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Abstract: Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are
a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They
originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in
their maturation/differentiation and account for 6.5% of all cancers around the world. During the last
decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal
bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating
effects of the human microbiota extend well beyond the gut, mostly through the small molecules
they produce. This review aims to summarize the current knowledge of the role of the microbiota
in modulating the immune system, its role in hematological malignancies, and its influence on
different therapies for these diseases, including autologous and allogeneic stem cell transplantation,
chemotherapy, and chimeric antigen receptor T cells.

Keywords: microbiota; hematological malignancies; bacterial metabolites; chemotherapy; allogeneic
stem cell transplantation; autologous stem cell transplant; CAR-T cell therapy

1. Introduction

The complex ecosystem formed by trillions of microorganisms living in and on the
human body is known as the human microbiota. The microbial communities inhabiting
inside us include bacteria, virus, fungi, yeast, and protozoa. Most of the human microbiota
resides in the gastrointestinal tract, but many other microbial niches exist such as the
skin, the lungs, the vagina, or the mammary glands. The gastrointestinal tract, with a
projected area of 32 m2 [1], is among the largest interaction surfaces between the host,
environmental factors, and antigens in the human body. The latest study sets an estimation
of over 40 trillion intestinal microorganisms, bringing the ratio closer to 1:1 to somatic cells,
expected to be around 30 trillion [2]. The diversity of the bacterial community that resides
inside the mammalian intestine is influenced by several factors such as physiological
features, chemical and nutrient gradients, and the strictly compartmentalized host immune
response [3].

The bacteria that comprise the mammal gut microbiota belong primarily to four
phyla: Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. Altogether, these phyla
account for over 95% of the total bacteria in the mammalian microbiota, regardless of
the animal species [4]. The genetic potential of this biomass was estimated in 3.3 million
non-redundant microbial genes by the ‘Metagenomics of the Human Intestinal Tract’
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project. According to this study, 99.1% of the genes are of bacterial origin, followed by
archaeal, eukaryotic, and viral origins. The analyzed cohort contained 1150 bacterial species
abundant enough to be detected and at least 160 of such bacterial species are estimated to
be in every single person [5].

The gastrointestinal microbiota is generated after birth through vertical transmission
and it is then constantly shaped by environmental factors throughout life. The most rele-
vant factors affecting the intestinal microbe composition are: the childbirth delivery method
(vaginal vs. cesarean) [6–8]; the diet (including breastfeeding as the most significant mi-
crobiome variable during the first year of life); household exposures (especially during
infancy) [9]; geographical location and genetics. However, the latter has been shown to
have a minor role compared to environmental factors [10]. Medication is another important
factor that shapes the microbial composition in the human body. Antibiotics are the most
relevant drugs affecting gut microbiota composition [11,12], but non-antibiotic drugs like
antimetabolites, antipsychotics, and calcium-channel blockers can also affect the human
microbiome [13]. Antibiotics reduce the microbial diversity rapidly and significantly;
around one third of the total bacterial taxa is lost in 3 days. Four weeks after a course
of antibiotics, bacterial communities mostly return to their initial state, even though this
return is not complete [12,14]. It has now been established that antibiotics during early life
can have a profound effect upon health, increasing the risk of developing asthma [15], type
1 diabetes [16] or having long-term host metabolic effects [17,18]. According to a recent
study, the most efficient therapeutic approach to fully recover the initial microbial state is
an autologous fecal microbiota transplant (FMT). This approach induced a faster micro-
bial recovery compared to the use of probiotics, which hindered a complete microbiome
reconstitution [19].

The gut microbiota and the human host have co-evolved in a mutualistic associa-
tion [4]. The host obtains benefits like the strengthening of the gut integrity, intestinal
epithelium modulation [20], protection against pathogens [21], fat metabolism support [22],
and angiogenesis [23]. Beyond these important functions however, the gut microbiota
generates a complex network of metabolic pathways, as the bacterial gene set is approx-
imately 150 times larger than the human. Therefore, one of the key functions of the gut
microbiota is its enzymatic capability for enabling the acquisition of vitamins and bioactive
compounds. For instance, through the fermentation of non-digestible substrates, like
dietary fibers, anaerobic cecal and colonic bacteria produce short chain fatty acids (SCFA).
SCFA are saturated aliphatic organic acids present mainly in the intestine, such as acetate,
propionate, and butyrate [24].

The bidirectional crosstalk between the immune system and the microorganisms living
in the gastrointestinal tract has established connections that extend beyond the metabolic
nature. The high bacteria density present in the lower intestine is only separated from
tissues and organs by a thin epithelial layer, which represents a great health challenge
for the host. If commensal bacteria are not tightly controlled, a bacteria outgrowth could
lead to inflammation and sepsis (commensals turn into pathobionts). Therefore, the host
immune system is essential for preserving homeostasis with the microbial communities.
The mucus layer, the secretion of antimicrobial peptides (AMP) and immunoglobulin A
(IgA) by lamina propria plasma cells, and the presence of dendritic cells (DC) are some of
the immune system mechanisms that help to stratify the luminal microbes, to minimize
the interaction of the microorganisms and the immune system, and to reduce bacterial-
epithelial contact [25] (Figure 1). Additionally, the immune system can modulate the
gut microbiota composition at a species level [26–28]. The microbiota-host interaction
works two ways and commensal microorganisms can shape mammalian immunity as well.
Accumulating evidences show that gut flora impacts the immune system predominantly
through small molecules (bacterial metabolites and other molecules) [29–31], which affects
the balance between pro- and anti-inflammatory mechanisms [32]. For example, SCFA not
only act as key metabolites for mammalian cell metabolism, but they also regulate host
immunity. They are implicated in the following processes: they facilitate the extrathymic
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generation of regulatory T (T reg) cells [32], they regulate the function of the colonic
T regs [33], and furthermore, they modulate the function of DCs, including cytokine
production [34,35], through their receptor GPR43 [36]. The complete maturation of the host
immune system is determined by host-specific commensals; exposure to a non-specific
gut commensal or its microbe-associated molecular patterns (MAMPs) is not enough
to induce intestinal immune maturation and fails to provide protection against enteric
pathogens [37,38]. Mice raised under germ-free conditions have an altered gene-expression
profile of the intestinal epithelial-cell layer [20], significantly smaller Peyer’s patches [39],
a reduced number of CD4+ T cells [40], and a reduced number of IgA-producing plasma
cells [41,42]. Several studies have shown the influence of commensal microbes on T-cell
phenotype and function in the gut. For instance, the segmented filamentous bacterium
(SFB) is sufficient to induce the appearance of T helper cell type 17 (Th17) CD4+ T cells in
the lamina propria [43]. In mice, bacteria from the Clostridiales clusters IV, XIVa, and XVIII
can direct T reg differentiation and Bacteroides fragilis can induce mucosal tolerance by
defining the T reg lineage differentiation pathway [44,45] (Figure 1). Moreover, changes in
microbiota density can alter host metabolism and the frequency of immune populations like
lamina propria FoxP3+CD4+ T regs [46]. Beyond the effects on intestinal and local immune
physiology, the gut microbiome has systemic effects [47,48]. For instance, peptidoglycan
can prime systemic innate immunity by activating neutrophils [49]; polysaccharide (PSA)
from B. fragilis can promote the increase in systemic T helper cell type 1 (Th1) CD4+ T
cells [39]; and SCFAs can regulate extrathymic/peripheral T regs [32] and DC cytokine
production and function [34,35] (Figure 1).

Figure 1. Dynamic interactions between the gut microbiota and the immune system.

Commensal bacteria can prevent colonization by pathogens via multiple mechanisms,
such as the production of microbial metabolites. Lactobacillus species improve the intestinal
barrier function by modulating epithelial cell tight junction proteins. Clusters IV, XIVa,
and XVIII of Clostridia (via TGF-β) and Bacteroides fragilis (via polysaccharide A (PSA))
promote the differentiation and expansion of regulatory T (T reg) cells and segmented
filamentous bacteria (SFB) stimulate the induction of intestinal T helper cell type 17 (Th17)
cells. Microbiota antigens are sampled via transepithelial dendrites of dendritic cells (DC)
through M cells. These DC migrate to the mesenteric lymph node and there, they induce
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T-cell differentiation. Activated CD4+ T cells also prime B cells, and IgA+ secreting plasma
cells then migrate to the lamina propria. Upon translocation into the circulation, bacterial
metabolites from commensal microbes have multiple effects. Peptidoglycan can prime
neutrophils and PSA can promote the increase in Th1 CD4+ T cells. SCFAs can regulate
extrathymic/peripheral T regs, modulate leukocyte trafficking and DC cytokine production
and function.

Gut microbiota has an additional important role in defining the TCR and BCR reper-
toire. It is known that there are circulating memory CD4+ T cells reactive against commensal
bacterial lysates [50]. For instance, using a spontaneous uveitis mouse model, Horai and
colleagues showed that the activation of retina-specific T cells was dependent on gut
commensal microbiota [51]. Moreover, colonic T regs have a different TCR repertoire than
peripheral T regs, implying a recognition of local colonic antigens [52]. Regarding the
influence of the commensal microbiota on the BCR repertoire, ileum resident memory B
cells expressing IgA and IgG have antigen-specificities for commensal flora [53].

Changes in the normal gut microbiota, called dysbiosis, have been reported to be
an important factor in the development of many diseases. Dysbiosis contributes to au-
toimmune disorders, including arthritis and inflammatory bowel disease, allergic [54–58]
and metabolic diseases, such as obesity and diabetes [59] (Figure 2). A recent study deter-
mined that 13% of global cancer incidence is due to microorganisms [60]. Moreover, some
specific bacteria have been demonstrated to be involved in the process of initiation and
progression of carcinogenesis at epithelial barriers [61,62], both locally and systemically.
Locally, colorectal carcinogenesis and its progression [63,64] is directly associated with gut
microbiota through several mechanisms. Systemically, several studies have confirmed that
oncogenesis and tumor progression of breast [65,66], pancreas [67], and hepatocellular car-
cinoma [68] are influenced by gut microbiota. In addition, the human microbiota has been
implicated in modulating the efficacy and toxicity of cancer therapy, including chemother-
apy, radiotherapy, and, more recently, immunotherapy [35,69–74]. All these studies provide
strong evidence for a close and complex interplay between the gut microbiome, tumor
development, and anti-tumor immunotherapies as explained in the following sections.

Figure 2. Mechanisms of gut microbiota modulation, consequences, and potential solutions.
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2. Gut Microbiota in Hematological Malignancies

The changes of the gut microbiota composition have been assessed both in mouse
models and in a clinical setting in adult and pediatric patients with hematological dis-
eases. Most of these patients receive chemotherapy or immunotherapy and many of them
additionally receive either antibiotic prophylaxis or other treatments that impact on the
microbiota composition and diversity. This fact makes the study of the microbiota in
hematological patients particularly challenging.

Ataxia-telangiectasia (A-T) is an autosomal recessive disorder associated with a high
incidence of lymphoma. To study the role of intestinal bacteria in the penetrance of lym-
phoma, Yamamoto and coworkers used an A-T mouse model. This group studied the
lymphoma incidence in different mouse colonies harboring different bacterial communities
and found that Lactobacillus johnsonii was more abundant in the more cancer-resistant
mouse colony and it could even reduce systemic inflammation and genotoxicity when
administered orally to the more cancer-prone colony. Moreover, Ataxia-telangiectasia mu-
tated (ATM) gene-deficient (Atm-/-) mice that were exposed to a more sterile environment
lived longer and had a reduced lymphoma penetrance. This seemed to be associated with
a reduced systemic inflammatory state (reduced basal leukocytes and cytokine-mediated
inflammation) [75].

A study of adolescent/young adult Hodgkin lymphoma (AYAHL) survivors found
that they had fewer early childhood fecal-oral exposures compared with healthy controls,
which suggests reduced exposure to infections in these patients over childhood. Further-
more, suppressed Th1 activity and an increased T helper cell type 2 (Th2) response has been
reported in AYAHL [76]. During childhood, the acquisition of gut microbiota diversity
changes from a more immature Th2 to a Th1-orchestrated immune profile [77]. Both an
increase in Th2 cytokines and IgE in AYAHL and a decrease in cytotoxic T cells and NK
cells in Hodgkin lymphoma (HL) might suggest a failure to make this Th2-to-Th1 change
in AYAHL. One reason could be that the observed decreased diversity of the gut microor-
ganisms could impact the development of AYAHL [78,79]. Another study reported that
AYAHL survivors seemed to have a reduced number of rare gut microorganisms compared
to the unaffected twin controls [80]. As we mentioned at the beginning of this section, it is
highly controversial whether this reduced microbial diversity is due to the environment
as an initial risk factor, the lymphoma itself, or the treatment the patients received. How-
ever, it has been observed that gut microorganisms cause oxidative stress that can affect
carcinogenesis and influence different pathways associated with lymphomagenesis [81–85].
Indeed, many pathogens have been directly associated with lymphomagenesis, such as
Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), human T-cell leukemia virus type
1 (HTLV-1), and Helicobacter pylori (HP), although the details regarding this are out of the
scope of this review.

To study the influence of antibiotics that modulate intestinal microbiota in the ef-
ficacy of antineoplastic treatment, a group in Germany carried out a study on patients
with relapsed lymphoma that were treated with cisplatin and patients with chronic lym-
phocytic leukemia (CLL) that were treated with cyclophosphamide from the CLL8 trial
(NCT00281918) and the Cologne Cohort of Neutropenic Patients (NCT01821456). Among
the 122 patients with relapsed lymphoma and the 800 patients with CLL, those treated
with anti-Gram-positive antibiotics achieved a significantly lower overall response rate
(ORR) and progressed significantly earlier [86]. The use of anti-Gram-positive antibiotics
was independently associated with reduced progression-free survival (PFS) and overall
survival (OS) in the multivariate analysis. A negative impact of anti-Gram-positive antibi-
otics on the efficacy of cyclophosphamide and cisplatin has also been observed in mouse
models [74,87].

As mentioned before, commensal bacteria are involved in the differentiation of Th17
cells, which are characterized by their production of IL-17 and play a critical role in inflam-
mation [88]. Calcinotto and colleagues studied the influence of intestinal microorganisms
on multiple myeloma (MM) genesis in a mouse strain that develops a de novo disease
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mimicking MM. The commensal bacteria Prevotella heparinolytica was found to promote the
differentiation of Th17 cells colonizing the gut; these cells migrated to the bone marrow
(BM) where they favored tumor progression. Prevotella heparinolytica was also found to
promote the progression of MM via an eosinophil-mediated inflammation [89]. A study in
humans evaluated whether alterations in the intestinal flora are associated with relapse
after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and it was reported
that microorganisms from the genus Eubacterium were associated with a reduced risk of
MM relapse after allo-HSCT (as explained in more depth below) [90].

Decrease in bacterial diversity leads to a reduced colonization resistance against in-
vading pathogens and has been associated with different pathological conditions such as
inflammatory bowel disease, diabetes and obesity, as explained previously [91]. Several
groups have reported the significant decrease in bacterial diversity both in acute lym-
phoblastic leukemia (ALL) and in acute myeloid leukemia (AML), and this effect has even
been observed five years after the diagnosis [92–98].

In the following sections, we outline how the microbiota influences the response to
treatment, including hematopoietic stem cell transplantation, both allogeneic and autologous.

3. The Treatment of Hematological Malignancies and Microbiota

Live wild-type bacteria can affect the efficacy of some anti-cancer agents either posi-
tively or negatively, in vitro and in vivo, most likely via enzymatic modifications (Table 1).
Thus, in multiple reports, the efficacy of 20% of tested chemotherapy drugs was increased,
the efficacy of 30% was decreased, and 50% were unaffected by bacteria. The cytotoxicities
of cladribine, gemcitabine other commonly-used chemotherapy agents, like etoposide, and
also anti-cancer antibiotics, such as doxorubicin, were decreased by bacteria. In contrast,
bacteria increased fludarabine and 6-mercaptopurine cytotoxicity [99]. Moreover, these
in vitro observations were replicated in an experimental mouse model where it was demon-
strated that bacteria could hamper the effects of a selected drug, namely gemcitabine.

Table 1. Summary of the potential effects of gut microbiota on anticancer agents used in clinical hematology.

Mechanism Outcome Involved Drug (s)

Enzymatic modification of the drugs
Decreased levels Cladribine, gemcitabine, doxorubicin,

Idarubicin, etoposide, mitoxantrone [99]

Increased activity Fludarabine, 6-Mercaptopurine [99]

Translocation of Gram-positive bacteria Generation of Th17 and Th1 lymphocytes Cyclophosphamide [74]

Modulation of genotoxicity Reduction of DNA damage and apoptosis Oxaliplatin, cisplatin [87]

In addition to bacteria affecting drug effectiveness in patients with hematological
malignancies, the microbiota is itself influenced by chemotherapeutics. Cyclophosphamide
is commonly used in the treatment of patients with lymphoma, MM, and AL amyloidosis,
as well as part of stem cell transplantation conditioning and chimeric antigen receptor
(CAR) T cell lymphodepletive treatment [74]. These drugs can alter the composition of
microbiota in the small intestine of mice, inducing the translocation of selected species
of Gram-positive bacteria into secondary lymphoid organs. These bacteria stimulate
the generation of a specific subset of “pathogenic” Th17 cells and memory Th1 immune
responses. On the other hand, with platinum chemotherapy (used in some regimens for
relapsed lymphoma, for example), infiltrating myeloid-derived cells responded poorly to
therapy in germ-free mice, resulting in deficient production of reactive oxygen species and
cytotoxicity after chemotherapy, as previously mentioned [87]. Thus, optimal responses to
cancer therapy may require an intact commensal microbiota.

4. Allogeneic Stem Cell Transplantation

Allo-HSCT is a potentially curative modality for treating high-risk hematological
malignancies (lymphomas and leukemias) and non-malignant conditions, such as aplastic
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anemia and inherited diseases. This procedure employs a conditioning regimen, including
chemotherapy, radiation, radioimmunotherapy, and/or antibody-based immunotherapy
with the goal being to reduce residual malignant cells, deplete the bone marrow hematopoi-
etic cells, and suppress the patient’s immune system. Then, the patient receives an infusion
of donor hematopoietic stem cells that reconstitutes hematopoiesis. The graft additionally
contains allogeneic T-cells, which can attack residual malignant cells (graft vs. tumor
effect) or healthy host tissues (graft vs. host disease (GvHD)) [100]. GvHD is still a lead-
ing cause of morbidity and mortality [101,102]. Acute GvHD (aGvHD) occurs in about
30–50% of patients and classically develops within 100 days after transplantation; however,
late-onset aGvHD may develop even later [103]. Unfortunately, mortality remains high;
the 2-year survival rate for patients with grade III and IV aGvHD is 25–30% and 1–2%,
respectively [101]. Regarding pathophysiology, three phases have been described. Phase
1 is characterized by tissue damage due to a conditioning regiment that causes release of
inflammatory cytokines and activation of host antigen-presenting cells (APC). During the
second phase, host and donor APCs activate lymphocytes to produce Th1 cytokines and
in phase 3, T cells migrate to target tissues and produce direct damage, especially in the
skin, the gut and the liver [102,104]. Chronic GvHD (cGvHD) can occur with or without
previous aGvHD and occurs in approximately 40% of patients [103]. The skin, the liver, the
lungs and the gastrointestinal tract are the principal target organs [105]. The diagnosis of
GvHD is predominantly based on clinical findings, supported by tissue biopsy in the case
of aGvHD [106]. Strategies to reduce GvHD include optimization of HLA matching, T-cell
depletion, and the use of immunosuppressive prophylaxis [107]. The first-line treatment
for acute and chronic GvHD is based on corticosteroid therapy, however 35 to 50% of
patients become refractory to this treatment. Responses to subsequent lines of therapy are
also poor and there is no accepted standard of care treatment [108,109].

In recent years, the role of the intestinal microbiota in the development of infectious
complications, GvHD, and mortality after allo-HSCT has been increasing. Allo-HSCT
has been found to be related to a significant decrease in the diversity of the intestinal
microbiota and it is believed to be due to the combination of various factors such as condi-
tioning regimens, antibiotics, changes in diet, and intestinal inflammation [110–112]. About
50 years ago, different groups showed that, after receiving an allo-HCST, prolonged sur-
vival was observed in germ-free (gnotobiotic) animals and animals decontaminated with
high-dose antibiotics compared with conventional mice due to reduced GvHD [113–119].
These results suggested that the microbiota plays a critical role in GvHD, and the ab-
sence of microbiota protects against it. However, these germ-free animals had an aberrant
immunity and an anomalous development [120,121]. Efforts were made to bring these
results into clinical practice. Diverse clinical trials and observational studies analyzed the
effects of intestinal decontamination using broad spectrum antibiotics or lamina-airflow
isolation rooms. However, the majority of these publications were contradictory and the
outcomes were inconsistent [122–130]. In an attempt to narrow the antibiotic spectrum,
the use of non-absorbable (rifaximin) or anti-anaerobic (metronidazole) antibiotics has
been associated with a decrease in the rate and severity of GvHD [127,131–133]. Never-
theless, no standardized protocol for prophylactic antibiotics during allo-HSCT has been
established [134].

The reduction in the diversity of the intestinal flora and domination by a single taxa at
the time of neutrophil engraftment after allo-HSCT has been associated with reduced OS,
increased transplant-related mortality, and GvHD-related mortality [135–137]. A recent
publication showed that patterns of loss of diversity across different transplantation centers
and geographic locations are similar. These findings highlighted that higher diversity of
gut microbiota was associated with lower mortality, mainly in the subgroup of patients
that received unmodified T-cell-repleted grafts [138]. These outcomes have been supported
in a recent meta-analysis that highlights the importance of microbiota diversity and the
drawbacks of intestinal decontamination [139].
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One of the main limitations of the first studies carried out in this field is that most of
them did not characterize the microbiota using high-throughput sequencing technology.
Advanced molecular microbiological methods have elucidated that domination of a single
taxa microorganism is associated with detrimental outcomes. For example, in mouse mod-
els the expansion of Lactobacillus and the depletion of Clostridiales were associated with
worse GvHD [140]. Human studies have indicated that the presence of Blautia bacterial
species is associated with reduced risk of GvHD-related mortality and increased OS [136].
This could suggest that certain microorganisms alleviate inflammation and could be used
therapeutically [141]. However, a randomized clinical trial using the probiotic Lactobacillus
rhamnosus GG did not show any benefit against GvHD after allo-HSCT [142]. Furthermore,
lower levels of Parabacteroides and Bacteroides species were associated with aGvHD [143]
and a greater abundance of Firmicutes, Proteobacteria, and Enterobacteriaceae was linked
with increased mortality and GvHD [144], while a greater abundance of Lachnospiraceae
and Actinomycetaceae was associated with better outcomes [135]. Similarly, monodomi-
nation of Enterococcus, Escherichia coli or Prevotella spp. was related to the presence and
severity of GvHD [145–148]. Recently, an elegant study confirmed the role of fecal domi-
nance by Enterococcus spp. in the development of aGvHD and for increased GvHD-related
and overall mortality after allo-HSCT. They identified a microbiota-intrinsic mechanism
dependent on lactose utilization that favors the expansion of Enterococci, whereby dietary
lactose depletions attenuate the outgrowth of enterococci [149]. Contrastingly, Clostridiales
have an important anti-inflammatory role, which includes upregulation of T regs, through
the production of butyrate. Increased levels of butyrate aid the recovery of damaged intesti-
nal epithelial cells after allo-HSCT and the depletion of anti-inflammatory Clostridia spp.
precedes the development of GvHD [150]. Overall, there is sufficient data to confirm the
role of the microbiota in immune reconstitution and immunosurveillance. In this context,
Peled et al. found associations between the abundance of a bacterial group, mostly of
Eubacterium limosum, and relapse after allo-HSCT [90]. However, the potential protective
mechanism that could be provided by this bacterium is yet to be elucidated.

Regarding conditioning regimens, these can modify the composition of the intestinal
microbiota by decreasing Firmicutes (including Blautia species), Bifidobacteria, and Clostrid-
ium cluster XIV and by increasing Enterococcus and Proteobacteria (including Escherichia
species). However, it has not been possible to demonstrate a causal relationship between
conditioning regimens and the diversity of intestinal bacteria due to other confounding
factors such as the concurrent use of prophylactic antibiotics [151,152]. A very recent report
from Memorial Sloan Kettering Cancer Center (MSKCC) described the association between
neutrophil, lymphocyte, and monocyte populations during hematological recovery and the
microbiota dynamics in hundreds of patients who received stem cell transplantation, with
positive associations between both obligate anaerobe fermenters and Staphylococcus and
immune cell dynamics [153]. The role of microbial metabolites has recently been associated
with the development of GvHD [134]. Indole and indole derivates limited intestinal ep-
ithelial damage and reduced GvHD while preserving graft versus tumor activity, and this
was related to the upregulation of genes associated with type I interferon responses [154].
A low urinary level of indoxyl sulfate (a metabolite of tryptophan) has been associated
with the development of GvHD; therefore, it could be a potential biomarker of a disrupted
microbiome, as well as risk of GvHD [155]. Low levels of propionate have been detected in
stool samples from patients with GvHD [143]. In murine intestinal tissue, reduced levels
of butyrate were found after allo-HSCT, and the administration of butyrate improved
the integrity of the intestinal epithelial cells and reduced the severity of GvHD [156]. All
these data suggest that intestinal microbiome-derived metabolites may modulate intestinal
damage and mitigate GvHD [156] (Table 2).
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Table 2. Summary of outcomes induced by type of treatment and microbiota disruption in humans.

Treatment Microbiota Feature Outcome

Allogeneic
hematopoietic stem
cell transplantation

Decontamination of gut anaerobes Lower risk of GvHD [127,132]

Decreased duodenal Paneth cells Higher GI GvHD and NRM [148]

Low intestinal microbiota diversity Higher TRM, lower OS and GvHD-related
mortality [135,138]

Enterococcus spp. domination
Increased GI GvHD severity [145] Increased GvHD-related

and overall mortality [146,157] Associated with blood
stream infections [110,158]

Blautia abundance Reduced GvHD-related mortality [136]

Clostridia spp. depletion Increased GvHD [150]

Barnesiella spp. abundance Protection against Enterococcus domination [159]

Akkermansia muciniphila domination Mucus degradation [128]

Lactobacillales domination Associated with GvHD development [140]

Eubacterium limosum abundance Lower risk of relapse or progression, higher OS [90]

Picobirnivirus presence Severe GI GvHD [160]

Lower urinary 3-indoxyl sulfate Higher risk of GvHD, higher TRM, lower OS, higher
dysbiosis [145,155]

Autologous stem cell
transplantation

Reduction in diversity index and an
increased dominance index Development of mucositis [161]

Decreased in Firmicutes and
Actinobacteria and increased

in Proteobacteria
Development of GI mucositis [161]

Chemotherapy
Baseline levels of Porphyromonadaceae Predictor of infection during induction for acute myeloid

leukemia [162]

Relative abundance of E hallii Higher negative minimal residual disease rate in bone
marrow for multiple myeloma [163]

CAR T-cell therapy

Oscillospiraceae, Ruminococcacaeae and
Lachnospiraceae enriched

Association with complete remission after CAR T cell
therapy [164]

Higher abundance of Lachnospiraceae Development of cytokine release syndrome and/or
neurotoxicity [164]

GI gastrointestinal; GvHD graft versus host disease; NRM no-relapse mortality; OS overall survival; TRM, transplant-related mortality.

5. Autologous Stem Cell Transplant

Autologous hematopoietic stem cell transplantation (ASCT) is a multistep procedure
originally developed for the treatment of hematological malignancies. This is part of the
first-line treatment for MM, and an alternative treatment modality for lymphomas and a
few solid tumors. After administration of G-CSF and/or chemotherapy, hematopoietic
stem cells are harvested. The infusion of these cells is used to bridge hematopoietic failure
after high-dose chemotherapy, usually melphalan for MM and combination regimens for
lymphoma, such as BEAM (BCNU, etoposide, cytarabine, and melphalan). In this sense,
autologous stem cell support is not a “transplant”; however, the term “ASCT” is commonly
used. More than half of the stem cell transplants performed in Europe are autologous, most
of them for lymphoid malignancies (plasma-cell disorders (mainly MM), non-Hodgkin
lymphoma, and Hodgkin lymphoma), although the procedure has been also adapted for
the treatment of severe immune-mediated disorders [165–168]. The source of stem cells for
99% of all autologous transplant procedures is peripheral blood.

There is limited information about the impact of microbiota on ASCT. Preliminary
results showed significant changes in the oral microbiome of 51 patients after ASCT, which
returned to its pre-chemotherapy composition after three months. However, changes in
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microbial diversity were more pronounced and rapid in patients who developed mucositis
compared to patients who did not [161]. For non-Hodgkin lymphoma, ASCT caused
a decrease in Firmicutes and Actinobacteria abundance but an increase in Proteobacteria
abundance in fecal samples collected after exposure to conditioning compared to baseline
fecal samples [169]. A small pilot study with 15 patients with plasma-cell dyscrasia showed
that microbiome composition present at baseline was associated with the incidence and
severity of post-transplantation nausea, vomiting, and culture-negative neutropenic fever,
as well as with the rate of neutrophil engraftment [170]. Other studies have included
ASCT in the design, but the majority of them received allo-HSCT [171]. There are many
aspects still to explore regarding the relationship between the microbiome and ASCT, and
the association of the microbiota with other immune complications such as engraftment
syndrome [172] would be of clinical interest for further studies (Table 2).

6. Antibiotics and Acute Myeloid Leukemia

The impact of microbiota composition has not been studied in detail in patients re-
ceiving induction therapy for AML. However, antibiotic prophylaxis during chemotherapy
could be a factor to consider when evaluating the microbiome in these patients. A report
of 60 patients, most with AML (42%) or MM (37%), showed that the treatment of neu-
tropenic fever with beta-lactam antibiotics reduced the diversity of the gut microbiome
in comparison to when the prophylactic levofloxacin was used [173]. Moreover, another
study reported that baseline microbiome diversity was a strong independent predictor of
infection during induction chemotherapy. Higher baseline levels of Porphyromonadaceae
appeared protective against infection, while carbapenem use was associated with deeper
changes in the microbiome and with infection susceptibility [161]. This microbiome-based
information could be useful to design interventional strategies and optimize antibiotic
administration in clinical practice for patients with AML.

7. First Line Treatment in Multiple Myeloma

Survival trends for patients with MM appear to be improving in the last decade,
and these better outcomes are related to the use of novel therapeutic agents. The intro-
duction of ASCT, followed by immunomodulatory drugs (thalidomide, lenalidomide,
pomalidomide) proteasome inhibitors (bortezomib, carfilzomib, ixazomib), and mono-
clonal antibodies (daratumumab), has improved the OS in older patients and lowered early
mortality rates [174–176]. A very recent report from MSKCC [163] of 34 MM patients who
completed first-line therapy and were candidates for lenalidomide maintenance sought to
define the connection between the patient intestinal microbiome and MM disease progres-
sion. Patients were evaluated for minimal residual disease (MRD) status after completion
of induction and before the start of maintenance therapy and stool samples were obtained
for DNA sequencing to identify the microbiome composition. A higher relative abundance
of the butyrate producer E. hallii was observed in patients without MRD in their BM when
compared to those that were MRD+. F prausnitzii was identified as another microbe poten-
tially associated with negative MRD status after initial therapy. Future studies are needed
to confirm these findings about intestinal microbiota composition and deeper treatment
response. In general, information about the link between myeloma treatment and the
microbiome is scarce.

8. CAR T Cells

CARs are synthetic fusion proteins that redirect lymphocytes to recognize and elim-
inate cells that express a target antigen on its surface. A CAR is endowed with four
fundamental components: an extracellular antigen binding domain or single-chain variable
fragment (scFv) derived typically from the immunoglobulin structure; a spacer or hinge
region; a transmembrane domain from CD8α or CD28 molecules; and the intracellular or ac-
tivation domains derived from the CD3ζ subunit of the TCR and one or two co-stimulatory
domains derived from CD28 or 4-1BB molecules, among others. Synthetic engineering of
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T-cells expressing CARs against CD19 antigen have shown outstanding results against B-
cell malignancies in clinical trials. Therefore, the US Food and Drug Administration (FDA)
and the European Medicines Agency (EMA) have approved Tisagenlecleucel (Kymriah)
for relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (ALL) and R/R diffuse
large B-cell lymphoma, and Axicabtagene Ciloleucel (Yescarta) for R/R diffuse large B-cell
lymphoma as well. Recently, the FDA has also approved brexucabtagene autoleucel (Tecar-
tus) for R/R mantle cell lymphoma [177–181]. The outstanding results of anti-CD19 CAR T
cells have led to numerous clinical trials being carried out on diverse hematological and
solid cancers. In this sense, several encouraging results have been presented using CAR
T-cells/CART-cell therapy targeting BCMA in MM patients. This therapy has emerged as a
potential treatment strategy for R/R MM patients, and it is expected that in the next few
months the first anti-BCMA CAR will be approved [182,183].

Fecal samples from 25 patients at MSKCC were collected pre-CAR T cell infusion [164]
and microbiota composition was profiled by 16S sequencing to determine the correlation
between microbiome composition and the efficacy of CAR T cell therapy. The patients
were adult recipients of CAR T cells who varied regarding conditioning regimen, CAR
construct, and underlying diagnosis, which included hematologic and solid malignan-
cies. The study found an increased representation of bacterial taxa in the microbiome
of patients who achieved a complete remission (CR) versus those who did not. Oscil-
lospiraceae, Ruminococcacaeae, and Lachnospiraceae were enriched in patients with CR
and Peptostreptococcaceae was more abundant in patients who did not achieve a CR. A
higher abundance of Lachnospiraceae was found in those who experienced some toxicity
(cytokine release syndrome or neurotoxicity of grade 1 to 4), while Peptostreptococcaceae
was more abundant in patients who did not have toxicity. Although very preliminary, these
data indicate that features of the microbiota may correlate with outcomes of CAR T cell
therapy (Table 2).

9. Outlook-Future Perspective

Gut microbiota has been studied in detail for the last decade and overall data suggest
the great impact of intestinal microorganisms upon carcinogenesis, cancer proliferation,
HSCT outcome, and response to anticancer therapeutics. Hence, gut microbiota modulation
is an exciting and important field of research that will likely be used as a complement
to existing therapies, either to enhance the efficacy of treatments or to diminish first-line
treatment side effects. To date, several microbiota-targeted approaches have been used to
modulate the gastrointestinal bacterial composition (Figure 2).

Dietary intervention can change the gut microbiota composition within 24–48 h at
the level of species and family, but not phyla [184]. In addition, the circadian rhythm
needs to be accounted for, as at least 10% of Operational Taxonomic Units (OTUs) exhibit
diurnal oscillations in their abundance [185]. A Western-style diet, which is known to be
linked to higher levels of inflammatory markers and with inflammation-related chronic
diseases [186], has been associated with CLL. The author of the study hypothesized that the
Western diet microbiota could lack the diversity to establish a balanced immune response,
therefore suggesting that a percentage of CLL cases could be prevented by a change in
dietary patterns [187]. Dietary intervention is also being tested in a clinical trial of subjects
undergoing allo-HSCT in which a potato-based resistant starch is administered for 100 days,
beginning just before the conditioning phase. The aim is to increase the butyrate level
inside the intestine to mitigate GvHD [188] (Table 3).
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Table 3. Interventional clinical trials employing microbial products of hematological malignancies treatment and its complications.

Condition Intervention Administration Primary Aim Phase Participants Status Identifier

aGvHD FMT Orally via capsule Efficacy, safety, and tolerability I 10 NYR NCT04280471

GI aGvHD FMT Colonoscopy or gastroscopy Efficacy and safety II 30 R NCT03812705

GI aGvHD FMT Nasojejunal tube Efficacy and safety I 15 NYR NCT03549676

GI aGvHD FMT Orally via capsule Efficacy and safety I/II 20 R NCT04269850

GI aGvHD FMT Orally via capsule Efficacy and safety II 17 NYR NCT04059757

GI aGvHD FMT Colonoscopy or gastroscopy Efficacy III 15 R NCT03819803

GI aGvHD FMT Orally via capsule Efficacy and safety N/A 10 R NCT04622475

aGvHD FMT Orally via capsule Feasibility and efficacy I 11 NYR NCT04139577

GI aGvHD FMT Colonoscopy or duodenal
nutrition tube injection Efficacy I 30 R NCT04285424

Allo-HSCT, AML FMT Orally via capsule Efficacy and incidence of infections II 120 R NCT03678493

AML FMT Rectal enema Evaluation in dysbiosis correction
and in MDRB eradication I/II 20 C NCT02928523

aGvHD FMT Not specified Efficacy II 24 C NCT03359980

Allo-HSCT FMT Orally via capsule Feasibility and efficacy I 18 C NCT02733744

Allo-HSCT Potato-based
dietary starch Orally Incidence of grade II-IV GVHD II 70 R NCT02763033

Allo-HSCT Fructo-oligosaccharides
prebiotic Orally Safety and tolerability I 15 C NCT02805075

Allo-HSCT Galacto-oligosaccharide
prebiotic Orally Tolerability and incidence of Grade

II-IV aGVHD I/II 128 NYR NCT04373057

Allo-HSCT Human lysozyme goat
milk prebiotic Orally Safety and tolerability I 36 NYR NCT04177004

Allo-HSCT Clostridium butyricum
CBM 588 Probiotic Strain Orally Safety I 36 R NCT03922035

AML acute myeloid leukemia; Allo-HSCT allogeneic hematopoietic stem cell transplant; FMT fecal microbiota transplant; GI gastrointestinal; GvHD graft versus host disease; HSCT hematopoietic stem cell
transplant; MDRB multidrug resistant bacteria; NYR, Not yet recruiting; R recruiting; C completed.
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Prebiotics, like oligosaccharides, are components that can promote the growth and
function of beneficial microorganisms. They can have a direct effect inhibiting pathogen
colonization [189,190]. There are a few clinical trials studying the effects of prebiotics
on GvHD. A pilot phase I trial, now completed but without published results, tested
the side effects and best dose of fructo-oligosaccharides in patients with hematological
malignancies undergoing HSCT, with the main goal being to reduce the incidence of
GvHD [188,191]. A phase I/II clinical trial, not recruiting yet, has been approved to
determine whether a prebiotic, galacto-oligosaccharide, a host carbohydrate, can modulate
the microbiome to prevent GvHD after allo-HSCT. During phase I, the maximum tolerated
dose will be determined and in phase II, participants will be randomized to receive the
prebiotic or a placebo [192]. Lysozyme is an enzyme that plays a role in defense against
gastrointestinal pathogens. It is effective against Gram-positive and Gram-negative bacteria
and promotes beneficial microbes and reduces detrimental microbes within gut microbial
communities [193,194]. A phase I trial will study the safety and efficacy of goat milk that is
genetically engineered to produce human lysozyme in the context of preventing GvHD
in patients with hematological malignancies undergoing HSCT [195]. To date, the use of
prebiotics as an adjuvant treatment in the hematological malignancies setting is hindered
by a lack of solid data. However, great efforts are being made in this field and the results of
different ongoing clinical trials are eagerly awaited (Table 3).

Probiotics are beneficial microorganisms that, in the correct amount, confer health
benefits for the host. Besides restoring microbial dysbiosis and preventing colonization
of pathogenic bacteria [196], probiotic byproducts can lower the intestinal infection risk
and inflammation [197]. Probiotics can be directly introduced as defined microbial strains,
engineered microbes, or by FMT. As a defined strain strategy, there is a randomized
open label pilot study testing CBM588 (Clostridium butyricum CBM 588 Probiotic Strain).
The aims of this study are the following: (1) to assess the side effects of this probiotic,
and (2) to evaluate if it improves the clinical outcome in patients undergoing allo-HSCT
by increasing gut microbiota diversity [198]. FMT is an effective approach to restore a
dysbiotic intestinal community, therefore returning the homeostasis with the microbial
communities. This is achieved by administering a fecal solution from a healthy donor
into the gastrointestinal tract of a recipient. Healthy donors are selected after a thorough
screening to discard harmful pathogens or family history of autoimmune, metabolic or
malignant diseases. FMT can be delivered via colonoscopy, enema, nasogastric or naso-
jejunal tube and gastroscopy. Moreover, FMT can now be performed orally through a
freeze-dried capsule containing the fecal matter. This therapeutic procedure represents
an innovation in the hematological field with a remarkable potential to minimize the
side effects of standard treatments like antibiotics or chemotherapy. Currently, FMT is
only approved for the Clostridioides difficile infection (CDI) but there are already some
promising results. Refractory immune checkpoint inhibitor-associated colitis was suc-
cessfully treated with FMT in two patients [199]. At this time, over 10 clinical trials are
being run to establish if FMT is a viable treatment for GvHD [200–208], as well as for
gastrointestinal complications in AML patients [209,210], none with posted results. Im-
portantly, some of the clinical trials are already testing FMT as a first-line treatment for
severe aGvDH [201,208] or as an upfront treatment to avoid or reduce the incidence of
GvHD [209,210] or multidrug-resistant bacteria (MDRB) [210] in HSCT patients. Although
it has been shown that in the recurrent CDI prevention context, FMT administered orally
via capsules is as effective as administered by colonoscopy [211], these clinical trials are
testing several FMT administration options: oral administration through a freeze-dried
capsule [198,200,202,203,206,207,209], colonoscopy/gastroscopy [201,205,208], rectal en-
ema [210], and nasojejunal tube/gastroscopy [204] administration. While an increasing
number of studies are testing FMT as a treatment, it has encountered several difficulties that
have halted its application in the clinic. A patient died from a drug-resistant Escherichia coli
bacteremia transmitted by FMT after an allo-HSCT [212]. Moreover, the FDA issued a
safety alert in 2020 after the death of patients receiving FMT for CDI. Patients developed
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infections caused by enteropathogenic Escherichia coli (EPEC) and Shiga toxin-producing
Escherichia coli (STEC) [213]. Hence, a better stool donor screening technique to avoid the
transmission of harmful microorganisms is required and multiple clinical trials are ongoing
to confirm the safety and viability of FMT (Table 3).

Postbiotics are bacterial bioactive compounds that can be delivered directly to a
patient without targeting the gut microbiota composition. This is done by the exogenous
administration of a specific metabolite, like SCFAs, flavonoids, the organic acid taurine,
and indole derivatives. A recent study showed that higher circulating concentrations
of butyrate and propionate are associated with protection from cGvHD in allo-HSCT
patients [214]. On the other hand, the gut microbial metabolite trimethylamine N-oxide
(TMAO) aggravates GvHD in mice, enhancing M1 macrophage polarization via NLRP3
inflammasome activation [215]. These two examples highlight the therapeutic potential of
postbiotics in hematological malignancies (Table 3).

Antibiotic strategies, that include selecting more narrow-spectrum agents, are currently
being tested in clinical trials in the HSCT setting in order to preserve intestinal microbiota
composition and therefore reduce the incidence and severity of aGvHD [216] (Table 3).

10. Concluding Remarks

Gut microbiota can shape the immune system well beyond the gastrointestinal tract
and this is key to comprehending its role in health and disease. Understanding this in-
terplay will help us to identify novel targets in the design of new approaches to treat
hematological malignancies. For instance, a possible approach to treat cancer as an adop-
tive T-cell therapy (ACT), like CAR-T therapy, would be the use of cross-reactive T cells.
Cross-reactive T cells could recognize bacterial antigens but are able to recognize tumor-
associated antigens as well. Migrating bacterial antigen-loaded DCs would travel to
secondary lymphoid organs and potentially prime cross-reactive anti-tumor T cells. These
T cells could be potentially used as an ACT themselves or as an adjuvant for CAR-T cell
therapy. Furthermore, gastrointestinal flora modulation is a promising approach to im-
prove the efficacy of hematological malignancies therapies, especially to avoid the serious
complications related to those treatments. The clinical trials ongoing in this field will help
to establish this approach as a therapeutic tool, adding a valuable personalized medicine
resource in the standard care treatment of hematological malignancies (Figure 2). FMT is
the most advanced option to move forward. As outlined in this review, multiple clinical
trials are being developed in the setting of hematological malignancies. Several key factors
must be taken into consideration, like the source of the fecal transplant, autologous vs.
healthy donor, its way of administration, the dose, and the timing of infusion. It is also im-
portant to acknowledge that different hematological malignancies, or their complications,
may need different approaches. Moreover, once FMT is validated as a therapeutic tool
beyond CDI, it will be necessary to establish the required technology and to standardize
the donor microbiota. As mentioned before, besides FMT, other strategies are being studied
in pre-clinical models and clinical trials. A lot of resources are being used to uncover the
most efficient way to modulate the gastrointestinal flora, but to date, the use of dietary
intervention, prebiotics, probiotics, or postbiotics is hindered by a lack of solid and repro-
ducible data. This highlights the need for more basic and preclinical research to better
understand the mechanisms of action behind gut microbiota modulation.
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