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Abstract: Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides information on
native structures and the dynamics for predicting and designing the physical properties of multi-
component solid materials. However, such an analysis is difficult because of the broad and overlap-
ping spectra of these materials. Therefore, signal deconvolution and prediction are great challenges
for their ssNMR analysis. We examined signal deconvolution methods using a short-time Fourier
transform (STFT) and a non-negative tensor/matrix factorization (NTF, NMF), and methods for
predicting NMR signals and physical properties using generative topographic mapping regres-
sion (GTMR). We demonstrated the applications for macromolecular samples involved in cellulose
degradation, plastics, and microalgae such as Euglena gracilis. During cellulose degradation, 13C cross-
polarization (CP)–magic angle spinning spectra were separated into signals of cellulose, proteins,
and lipids by STFT and NTF. GTMR accurately predicted cellulose degradation for catabolic products
such as acetate and CO2. Using these methods, the 1H anisotropic spectrum of poly-ε-caprolactone
was separated into the signals of crystalline and amorphous solids. Forward prediction and inverse
prediction of GTMR were used to compute STFT-processed NMR signals from the physical prop-
erties of polylactic acid. These signal deconvolution and prediction methods for ssNMR spectra
of macromolecules can resolve the problem of overlapping spectra and support macromolecular
characterization and material design.

Keywords: solid-state NMR; short-time Fourier transform; signal deconvolution; prediction; anisotropy;
T2 relaxation; macromolecules; cellulose degradation; plastics; Euglena gracilis

1. Introduction

Recently, research for a low-carbon society has gained importance from the view-
points of global challenges such as the marine pollution of marine plastics, waste dis-
posal, and global warming [1]. Microbial products and plant biomass as alternatives to
petroleum resources can be used to produce macromolecular materials such as plastics and
feedstock [2]. Polymers such as polylactic acid (PLA) [3], poly-ε-caprolactone (PCL) [4],
and cellulose [5–12] are multiple domain/component systems and are often employed
as high-performance materials with various properties. Microbial and plant biomass
should be analyzed as a biochemical system composed of multiple components containing
macromolecules with multiple domains. Solid-state nuclear magnetic resonance (ssNMR)
spectroscopy is a powerful tool for characterizing the native structure, components, and
dynamics of solid-state samples at the atomic level. It is being increasingly applied in
material/life sciences [13,14]. Therefore, an advanced ssNMR analytical approach must
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be developed for macromolecular products such as microbial products, plant biomass,
and plastics.

Various techniques that use high-field magnets, cryogenic detection systems, indi-
rect detection [15], nonuniform sampling [16], and dynamic nuclear polarization meth-
ods [17,18] have been developed for realizing increased sensitivity. From the aspect of
NMR measurement, various solid-state NMR methods have been used. Typical meth-
ods are cross-polarization (CP)–magic-angle spinning (MAS) methods, static multiple-
quantum (MQ) NMR, static 1H NMR [19], direct polarization (DP), high-resolution (HR)-
MAS [20–22], magic-and-polarization echo (MAPE) filtering [23], double-quantum (DQ)
filtering [24], and combined rotation and multiple-pulse techniques (CRAMPS) [25]. MAS
probes are capable of spinning frequencies much greater than 100 kHz [26]. Other ad-
vanced techniques are spin diffusion measurements [27], pulsed field gradient (PFG) NMR,
diffusion-ordered spectroscopy (DOSY), and time-domain NMR/relaxometry [28]. In
addition, multi-dimensional NMR was applied for separating overlapping spectra; ex-
amples of such techniques are wide-line separation (WISE) and heteronuclear correlation
(HETCOR) [29,30], three-dimensional (3D) dipolar-assisted rotational resonance, double-
cross-polarization 1H-13C correlation spectroscopy, and 1H–13C solid-state heteronuclear
single-quantum correlation spectroscopy [22].

In the characterization of solid-state samples with crystal, interphase, and amorphous
domains, the anisotropy detected by static measurement is useful, but its analysis is dif-
ficult because the spectra are broad and overlapping [31]. Therefore, the application of
signal deconvolution to measure solid-state NMR data is an important challenge to extract
hidden information in the NMR spectra of macromolecular samples with multiple phases
and components. Several methods for spectral separation [32], apodization, zero filling,
linear prediction, fitting and numerical simulation [33], such as covariance analysis [34],
SIMPSON [35], SPINEVOLUTION [36], dmfit [37], EASY-GOING deconvolution [38],
INFOS [39], Fityk [40], ssNake [41], the noise reduction method based on principal compo-
nent analysis [42], and the signal deconvolution method that combines short-time Fourier
transform (STFT, a time–frequency analytical method), and probabilistic sparse matrix
factorization (PSMF which is one of the non-negative matrix factorizations) [43] were
developed as computational approaches to measured data.

In this study, we propose signal deconvolution methods using STFT and non-negative
tensor/matrix factorization (NTF, NMF) optimized to characterizing the solid-state NMR
spectra of macromolecular samples with multiple domains and components such as cel-
lulose, plastics, and Euglena gracilis. Using generative topographic mapping regression
(GTMR, the regression method using GTM) [44], we mutually predicted higher-order
structure descriptors of STFT-processed NMR signals (STFT–NMR signals) and physical
properties of the material. To the best of our knowledge, this is the first reported application
on the prediction of NMR signals from the thermal properties of plastics using GTMR.

2. Results and Discussion
2.1. Signal Deconvolution and Prediction for Solid-State NMR of Multi-Component Materials

In this study, from a practical point of view, we focused on a signal deconvolution
method for one-dimensional (1D) ssNMR data suitable for high-throughput multi-sample
measurement. In particular, static 1H anisotropic spectra can be used as an index of the
motility of higher-order structures, but these spectra are broad and show overlapping.
Even extremely sharp spectra such as 13C CP-MAS show overlaps, especially in the case of
signals with different mobility derived from the same atom. Therefore, those data must
be separate signals. In principle, the exponential decay constant of the free induction
decay (FID) obtained by applying a 90◦ pulse to create transverse magnetization is the T2
relaxation time. In reality, however, because of the effect of magnetic field inhomogeneity,
the decay constant of the FID is defined as T2

*, an instrument-dependent parameter, rather
than T2. In this paper, we report a signal deconvolution method to separate the broadening
spectra derived from macromolecules (cellulose and plastics) with multiple phases and
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components based on the T2
* relaxation pattern. The short-time Fourier transform (STFT)

method is used to convert an FID into frequency domain data at short time intervals to
generate a matrix of time and frequency axes (Figure 1a). As algorithms of factorization,
in addition to the traditional NMF for analysis of the two-dimensional (2D) dataset, we
investigated the application of NTF (non-negative Tucker decomposition (NTD) [45] and
non-negative canonical polyadic decomposition (NCPD) [46,47]), which is a factorization
algorithm useful for the analysis of the 3D dataset of multiple samples and parameters. By
applying NTF/NMF (Figure S1) to the dataset, the signal components were separated based
on the T2

* relaxation pattern of the components indicated in the multi-phase and multi-
component spectra (Figure 1b,c). Furthermore, the high-order structure of materials exerts
a significant influence on their macroscopic properties [27]. Traditional design approaches
for materials are experimentally driven and trial-and-error are facing significant challenges
due to the vast design space of materials. In addition, computational technologies such
as density functional theory (DFT) [48] and molecular dynamics (MD) [7] are usually
computationally expensive and are difficult to calculate molecular structures from material
properties. To address these problems, machine-learning-assisted materials design is
emerging as a promising tool for successful breakthroughs in many areas of science [49]. In
addition, NMR measurement, especially a low magnetic field NMR, is a method for routine
material evaluations, which produce a lot of NMR datasets [32]. Against this background,
in the cycle of developing materials using NMR and other measurements, the prediction
of the NMR signal using the accumulated data is necessary to find a structure with the
desired properties. In this study, prediction of the NMR data and sample properties was
calculated using GTMR (Figure 1d,e and Figure S2) [44]. For cellulose degradation samples,
our previous study reported that solution 1H and 13C NMR data were used for evaluating
the concentration of catabolic products. In this study, we examined the use of pseudodata
as a method of predicting data without experiments. Pseudodata are a dataset with
the same distribution as the original dataset generated using Gaussian mixture models
(GMM) (Figure S3) [50]. Randomly generating data based on means and covariances
using GMM produces new pseudodata. By performing GTMR calculation from these
pseudodata as input data, a spectrum as output can be predicted without preparing new
materials. The STFT–NMR signals were predicted as a higher-order structure descriptor
and were transformed to predicted NMR properties. This method can be applied to various
sample systems for pursuing structure–property correlation. In this study, we demonstrate
the application of cellulose degradation and plastic for evaluating our method. Here,
in cellulose degradation, the word “higher-order structure” means the crystalline and
amorphous structure of cellulose, and the word “property” means the quantity of catabolic
products. In addition, with plastics such as PCL, it is difficult to design those having both
high degradability and toughness. In the PCL, multiple domain structures with different
degrees of entanglement of molecular chains are referred to as “higher-order structures”,
and thermal and mechanical properties are referred to as “property”. This analytical flow
is useful for the research and development of macromolecules and related products.

2.2. Non-Negative Tucker Decomposition to 13C CP-MAS in Cellulose Degradation Process

Solid and solution NMR methods can monitor higher-order structural changes and
catabolic products during the degradation of cellulose by microorganisms [10,12]. The
dataset used in Figure 2 is a time-dependent dataset of 13C solid-state CP-MAS signals of
the cellulose degradation process and also contains signals of catabolic products (proteins
and lipids). The 13C ssNMR spectra detect macromolecules of cellulose, proteins, and
lipids. This dataset is a set of data with frequency and intensity in 16 time points from 0 to
120 h (Figure 2a). This dataset was processed by STFT (Figure S4). We demonstrated the
application of NTD (Figure 1b or Figure 2b), which is one of the tensor factorizations for
multi-sample data. By separating the spectrum into four components, it was possible to
visualize the spectral patterns (Figure 2c–f), time change of each component (Figure 2g),
and the composition (Figure 2h). The word “Time change” in Figure 2g means the change in
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acquisition time of the separated signal components. In addition, The word “Composition”
in Figure 2h means the change in the 16 samples from 0 to 120 h of 13C CP-MAS NMR
spectra. As a result, the four signals (the cellulose, proteins, and lipids-like signals) were
clearly separated as intense signals, while the noise was relatively low. In the calculation
scheme of NTD, the convergence tolerance of calculation error was less than 0.001. The
cellulose-like spectrum had a short relaxation time (Figure 2c,g (orange)), the protein-like
spectrum had a long relaxation time (Figure 2d,g (green)), and the lipid-like spectrum
had the longest relaxation time (Figure 2e,g (red)); the noise did not change. It was
possible to evaluate the concentration of each component among samples (Figure 2h).
As a result of separating the spectrum of the cellulose C4 region (Figure S5a) into six
components, it was possible to visualize the spectral patterns (Figure S5b), time change
of each component (Figure S5c), and the composition in each sample (Figure S5d). So far,
tensor factorizations have been reported for the application of NCPD to solution NMR of
carbohydrate mixtures [46] and high-dimensional NMR of protein structures [47]. As a
result of separating the spectrum into four components using NCPD, it was not as good
as NTD because of unclear spectral patterns for assigning compounds (Figure S6). NCPD
is different from the algorithm of NTD used in this work. NTD separates the tensor into
a small core tensor and factor matrices. NCPD separates the tensor into factor matrices
without a core tensor. This study shows that the NTD is also effective for analyzing
time-series ssNMR data such as those of the cellulose degradation process.
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Figure 1. Concept diagram of a material development cycle based on signal deconvolution and prediction for the solid-state
nuclear magnetic resonance (ssNMR) of multi-component materials. (a) Free induction decay (FID) is transformed into a
dataset with time and frequency axes by short-time Fourier transform (STFT). (b) In the case of a three-dimensional dataset
such as one with multiple samples and conditions, the FID is separated into each component based on the factors of time,
frequency, and samples (or condition) by tensor factorization. (c) In the case of two-dimensional datasets such as a matrix
with time and frequency axes, the FID is separated into each component based on factors of time and frequency by matrix
factorization. (d) The generative topographic mapping regression (GTMR) accurately predicted the cellulose degradation
process shown by catabolic products such as acetate and CO2. (e) Forward prediction and inverse prediction of GTMR were
used to compute the STFT-processed NMR (STFT–NMR) signals from the physical properties of the plastics. This approach
is an iterative procedure to achieve convergence between experimental and predicted spectra.
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factorization of STFT–NMR signals. (c–f) Spectral patterns (cellulose, lipids, proteins, and noise) when signals were
separated into four components. (g) Time change of separated components. (h) Composition of separated components.

2.3. Non-Negative Matrix Factorization to Static 1H ssNMR in PCL and E. gracilis Samples

PCL has a high-order structure of mobile, rigid, and interphase [28,33]. Evaluating
the structure, motility, and proportion of multiple domains is important for material
development including such as the optimization of physical properties. In the development
of plastics especially, evaluation of higher-order structures is useful for the static 1H
anisotropic spectrum in solid states. From the aspect of the pulse program, by using a DQ
filter or MAPE filter, components with different motilities can be extracted. In this study,
we demonstrated the application of NMF to a 2D dataset created from the single data of
PCL using STFT. Unlike NTF for a 3D dataset mentioned above, NMF is a method for a 2D
dataset. NMF discovers hidden patterns in the axes of both time and frequency created by
STFT, which is able to separate NMR signals to multiple components with different T2

*. It
was shown that by using NMF, rigid and mobile phases can be extracted from a broad static
1H anisotropic spectrum of PCL as the components related to different physical properties
(Figures 1c and 3). We resolved the linear macromolecular structure as a mobile domain and
the branched macromolecular structure due to strong anisotropic 1H-1H dipolar coupling
as a rigid domain in solid material such as PCL. Furthermore, we demonstrated this method
for 1H, 13C, 15N and 31P spectra of microalgae such as E. gracilis in a multi-component
system (Figure S7). 1H high-speed magic-angle spinning (MAS) spectrum was separated
into signals of amide protons and fatty acids in lipids, and the 13C CP-MAS spectrum was
separated into signals of paramylon, lipids, and proteins. To overcome the limitation of
sensitivity in NMR, various techniques were developed using high-field magnets, cryogenic
detection systems, indirect detection [15], nonuniform sampling [16], and dynamic nuclear
polarization methods [17]. We previously demonstrated that the STFT can be used for
signal improvement of the solution diffusion-edited NMR spectra, including broad signals
and sharp signals [43]; in this study, we demonstrated signal deconvolution using the STFT
in the solid-state NMR. When using this method for NMR data with low digital resolution
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such as solid-state NMR and quadrupole nucleus, this signal deconvolution method needs
additional efforts. We demonstrated some interpolation methods for increasing data points
(Figure S8). The Fourier interpolation method provides an interpolated spectrum without
artifact signals. Spectra interpolated by other methods have artifacts in the extended region.
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NMF. (b) Experimental spectra of double-quantum (DQ) filtered ssNMR (green) and magic-and-polarization echo (MAPE)
filtered ssNMR (orange).

2.4. Prediction of Concentration of Products in the Cellulose Degradation Process

Thus far, GTM has been applied to characterize NMR data [51]. Recently, computa-
tional approaches for predicting NMR signals [48], chemical structures [52], and physical
properties [53–57] were developed. Chemical shifts of NMR are rich in chemical infor-
mation and enable encoding the structural features of the molecules contributing to their
physical/chemical/biological properties. Thus, it has potential for use as a descriptor in
quantitative structure–activity/property relationship (QSAR/QSPR) modeling studies [58].
GTMR was applied for analyzing these studies [44]. Therefore, the prediction of NMR
signals is important for developing materials. This study is the first application of GTMR
for the prediction of NMR signals (Figure 1d). In the degradation of cellulose, cellulose
is metabolized into microbial cell components such as proteins and lipids, and then ca-
tabolized into short-chain fatty acids. In Figure 2, macromolecules (cellulose, proteins,
and lipids) were detected using the solid 13C spectrum. In addition, to track the process
of material degradation, solution NMR spectra were used to detect small molecules such
as propionate and acetate. Therefore, the catabolic products were captured by solution
NMR (the final product is CO2 and CH4 with one carbon atom (Figure S9)). During GTMR,
multi-dimensional and multi-component data (in this case, CP-MAS macromolecular data
and small-molecule solution NMR data) can be mapped into the reduced dimensional
space (Figure 4a,b left). When cellulose is finally catabolized to CO2 by the catabolism
of microorganisms, it is metabolized into acetate with two carbon atoms and CO2 with
one carbon atom via propionate with three carbon atoms. When the signal intensity of
propionate is used as the input data of GTMR, it is possible to predict both the properties
(scaled signal intensities in these results) of acetate (Figure 4a right; R2 = 0.976) with the
two carbon in the previous stage of the final product and CO2 (Figure 4b right; R2 = 0.967)
with one carbon in the final product. GTMR thus provides information about the predicted
NMR scaled signals of products in cellulose degradation. This information is important for
monitoring the degradation process due to a key in compound production using cellulose.
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2.5. Prediction of NMR Signals from Thermal Properties in Plastics

This study is the first application to predict NMR signals from the thermal properties
of plastics using GTMR. The design method for higher-order structures of plastics should
control the glass transition, melting, and degradation temperature (Tg, Tm, and Td) as
thermal properties. The GTMR was first applied for the inverse analysis of the CP-MAS
spectra (Figure S10) from the thermal properties (Figure S11) of PLA in the solid state
(Figure 1e). Therefore, Tg (Figure 5a), Tm (Figure 5b), and Td (Figure 5c) were mapped
into a reduced 2D space. We focused on the prediction of the intended thermal property
(Figure 5d; red cross) using the three GTMR maps (Tg, Tm, and Td). Hence, the STFT–NMR
signals, i.e., the predicted spectrum, corresponded to the red cross and were predicted
as higher-order structure descriptors (Figure 5e). Moreover, as a result of predicting the
thermal properties from pseudo-CP-MAS spectra of PCL using GMM, it was possible to
predict thermal properties (Figure S12).

Recently, the materials informatics (MI) approach was considered for material de-
sign [59] because the intended physicochemical property is really hard to identify in the
material development process. Therefore, the MI approach uses “big-data” such as de-
posited database, as well as monitoring and analyzing higher-order structural data during
the materials production process [60,61]. When developing a material with the desired
physical properties, the molding conditions of the material with the predicted structure
play an important role.
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3. Materials and Methods
3.1. NMR Analysis

The ssNMR data were acquired using an Avance III HD-500 spectrometer (Bruker
Corp., Billerica, MA, USA) equipped with a double-resonance 4.0 mm MAS probe. The
solution NMR data were acquired using an Avance III HD-700 spectrometer (Bruker Corp.,
Billerica, MA, USA). The 1H and 13C CP-MAS spectra and solution 1H and 13C NMR
spectra of cellulose previously reported by Yamazawa et al. were used [10]. The multiple
phases polymer such as PCL, were measured using static, MAPE-filtered and DQ-filtered
ssNMR. The 1H, 13C, 15N, and 31P spectra of E. gracilis cell previously reported by Komatsu
et al. were used [22].

3.2. Thermal Analysis of Plastics

Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were
conducted using an EXSTAR TG/DTA 6300 (SII NanoTechnology Inc., Tokyo, Japan) instru-
ment [29,62]. Approximately 10 mg of samples was individually vaporized at 5 ◦C/min
from 40 to 500 ◦C in a nitrogen atmosphere. The Tm and Td were determined as the en-
dothermic peak in DTA curves and the peak of weight loss in Derivative Thermogravimetry
(DTG) curves. Differential scanning calorimetry (DSC) was conducted using a DSC3500A
(NETZSCH Geratebau GmbH, Selb, Germany) [63]. Approximately 1.5 mg of samples was
individually measured at the following steps at 10 ◦C/min from 25 to −30 ◦C, at 10 ◦C/min
from −30 to 200 ◦C, and at 20 ◦C/min from 200 to 25 ◦C in a nitrogen atmosphere. The Tg
was determined as an endothermic peak during heating.

3.3. Signal Deconvolution Methods

The signal deconvolution method was developed in Python 3. The processing of NMR
data was implemented by using the nmrglue [53] package in Python. Tensor factorization
methods of NTD and NCPD were calculated using TensorLy Python library for tensor
methods [45], and NMF was calculated based on the NIMFA Python library for non-
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negative matrix factorization [64]. NMR data with interpolated data points were created
using “signal” and “interpolate” in “scipy”.

3.4. Prediction Methods

Predictions of NMR signals and properties were calculated using GTMR [44]. In the
analysis of cellulose degradation, a regression model was created using STFT–NMR signals,
and product peak intensities were determined by solution NMR. As input data to analyze
in GTMR, pseudodata were generated using GMM [50]. In the case of GTMR in the data of
cellulose degradation process, the peak of propionate as input data was used, and the peaks
of CO2 and acetate were predicted as the concentration of production. For plastics analysis,
a regression model was created using the STFT–NMR signals and thermal properties. In
the case of inverse GTMR, the desired thermal properties were used as input data, and
NMR signals were predicted as the higher-order structure descriptors.

4. Conclusions

We have developed a solid-state NMR signal deconvolution method using STFT
and NTF/NMF, and a prediction method using GTMR. These methods enable 1D solid-
state NMR spectra to provide separate signals of multiple phases and components from
solid-state NMR spectra. Further, macromolecular samples were characterized, and higher-
order structures and thermal properties were predicted. As a new alternative to applying
the decoupling to remove anisotropy as unnecessary information in the measurement
of ssNMR with a broad line width, signal separation by computational science methods
will expand the applicability of low-field 1H ssNMR and anisotropic NMR. In the case
of NMR data with low digital resolution such as the solid-state NMR and quadrupole
nucleus the number of data points can be increased by applying interpolation. In the case
of 2D-NMR, it is necessary to use this method by splitting each t1-dimensional FID and
creating a series of sub-FIDs. Therefore, these methods will promote data-driven research
and development in fields such as machine learning and simulation using ssNMR on
macromolecular complexity in materials and foods.

Supplementary Materials: Python tools developed in this study are available at http://dmar.riken.
jp/NMRinformatics/. The following are available online at https://www.mdpi.com/1422-0067/
22/3/1086/s1, Figure S1: Algorithms of non-negative tensor/matrix factorization (NTF, NMF),
Figure S2: Algorithm of generative topographic mapping regression (GTMR), Figure S3: Algorithm
of generating data using gaussian mixture models (GMM), Figure S4: Short-time Fourier transform
processed NMR (STFT–NMR) signals in 13C CP-MAS of the cellulose degradation process, Figure S5:
Signal deconvolution of cellulose C4 region using non-negative Tucker decomposition (NTD) in 13C
CP-MAS of the cellulose degradation process, Figure S6: Signal deconvolution using non-negative
canonical polyadic decomposition (NCPD) in 13C CP-MAS of the cellulose degradation process,
Figure S7: Signal degradation using MF to various NMR spectra in E. gracilis samples, Figure S8:
Application of interpolation methods for signal deconvolution of NMR signal with insufficient data
points, Figure S9: Summary of NMR signals for prediction in the cellulose degradation process,
Figure S10: Summary of NMR data for prediction in polylactic acid (PLA), Figure S11: Summary of
thermal analysis data for prediction in PLA, Figure S12: Prediction of thermal properties from NMR
signals generated from Gaussian mixture models (GMM) in poly-ε-caprolactone.
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