in a great number of signaling pathways and several
disease processes, it is important to better understand the role and regulation of GSK3α/β
in different cellular pathways and functions.

Evidence suggests that GSK3α/β plays a central role in a variety of different signal-
ing pathways that are relevant to macrophage function including polarization [41–44],
inflammatory response [45–57], unfolded protein response [28,40–43], glucose [58–61]
and lipid [28,62] metabolism, viability [17,28,63–65], migration [66–68], and prolifera-
tion [69–72] (Figure 3). Here, we summarize the current literature on the role of GSK3α/β
in regulating specific macrophage functions.

Figure 3. A summary of the GSK3α/β signaling pathways in macrophage functions and related diseases. In macrophages
GSK3α/β can be activated or inactivated by different upstream signaling pathways. GSK3α/β has a large number of
downstream substrates that regulate a variety of different downstream signaling pathways to control macrophage phenotype
and function. Dysregulation of one or more of these pathways has been implicated in the development of several different
disorders/diseases.
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3. GSK3α/β—Regulation of Macrophage Function
3.1. Macrophage Polarization

In response to various exogenous stimuli, macrophages can polarize into different
subtypes, thereby adopting altered functional programs. Polarization pathways are regu-
lated by JAK-STAT signaling (Figure 1). STAT1 is the key transcription regulator for M1
macrophage polarization, whereas STAT3 and STAT6 regulate M2 macrophage polariza-
tion [41]. Recent evidence suggests that GSK3α/β modulates macrophage polarization by
directly and/or indirectly affecting STAT phosphorylation [42].

Using bone-marrow-derived macrophages (BMDM) from myeloid-specific GSK3α
and/or GSK3β knock out mice, we have shown that GSK3α specifically regulates STAT3
and STAT6 phosphorylation/activation. Myeloid-specific GSK3α knockout resulted in
increased phosphorylation at Tyr705 of STAT3 in M1 macrophages as well as increased
phosphorylation at Tyr641 of STAT6 in M2 macrophages [43]. This suggests that GSK3α
actively suppresses STAT3/6 phosphorylation to promote M1 polarization.

The salmonella effector (SteE) protein has been shown to alter the substrate and amino
acid specificity of GSK3α and β so that they directly phosphorylate Tyr705 of STAT3. This
results in STAT3 activation and promotes M2 macrophage polarization [44]. To date, no
mammalian equivalent of SteE has been identified.

3.2. Inflammatory Response

Macrophages accumulate at sites of injury and participate in the innate immune
response, which can be either pro-inflammatory or anti-inflammatory [14]. Several sig-
naling pathways associated with the inflammatory response are known to be regulated
by GSK3α/β activity [45–48]. GSK3α/β plays a role in Toll-like receptor (TLR)-mediated
pro-and anti-inflammatory cytokine production. Specifically, inhibition of GSK3α/β re-
sults in increased production of anti-inflammatory cytokine (IL-10) and a decrease in
pro-inflammatory cytokine (IL-1β, IL-6, TNF-α, and IL-12) production by human periph-
eral blood mononuclear cells (PBMCs) [45]. A recent review of the role of GSK3β in TLR
signaling suggests that GSK3β negatively regulates TLR4-mediated pro-inflammatory
cytokine (IFN-β) production [46] and interacts with TRAF3 to act as a positive regulator
for TLR3-mediated pro-inflammatory cytokine (IFN-β) production [47]. Cellular growth
factors, including insulin, stimulate the class I PI 3-Kinases (PI3K) and activate Akt, which
phosphorylates GSK3α/β resulting in its inhibition [48]. Inhibition of GSK3β by PI3K-Akt
leads to an increase in IL-10 and IL-12 production [45]. Other data suggest that intracel-
lular osteopontin (iOPN) regulates GSK3β and 4EBP1 phosphorylation via the PI3K-Akt
signaling pathway to decrease TLR4-mediated inflammatory responses [49]. Adenosine
N1-oxide (ANO) also activates the PI3K-Akt signaling pathway, leading to inhibitory phos-
phorylation of GSK3β, which results in a decrease in TLR4 mediated pro-inflammatory
responses and upregulation of anti-inflammatory transcription factor (c-Fos) [50]. Fur-
thermore, inhibition of GSK3β by the ANO-PI3K–Akt pathway leads to an increase in the
binding of cAMP response element-binding protein (CREB) to nuclear coactivator CREB-
binding protein (CBP), which results in suppression of the binding of NF-κB p65 to CBP [50].
Together, these data support a role for GSK3β in the TLR4 mediated immune response.

GSK3α/β activity affects several transcription factors that regulate cytokine expres-
sion and inflammatory responses [51,52]. GSK3 regulates NF-κB function as GSK3β defi-
cient embryos showed reduced NF-κB function [22]. TNF-α regulates GSK3α/β signaling
to promote feedback inhibition of NF-κB, which leads to reduced inflammatory cytokine
production [53]. GSK3β inhibits 5′ AMP-activated protein kinase (AMPK) activation
and Src homology-2 domain-containing phosphatase (SHP) induction to promote the
pro-inflammatory response [54]. Furthermore, this immune regulatory mechanism was
independent of PI3K-Akt signaling and GSK3β phosphorylation [55]. GSK3β inhibits
SHP2, which indirectly facilitates IFNγ-induced phosphorylation of Ser536 of NF-kB and
activation [56]. Another study suggests that GSK3α/β inhibition significantly reduces
DNA binding of CCAAT-enhancer-binding proteins (C/EBP) and increases IL-10/IL-12
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production in granulocyte-macrophage/dendritic cells (GM/DCs) [57]. The parasite-dense
granule protein GRA18 forms a complex with GSK3α/β and PP2A-B56 in the cytoplasm,
which drives β-catenin accumulation and increases chemokine (C-C motif) ligand (CCL)
17 and CCL22 chemokine production, leading to an increase in the anti-inflammatory
response [57]. In summary, GSK3α/β, directly and indirectly, regulates the inflammatory
response in macrophages. The downstream substrate(s) that link GSK3α/β and these
factors require further investigation to better understand the relevant signaling pathways.

3.3. Unfolded Protein Response

In response to ER stress, macrophages activate the UPR to maintain ER homeostasis.
Evidence from our lab and others has shown that ER stress can induce GSK3α/β activ-
ity [28,40]. ER stress signaling through GSK3α/β is dependent upon the PERK branch of
the UPR. ER stress-GSK3α/β signaling appears to regulate downstream pathways involv-
ing apoptosis/viability, polarization, and lipid accumulation [28,43]. The mechanisms by
which PERK promotes GSK3α/β are still unknown and require further investigation.

3.4. Glucose Metabolism

GSK3α/β was named for its role in regulating glycogen synthesis/metabolism.
Whereas anti-inflammatory macrophages rely predominantly on oxidative phosphoryla-
tion for energy production, pro-inflammatory macrophages rely on the glycolytic pathway.
The regulation of glucose metabolism in the inflammatory response is not fully understood.
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that coor-
dinates glucose metabolism to stress responses, and specifically upregulates antioxidant
response elements in conditions of oxidative stress [58–60]. Genetic Nrf2 knockout in M1
macrophages downregulates the expression of Akt and thereby reduces the inhibitory
phosphorylation of GSK3β. Active GSK3β directly promotes the inhibition of glycogen
synthase and reduces glycogenesis [61].

3.5. Lipid Accumulation/Metabolism

Lipid metabolism plays a critical role in the function of both pro-and anti-inflammatory
macrophages [62]. In particular, anti-inflammatory macrophages display enhanced mito-
chondrial oxidative phosphorylation (OXPHOS) [62]. During atherogenesis, macrophages
can accumulate lipids and become foam cells. A previous study from our lab suggests
that pharmacological inhibition of GSK3α/β attenuates the expression of genes regulat-
ing lipid and cholesterol biosynthesis, including fatty acid synthase (FAS), sterol regu-
latory element-binding proteins (SREBP)-1c, SREBP-2, and 3-hydroxy-3-methylglutaryl-
CoA (HMG-CoA) [28]. Furthermore, inhibition of GSK3α/β in vivo blocks the ability of
macrophage foam cells to accumulation lipid and attenuates atherogenesis [28]. The role of
GSK3α/β in reverse cholesterol transport is still unknown and requires further investigation.

3.6. Apoptosis

GSK3α/β has previously been shown to play a role in regulating cell viability [17].
Data from our lab and others suggest that GSK3α/β plays a pro-apoptotic role in cells.
GSK3α/β inhibition decreases the expression of the pro-apoptotic C/EBP homologous
protein (CHOP) in macrophages [28]. Activated GSK3α/β phosphorylates myeloid cell
leukemia (Mcl)-1, resulting in Mcl-1 degradation followed by apoptosis [63]. In U937 cells
(an acute myeloid leukemia cell line), a complex of N-Myc downstream-regulated gene
2 (NDRG2), GSK3α/β, and PP2A is formed upon treatment with the anti-cancer drug
As2O3 [64]. This leads to GSK3α/β activation through dephosphorylation at Ser9 by PP2A,
followed by Mcl-1 degradation and apoptosis [65]. In alveolar macrophages, LPS-induced
apoptosis occurs by activation of the Wnt pathway followed by destabilization of GSK3β
and accumulation of phospho-Ser9-GSK3β and β-catenin [65]. These data suggest that
GSK3α/β indirectly activates CHOP and directly phosphorylates β-catenin and Mcl-1 to
allow macrophages to undergo apoptosis.
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3.7. Migration

The ability of macrophages to move is central to their role in the innate immune system.
Macrophage movement is essential for the phagocytosis of foreign material and apoptotic
cells. Studies have shown that in obese visceral adipose tissue (VAT), GSK3 inhibition re-
verses obesity-induced inflammation via reducing apoptosis inhibitor of macrophage (AIM)
levels to attenuate macrophage/monocyte migration and macrophage accumulation [66].
In LPS stimulated macrophages, Akt inhibits GSK3β, which leads to β-catenin accumu-
lation. This activates matrix metalloproteinase (MMP)-9 gene induction and promotes
cell migration [67]. Inhibition of GSK3β affects integrin signaling via reduced Ras-related
C3 botulinum toxin substrate (RAC)-1 activity, thereby affecting the activation of cofilin
and actin rearrangement. These activities lead to a decrease in lamellipodia formation,
adhesion, and migration of monocytes, thereby preventing monocyte migration across
brain endothelial cells [68]. In summary, GSK3α/β signals through STAT, β-catenin, and
RAC1 to regulate macrophage migration.

3.8. Proliferation

In response to inflammation, macrophages accumulate and proliferate at the injury lo-
cation in the tissue. These macrophages may be recruited from the blood or be derived from
resident macrophages. Macrophage colony-stimulating factor (M-CSF) signals through
PI3K-Akt to inhibit GSK3β, resulting in casein kinase 2 interacting protein-1 (CKIP-1) and β-
catenin accumulation in the cytosol [69]. β-catenin promotes the expression of proliferation
genes such as cyclin D and c-Myc. CKIP-1 inhibits TNF receptor associated factor (TRAF)
6-mediated Akt activation, acting as a negative feedback loop [69]. PI3K/Akt/GSK3 sig-
naling has been shown to play a central role in the proliferation of Anthrax lethal toxin
(LeTx)-induced macrophages [70]. GSK3β inhibitors suppress cell growth and induce
apoptosis in different leukemia cell lines including acute myeloid leukemia (AML) [71].
Ceramide 1-phosphate (C1P) upregulates the expression of two major downstream targets
of GSK3β, cyclin D1 and c-Myc, which regulate cell proliferation [72]. C1P triggered
rapid phosphorylation of PI3K-Akt, which induces GSK3β inhibition, leads to an increase
in macrophage proliferation [72]. These data indicate that GSK3α/β phosphorylates β-
catenin and regulates proliferation-related genes such as cyclin D and c-Myc to control
macrophage proliferation.

In summary, GSK3α/β activity is positively regulated by the upstream ER stress-
PERK pathway. Other upstream signaling factors, including ANO, GRA18, Wnt signaling
pathway, and the insulin-PI3K-Akt pathway, led to GSK3α/β inactivation in macrophages.
GSK3α/β signals through downstream effector proteins, including Glut4, STAT, NF-κB,
CREB, C/EBP, Mcl-1, β-catenin, CHOP, Mcl-1, SREBP, and RAC1, to regulate a variety of
functions in macrophages.

4. Diseases Associated with Macrophage Dysfunction and GSK3α/β

GSK3α/β activity has been implicated in the pathogenesis of several different metabolic
diseases and disorders. Therefore, it is important to understand the specific roles of GSK3α/β
and the therapeutic potential of specific interventions to target this factor (Figure 3).

In vivo studies show that inhibition of GSK3β decreases production of TNF-α and
macrophage inflammatory protein (MIP)-2 as well as the release of the alarmins high
mobility group box (HMGB)-1 and histone 3 in the lungs, perhaps reducing the severity of
LPS-induced lung injury [73]. These results show that GSK3β plays an important contrib-
utory role in worsening the severity of acute lung injury (ALI). In alveolar macrophages
from pulmonary fibrosis patients and mice, GSK3β and the ubiquitin-editing enzyme A20
regulate C/EBPβ enzymatic activity and play a role in lung fibrosis [74]. This study sug-
gests that GSK3β is a potential target for treating pulmonary fibrosis and fibroproliferative
lung diseases.

In bone marrow-derived macrophages, inhibition of GSK3β down-regulates pro-
inflammatory gene expression including IL12, TNF-α, and C-X-C motif chemokine (CXCL)
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10, which protect the liver against ischemia/reperfusion injury (IRI) [75]. These data
suggest that GSK3β may be a target as a therapeutic strategy to ameliorate liver IRI.

A previous study suggests that GSK3α/β inhibitors could be used as anti-inflammatory
drugs to treat the rheumatoid arthritis (RA) [76]. Another study in a mouse model of
rheumatoid arthritis shows that GSK-3β inhibitors suppress inflammatory responses by
downregulating the NF-kB signaling pathway, along with downregulating the expres-
sion of c-Jun N-terminal kinase (JNK), c-jun, activating transcription factor (ATF) 2, and
p-38 [77]. These findings suggest that the GSK3β may be an efficient therapeutic target
for RA.

Recent studies from our lab have implicated GSK3α in the progression and develop-
ment of atherosclerosis [43]. Specifically, genetic ablation of myeloid GSK3α attenuates
the progression of atherosclerosis in low-density lipoprotein receptor (Ldlr) knockout
mice [43]. These studies suggest that the specific inhibition of one isoform of GSK3 may be
an effective therapeutic approach to treat atherosclerosis. Small molecule GSK3 isoform-
specific inhibitors have recently been identified and tested in mouse model systems [78].
GSK3α-specific inhibition weakens leukemia initiation and prolongs survival in acute
myeloid leukemia (AML) mouse models [78]. This study suggests the possibility of using
small molecules targeting GSK3α as a therapeutic tool in the treatment of atherosclerosis
and AML.

In summary, the central regulatory role of GSK3α/β in macrophage viability and
immunometabolic function suggests that it may be a viable target to treat a variety of
diseases and disorders related to cancer and inflammation. Currently, the therapeutic
targeting of GSK3 is impeded by several factors. First, it is clear that GSK3α/β plays a
central role in many important pathways and that inhibition of these factors could have
serious detrimental side effects. Second, we have a limited understanding of the specific
roles of GSK3α and GSK3β in health and disease. Third, until recently there were no small
molecule inhibitors that could distinguish between GSK3α and GSK3β. The identification
of specific GSK3α and GSK3β inhibitors [78] may allow for the more precise targeting of
the relevant isoform in the treatment of a specific disease or disorder in a way that limits
unwanted detrimental side effects. The next few years will provide many exciting answers
as these and other more specific interventions are tested.

5. Translational Benefits

An understanding of the role of GSK3α/β-signaling in macrophages is potentially
important in the field of drug discovery and the treatment of disease. Currently, there are
31 clinical studies on GSK3α/β taking place all over the world [79]. These are primarily
focused upon the treatment of conditions and diseases ranging from cancer to neurological
disorders. None of the ongoing clinical trials are specifically focused upon macrophage
function or associated disease. Results from preclinical studies suggest that isoform-
targeted inhibition of macrophage GSK3α or GSK3β may be effective in the treatment of
acute myeloid leukemia [78] and atherosclerosis [40,43]. Isoform-specific inhibitors will be
important in future clinical trials examining efficacy in the treatment of diseases including
cancer and cardiovascular diseases.

6. Conclusions

In this review, we have summarized the results from recent reports that address
how GSK3α/β is regulated in macrophages and how GSK3α/β modulates different
macrophage functions and related diseases. Evidence suggests that GSK3α/β directly
or indirectly affects different downstream molecules to regulate virtually all macrophage
functions. More investigation is needed to fully understand all signaling pathways related
to GSK3α/β and macrophages functions. This knowledge will potentially facilitate the de-
velopment and testing of new therapeutics to treat a variety of immunometabolic diseases.
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AIM Apoptosis inhibitor of macrophage
ALI Acute lung injury
AML Acute myeloid leukemia
AMPK 5′ AMP-activated protein kinase
ANO Adenosine N1-oxide
AP1 Activator protein 1
APC Adenomatous polyposis coli
ATF Activating transcription factor
BMDM Bone marrow derived macrophages
C/EBP CCAAT-enhancer-binding proteins
C1P Ceramide 1-phosphate
CBP CREB-binding protein
CCL Chemokine (C-C motif) ligand
CHOP C/EBP Homologous Protein
CK1 Casein kinase 1
CKIP-1 Casein kinase 2 interacting protein-1
CREB Cyclic AMP response element binding protein
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ER Stress Endoplasmic reticulum stress
FAS Fatty acid synthase
GSK3 Glycogen synthase kinase 3
HMGB High mobility group box
HMGCoA 3-hydroxy-3-methylglutaryl-CoA
IFN Interferon
IFNR Interferon receptor
IL Interleukin
IL4R Interleukin 4 receptor
iOPN Intracellular osteopontin
IR Insulin receptor
IRI Ischemia/reperfusion
IRS Insulin receptor substrate
JNK c-Jun N-terminal kinase
Ldlr Low-density lipoprotein receptor
LeTx Lethal toxin
LPS Lipopolysaccharides
LRP Lipoprotein receptor—related protein
LXR Liver X receptors
MAPKAP MAP kinase activated protein
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Mcl-1 Myeloid cell leukemia 1
MIP Macrophage inflammatory protein
MMP Matrix metalloproteinase
NDRG2 N-Myc downstream-regulated gene 2
NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells
NR Nuclear receptor
PBMC Peripheral blood mononuclear cells
PERK Protein kinase R-like endoplasmic reticulum kinase
PI3K Phosphoinositide 3-kinases
PKB Protein kinase B
PP Protein phosphatase
PPARγ Peroxisome proliferator-activated receptor gamma
RA Rheumatoid arthritis
RAC1 Ras related C3 botulinum toxin substrate 1
Ser Serine
SHP Src homology-2 domain-containing phosphatase
SREBP Sterol regulatory element-binding proteins
STAT Signal transducer and activator of transcription
SteE Salmonella effector
TGFβ Transforming growth factor
TLR Toll-like receptor
TNF
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