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Abstract: There is a large literature on the relationship between obesity and bone. What we can
conclude from this review is that the increase in body weight causes an increase in BMD, both for a
mechanical effect and for the greater amount of estrogens present in the adipose tissue. Nevertheless,
despite an apparent strengthening of the bone witnessed by the increased BMD, the risk of fracture is
higher. The greater risk of fracture in the obese subject is due to various factors, which are carefully
analyzed by the Authors. These factors can be divided into metabolic factors and increased risk
of falls. Fractures have an atypical distribution in the obese, with a lower incidence of typical
osteoporotic fractures, such as those of hip, spine and wrist, and an increase in fractures of the ankle,
upper leg, and humerus. In children, the distribution is different, but it is not the same in obese and
normal-weight children. Specifically, the fractures of the lower limb are much more frequent in obese
children. Sarcopenic obesity plays an important role. The authors also review the available literature
regarding the effects of high-fat diet, weight loss and bariatric surgery.
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1. Introduction

Obesity represents a growing social problem, which leads to significant efforts by
healthcare systems all over the world to avoid the serious consequences that it can
have on health.

Obesity, according to the World Health Organization’s (WHO) definition, is an abnor-
mal or excessive fat accumulation that may impair health. The BMI (Body Mass Index) is
universally used as a reference measure. The WHO states that the obese state is defined as
having a BMI ≥ 30.0, and reports that, in 2016, more than 1.9 billion adults, 18 years and
older, were overweight (BMI ≥ 25). Of these, over 650 million were obese and, worldwide,
obesity has nearly tripled since 1975 [1]. It is predicted that 57.8% of the elderly population
will be overweight or obese by 2030 [2].

Worrying data are also found in children, in whom overweight and obesity conditions
are calculated thorough different parameters, based on age (WHO Growth Reference
median) [3]. The prevalence of overweight and obesity among children and adolescents
aged 5–19 has risen dramatically from 4% in 1975 to over 18% in 2016 [1].

Obesity can lead to very serious consequences on various organs and systems. More
controversial are its effects on bone. We believe it is very important to define what effects
obesity can cause on bone. In fact, in consideration of the fact that BMD (bone mineral
density) is not sufficient, on its own, to define whether an individual is at greater risk of
fracture, we have to detect other factors, independent of BMD, which can be defined as risk
factors. If scientific evidence clarifies its significant role in increasing fracture risk, obesity
could be included in the various algorithms that can be used to quantify fracture risk.
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This narrative review aims to carefully examine the literature on the influence that
obesity has on bone health, both in children and adults, trying to clarify a topic that is
still debated and remains partially controversial. Although there are numerous studies
and reviews published on this topic [4–8], this review aims to be as complete as possible,
examining all the facets related to this problem, also broadening the discussion to the
consequences of bariatric surgery and childhood obesity.

The risk of fracture depends on bone fragility and the propensity for falls. We will
examine these two risk factors both in general and in obesity.

2. Bone Fragility and Assessment Methods

Bone fragility is a condition that leads to an increased risk of fracture. The disease
that is characterized by bone fragility is called osteoporosis. It is caused by a deficit
in bone “quantity” or a deficit in bone “quality” (or both) [9,10]. Bone quantity can be
easily measured, with proved instruments as dual energy X-ray absorptiometry (DEXA) or
quantitative ultrasounds (QUS). Conversely, bone quality is more difficult to evaluate with
the available measurement tools. For this reason, at present, the diagnosis of osteoporosis
is made with the use of the available instrumental methods, which calculate the BMD,
combined with questionnaires. The most used questionnaire is the FRAX (Fracture Risk
Assessment Tool), released in 2008 by the WHO. The FRAX provides for the collection of
data relating to the patient, including all personal data (age, sex, race, weight, etc.) and the
possible risk factors for fragility fractures [11]. In fact, there are some instrumental methods
for assessing bone quality, which analyze bone structure. The use of QCT (Quantitative
Computed Tomography) technology is now widespread. High-resolution peripheral
quantitative computed tomography (HR-pQCT) is considered even more reliable. With
the HR-pQCT, it is possible to evaluate the volumetric BMD (vBMD). It is unquestionably
superior to DEXA in evaluating bone structure, and, therefore, bone quality [12,13]. In
the obese, more specifically, other evaluation methods have been proposed. In a study by
Ruosi et al. [14], the authors report that, in 54 obese subjects, BMD was normal or slightly
below normal, but the spinal deformity index (SDI) showed vertebral body deformities
in 87.5% of the patients and 10% in controls, signs of morphometric vertebral fractures.
This is a tangible sign of DEXA deficiency in defining the risk of fracture in the obese.
For the indirect evaluation of bone microarchitecture, the TBS (trabecular bone score)
algorithm was proposed. TBS is a textural index based on pixel gray-level variations in the
LS DEXA image, and it turned out to be quite reliable. In a study by Romagnoli et al. [15],
TBS was found to be inversely related to BMI, suggesting that an increase in BMI has a
negative impact on bone quality. Furthermore, at the 27th American Association of Clinical
Endocrinologists (AACE) meeting, held on 2018, another method was presented for a more
correct assessment of the risk of fracture in the obese patient [16]. It would be sufficient to
calculate the LS BMD/BMI ratio. In obese subjects, the TBS and LS BMD/BMI ratios are
almost always lower than the BMD assessed with DEXA [17].

Since it has been demonstrated that obese individuals have a greater risk of fracture
than non-obese [18–20], this leads us to conclude that the latter two measurement criteria
described can give us a better perspective of the risk of fracturing of obese individuals.

3. Obesity and Mineral Bone Density

For many years it was thought that the people most at risk of fractures were lean
women. Lower BMI was thought to increase the risk of osteoporosis, while the higher body
weight to give protection against fractures [21–23]. Several studies have been published
showing a positive relationship between BMI and BMD [21–24]. In a cross-sectional study,
Santos et al. assessed 128 subjects aged between 80 and 95 years and reported that obesity
was shown to be a protective factor for osteopenia/osteoporosis in the spine (OR: 0.43;
CI: 0.20–0.93) and femur (OR: 0.27; CI: 0.12–0.62), independently from sex [25]. The same
conclusions were reported by other authors [26–31], while a few studies highlighted the



Int. J. Mol. Sci. 2021, 22, 13662 3 of 25

positive correlation between BMI and BMD in post-menopausal women [22,23,32], and a
study by Cherif et al. showed an overall high bone density in obese women [33].

During menopause, higher body weight seems to decelerate bone loss [34].
The higher BMD in obese subjects, reported by many authors, is attributable to the

mechanical effect of body weight on bone [20,35–38]. The scientific literature shows how
weight bearing increases bone density by acting also at the cellular level [39]. Studies
conducted on animals show that osteocytes are particularly sensitive to biomechanical
stress [40]. They die by apoptosis in the absence of loading [41], while, when the shear
stress signal is picked up by the osteocytes [42], they do not undergo apoptosis, and their
secretion of sclerostin is suppressed [43]. At the same time, the action of the osteoclasts
is repressed, and osteoblastic differentiation is stimulated [44–46]. Garnero et al. found
a decrease of biochemical bone markers in obese people, with greater decline of bone-
resorption markers than bone formation ones [47]. This phenomenon would confirm that
body weight gain leads to a positive bone balance.

The effect of mechanical loading on bone is determined more by the lean mass than
by the fat mass [48–50]. In obese individuals, there is an increase in fat mass, but also in
lean mass (excluding sarcopenic obesity), but it is prevalently the latter component that
positively interferes with bone density [8].

The more positive effect of an increase in lean mass on bone compared to fat mass
is also demonstrated by the study by Santos et al. [28], which shows that there is a direct
relationship between increase in lean mass and bone density (total bone density, femur,
and spine) while, on the contrary, sarcopenic obesity causes osteoporosis. An increase in
lean mass (muscle strain) also favors an increase of BMD and an improvement in geometry
and bone modeling at the level of the upper limbs [51], although, of course, the effect
of weight bearing on bone is mainly exerted on the lower limbs. In fact, from this point
of view, the literature is controversial. From some studies, it appears that a higher BMI
determines a higher BMC (bone mineral content) at the level of the femoral neck and
lumbar spine, but not the radius [27,29,34,52]. Some authors observed an increased bone
mass at the lumbar spine, radius, and tibia in obese women, but not in men [53,54]. Other
authors report a positive correlation between BMI and BMD also in the radial shaft and
ultra-distal radius [55]. Quantitative imaging methods, such as HR-pQCT, demonstrated
higher cortical BMD, higher trabecular BMD, and greater trabecular number at the distal
radius and distal tibia in obese people, but no difference in bone size between obese and
normal adults [34,56].

In addition to the mechanical factor, the increase in BMD that has been found in
obesity also seems to be linked to the action of estrogens. It is widely demonstrated that
estrogens have an important effect on bone metabolism, stimulating bone formation and
reducing its resorption [57,58]. There is a close relationship between adipose tissue and
estrogen metabolism. Indeed, adipose tissue is one of the major sources of aromatase,
which synthesizes estrogens. A higher serum concentration of estrogens was found in
obese postmenopausal than in non-obese women [59], and higher 17β-estradiol levels were
found in the obese subjects [60].

4. Obesity and Fractures

Even though a wide literature shows that the increase in BMI leads to a higher BMD,
this increase is not protective against the risk of fractures [18]. This phenomenon has been
called “obesity paradox” [19].

Two different factors that make the obese subject more susceptible to fractures must
be distinguished: the first is the increase of bone fragility caused by adiposity, the second is
the higher risk of falling.
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4.1. Increased Bone Fragility
4.1.1. Metabolic Association

Obesity is a condition of chronic dysfunction characterized by a low-grade, systemic
inflammatory state. This pathological condition predisposes to the onset of some diseases,
such as diabetes, hyperlipidemia, and hypertension. MetS (metabolic syndrome) is mainly
characterized by obesity, hyperglycemia, hyperlipidemia, and hypertension, even if its
definition has undergone changes over time [61–63]. Adipose tissue must be considered an
endocrine organ, which regulates many body functions and has a critical role in energy
homeostasis, producing, for example, several biologically active substances, like adipokines.
Just as adipose tissue can be considered a real organ that acts on the body’s metabolism,
bone tissue can also represent an organ that exerts an action on many other organs. The
two tissues interact with each other. In order to understand how adipose tissue acts on the
musculoskeletal system, we will list a series of substances, in part definable hormones, in
part pro-inflammatory cytokines, which have been described in the literature as responsible
for the deleterious effect of obesity on bone.

Leptin: Leptin is secreted by the white adipose tissue. Hyperleptinemia found in
the obese subject seems to be one of the causes of bone weakening. In fact, leptin has
a dual effect on bone. One of these effects is positive: in vitro, leptin stimulates stromal
cells to differentiate into osteoblasts, stimulates the proliferation of the latter and inhibits
the formation of osteoclasts [64–66]. It has also been shown that a knockout of the leptin
gene causes a reduction in BMD and bone volume [67]. The negative effect seems to
prevail over the positive one [68,69]. This negative effect would be exerted via the central
nervous system. Leptin would cause decreased production of serotonin in the hypothalamic
neurons, resulting in decreased bone formation [70,71]. In mice lacking leptin or leptin
receptors, several authors found a decrease of femur bone mass and an increase of femur
bone marrow fat [70,71]. Jansson et al. [72] based on their animal study in rats and mice,
hypothesize that, in addition to the action of Leptin, which would have the ability to reduce
body weight, also through a reduced food intake [73,74] there would be a homeostat, called
“gravitostat” by the authors, located in the weight-bearing lower extremities, which would
be activated with the increase in body weight, producing a decrease in fat mass regardless
of leptin. The same group of authors, in a more recent paper [75] found that the gravitostat
regulates fat mass in obese mice, while leptin regulates fat mass in lean mice, concluding
that the gravitostat protects against obesity, whereas undernutrition induces low levels of
leptin, with subsequent weight gain. The findings of these two studies lead to an interesting
conclusion: obesity has an effect on bone, but bone also has an effect on body weight.

Adiponectine: Adiponectine, secreted by white adipose tissue, is an adipokine that has
been proven to stimulate bone formation. It has been shown that adiponectin stimulates
osteoblastic proliferation, with an increase in the activity of alkaline phosphatase, and the
formation of type I collagen and osteocalcin, all markers of differentiation and maturation
of osteoblasts. The osteogenesis of mesenchymal stem cells stimulated by adiponectin
is mediated by the adipoR1 phosphorylation of P38 MAPK, which enhances COX-2 (cy-
clooxygenase2) and BMP2 expression (bone morphogenetic protein 2), a cytokine with
considerable osteogenic potential [76–78]. In obesity, a low concentration of adiponectin is
usually present [79]. This condition induces the reduction in osteoblastogenesis and the
increase in osteoclastogenesis [80], through the mechanisms described above and, overall,
through a mechanism mediated by inflammation markers. The chronic inflammatory con-
dition present in obesity is likely to be partly linked to the lack of adiponectin. Adiponectin
deficiency is also found in insulin-resistant diabetes [79]. This could be one of the links
between obesity and diabetes.

The concentration of adiponectin is inversely proportional to that of numerous inflam-
matory cytokines, such as C-reactive protein (CRP), IL-6, and TNF-α. It is therefore presum-
able that the chronic inflammatory state present in obesity expresses a high concentration
of these inflammation markers, which are potent inhibitors of adiponectin expression [81].
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TNF-α: As already mentioned, in the obese subject there is a greater expression of
TNF-α (GK57). TNF-α, through multiple mechanisms, leads to an increase in RANKL
(RANK-Ligand) [82–84]. The latter promotes an osteoclastic bone resorption process.
TNF-α also stimulates the production of osteoprotogerin [85].

IL-6: Just as in the case of TNF-α, obesity and insulin resistance cause an increase in
interleukin 6 (IL-6) [86], through its overproduction by adipocytes and fibroblasts. IL-6,
like TNF-α, also induces osteoclastogenesis and bone resorption [87–89].

Resistin: Resistin, a hormone of protein origin produced by visceral adipocytes and
macrophages, has a controversial effect on bone. If it seems to favor the proliferation of
osteoblasts, it also seems to favor osteoclastic proliferation and the release of inflammatory
cytokines [90]. A high concentration of resistin is found in obese people [91].

Peroxisome proliferator-activated receptor gamma (PPARg): According to some au-
thors, the peroxisome proliferator-activated receptor gamma (PPARg), together with its
agonists, the thiazolidinediones, can act in the obese subject producing a negative effect
on the bone. In fact, PPARgs have the property of promoting the differentiation of mes-
enchymal cells into adipocytes and blocking the transformation of mesenchymal cells into
osteoblasts [92].

Lipid metabolism: The review by Kim et al. [93] carefully examines how the alterations
in lipid metabolism present in the obese subject can negatively affect bone metabolism. The
lipid alterations to which such consequences can be attributed are different and complex,
with the involvement of SREBP, cholesterol, LXRs and RXRs, fatty acids, statins. The latter
can impact the phenotype of osteoclasts and osteoblasts in pathological conditions.

Vitamin D: Vitamin D deficiency causes a reduction of calcium resorption and, con-
sequently, osteoporosis and osteomalacia. In the obese, the serum levels of vitamin D are
significantly lower than in non-obese [94–96]. However, as we have previously reported,
the obese patient’s BMD is higher. The incongruity of this phenomenon can be explained
by the fact that a wide amount of vitamin D in the obese is stored in the largely represented
adipose tissue, causing a serum hypovitaminosis D. This hypovitaminosis is only apparent
though, since vitamin D in the adipose deposits is always available and, therefore, the
obese subjects are not affected by the negative effects of the deficiency of this vitamin [97].
In obese patients, it is very common (43% of the morbidly obese adults) to observe a
secondary hyperparathyroidism, that can negatively impact skeletal health [98,99].

Peptide YY: Not strictly related to metabolism, is the level of Peptide YY. Although it
must be confirmed, the role of this peptide seems to have an influence both on obesity and
bone mass. Peptide YY promotes satiety. PYY-deficient mice (Pyy(−/−)) have osteopenia
with a reduction in trabecular bone mass and a deficit in bone strength. PYY levels
are lower in obese adults and the elevation of PYY seen after a meal in lean subjects is
blunted in obesity [100,101].

The positive and negative effects of the various substances in the obese patient are
schematized in Table 1.

4.1.2. Fat Bone Marrow

Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow
adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102]
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The
adipocytes of the bone marrow are responsible for the secretion of adipokines, some of
which induce the release of various inflammatory cytokines mentioned above, such as
TNFα and IL-6.
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Table 1. Schematic representation of the positive and negative effects of various substances in the
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect,
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these
inflammatory cytokines.

Effects of Obesity on Bone

Positive Effects Negative Effects (

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

Fractures)

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

mechanical load

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

leptin

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

estrogens

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

adiponectin

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

leptin

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

TNF-α

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

IL-6

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

PPARg

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
cannot be ruled out that the inability of the latter cells to differentiate into osteoblasts leads 
to an increased differentiation into adipocytes. The literature widely demonstrates that 
the presence of a greater amount of fat in the bone marrow induces osteoporosis [107–
112]. Indeed, an increase in marrow fat content has been demonstrated in obese women 
with low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar 
spine is an independent predictive factor of fracture [104,113–115].  

It is also important to mention the importance of palmitate, reported by some authors 
[116]. According to these authors, the lipotoxic effect of BAT is mainly due to the action 
of palmitate, which would have its toxic effect, especially on bone cells, mainly osteo-
blasts. 

4.1.3. Genetic Predisposition 
In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obe-

sity-associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice 
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that sub-
jects carrying the FTO gene mutation are more predisposed to osteoporosis due to the de-
pletion of osteoblasts. 

4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 

Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and its 
accumulation is the cause of central adiposity. Abdominal obesity is an index of visceral 
(or central) adiposity and can be measured through the waist circumference. It must be 
distinguished from obesity in general, which is measured with BMI. From the literature it 

PTH
Dyslipidemia

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. Schematic representation of the positive and negative effects of various substances in the 
obese patient. As can be seen, the increase in Leptin can have both a positive and a negative effect, 
although it is the latter that prevails. TNFα and IL-6 are produced in excess due to the dysmetabolic 
action of obesity, but also adiponectin, as indicated by the arrow, leads to an increase of these in-
flammatory cytokines. 

Effects of Obesity on Bone 
Positive Effects Negative Effects ( Fractures) 
 mechanical load  leptin 

 estrogens  adiponectin 
 leptin  TNF-α 

  IL-6 
  PPARg 
  PTH 
 Dyslipidemia 
  palmitate 

4.1.2. Fat Bone Marrow 
Bone marrow is an important deposit of fat, at the level of the “yellow” areas. Marrow 

adipose tissue (BAT) is estimated to occupy 70% of the marrow space by adulthood [102] 
and accounts for about 8% of total fat mass [103]. In the obese subject, bone marrow fat 
fraction (BMFF) was shown to be higher than in the normal weight subject [104]. The ad-
ipocytes of the bone marrow are responsible for the secretion of adipokines, some of 
which induce the release of various inflammatory cytokines mentioned above, such as 
TNFα and IL-6.  

The correlation between obesity and bone fragility can also originate from the adi-
pose bone marrow, which has been shown to interfere with bone metabolism. It is not a 
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in 
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common 
origin, which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It 
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4.2. Type of Adiposity 
Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat. 
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The correlation between obesity and bone fragility can also originate from the adipose
bone marrow, which has been shown to interfere with bone metabolism. It is not a
coincidence that BMFF increases in obesity, in old age and in osteoporosis, especially in
postmenopausal women [105]. Actually, adipocytes and osteoblasts have a common origin,
which are pluripotential, bone marrow-derived mesenchymal stem cells [106]. It cannot
be ruled out that the inability of the latter cells to differentiate into osteoblasts leads to
an increased differentiation into adipocytes. The literature widely demonstrates that the
presence of a greater amount of fat in the bone marrow induces osteoporosis [107–112].
Indeed, an increase in marrow fat content has been demonstrated in obese women with
low BMD, and Wehrli et al. reported that bone marrow adipose tissue in the lumbar spine
is an independent predictive factor of fracture [104,113–115].

It is also important to mention the importance of palmitate, reported by some authors [116].
According to these authors, the lipotoxic effect of BAT is mainly due to the action of palmitate,
which would have its toxic effect, especially on bone cells, mainly osteoblasts.

4.1.3. Genetic Predisposition

In some subjects, obesity is dependent on a mutation of the FTO (FaT mass and Obesity-
associated protein) gene [117]. It has been demonstrated that the deletion of FTO in mice
leads to increased death of osteoblasts and bone loss [118]. It could be inferred that subjects
carrying the FTO gene mutation are more predisposed to osteoporosis due to the depletion
of osteoblasts.

4.2. Type of Adiposity

Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat.
Intraabdominal adipose tissue is composed of visceral, or intraperitoneal, fat [117] and
its accumulation is the cause of central adiposity. Abdominal obesity is an index of
visceral (or central) adiposity and can be measured through the waist circumference. It
must be distinguished from obesity in general, which is measured with BMI. From the
literature it emerges that, more than obesity, evaluable with BMI, it is the excess of visceral
adiposity that induces damage of bone microstructure. Visceral adipose tissue (VAT) has
been associated with lower trabecular bone volume, lower bone formation rate, lower
stiffness, and higher cortical porosity [119]. Numerous papers published in the literature
highlight that VAT is an independent negative determining factor of bone density in
obesity [104,120–122]. A Korean study on a large population of postmenopausal women
(n = 3058) found that the prevalence of osteoporosis in women with waist circumference
(WC) obesity (>80 cm) was higher than in women with BMI obesity (>25 kg/m2) [123]. A
study by Cao et al. showed low levels of IGF-1 in VAT. IGF-1 has an anabolic action on
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osteoblasts [124]. Some authors report that an increase in VAT causes a higher release of
pro-inflammatory molecules such as TNF and IL-6, which are very important in the genesis
of osteoporosis [125,126].

It is interesting what some authors report, arguing that visceral fat has an adverse
effect on bone mass, while subcutaneous fat would have beneficial effects [122].

4.3. Age and Sex

It is not easy to draw conclusions regarding the differences in bone quantity and
quality and the risk of fracture in obese subjects based on age and sex. It is well known
that postmenopausal women have a much higher risk of osteoporosis than premenopausal
women and men, although there are numerous studies that conclude that osteoporosis
in men should not be underestimated [127]. As regards the influence of age and sex in
the relationship between obesity and bone fragility, biasing factors are unavoidable in
the assessment of fracture risk: the risk of osteoporosis and fractures increases with age,
independently from body weight, and, in menopause, the abrupt decrease of estrogens is
the main cause of osteoporosis.

In the literature, it is possible to find conflicting data on the responsibility of obesity on bone
health based on age and sex. Several studies conducted by Asian authors deal with metabolic
syndrome in general. In two retrospective studies on populations of over 50, it appears that
MetS has a protective effect on bone in men but not in women [128,129]. These conclusions are
confirmed by the studies of Eckstein et al. and Hernandez et al. [130,131]. Totally opposite results
emerge from some studies carried out on the Korean population [58,132,133]. Zhou et al., in
their meta-analysis in which nine studies were selected for a total population of 18,380, confirm
that MetS has more harmful effects on bone in men than in women [134]. Even considering the
“menopause” factor influencing the results, it appears that obesity determines a significantly
higher BMD increase in postmenopausal women than in premenopausal women [21,30,34].

4.4. Obese’s Fracture Site Paradox

As we have seen, the literature demonstrates that the risk of fracture in the obese is
increased. In fact, the published scientific data highlight that the increased risk does not
concern all fractures, but only some sites are affected by a higher incidence of fractures.
This site-specificity of fracture risk could be called “obese’s fracture site paradox” (in
analogy with the “obesity paradox” mentioned above), since the increased risk of fracture
paradoxically does not concern the typical sites of osteoporotic fractures [135,136] but other,
less common, sites. Specifically, most of the available evidence supports a lower risk of
hip, vertebral, and wrist fractures in obese adults [137,138], whereas a higher risk of ankle,
upper leg, and humerus fractures has been found [139–142]. In a study carried out by
Compston et al. on 3628 fractures in 52,939 post-menopausal women followed for 3 years,
the authors concluded that BMI was protective for hip and wrist, whereas the risk of ankle
fractures increased (HR 1.05 [1.02–1.07]) (p < 0.01) [139].

One wonders what the reasons for this anomalous distribution of these fractures may
be. The hypotheses that can be formulated are essentially related to the mechanism of
falling. A first factor could be the hip padding, that is, the presence of an abundant fat
pad around the pelvis that could protect obese individuals from hip fractures, while at
the level of the legs and upper limb the protection by fat is minimal [143–145]. Another
factor could be how obese people fall, since they are more prone to fall backward or
sideward [146]. A further hypothesized factor is the tendency of the obese to excessive
introversion and extroversion of the ankle and lower leg. That would predispose to sprains
and fractures of the ankle [47].

4.5. High-Fat Diet

In order to better understand the relationship between obesity and bone health, the
analysis of the numerous studies on the effects of high-fat diet (HFD) can be interesting.
Most of the findings on the effects of high fat diet come from animal studies.
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Ionova-Martin et al. report that obesity induced in C57BL/6 mice by HFD is associated
with an increased bone quantity (larger bone size and mineral content), but also with a de-
crease in bone quality, as evidenced by lower size-independent mechanical properties [147].
Other demonstrations of the deleterious effect of HFD in mice are reported by Fujita et al.,
who showed the reduction of trabecular bone density and by Patch et al., which reported an
increase in bone resorption [148,149]. Several other studies have confirmed the decreased
bone mass in mice following HFD [149–155], although some studies in rats reported oppo-
site results [156–159]. However, most of the studies report harmful effects of high-fat diet on
bone. It has been shown that the component of the bone tissue that suffers mostly from this
type of dietary intake is the cancellous bone. Several authors found that the consequences
of HFD are the decrease of bone trabecular density [148] and of bone trabecular volume
fraction, bone mineral content, and quantity [154]. The studies on cortical bone do not have
comparable evidence [124,160,161]. This can be explained by the fact that cancellous bone
is more sensitive to bone turnover, as it has a greater remodeling action, likely due to its
larger surface to volume ratio [162]. Another reason may be the fact that cortical bone is
less affected by bone resorption because the body weight load mainly acts on the cortical
bone, strengthening it. HFD, in addition to exerting a deleterious action on bone structure,
has also a harmful effect on the cellular component: it induces osteoclast hyperactivity and
bone resorption [163] mainly through the RANKL/RANK/OPG signaling pathway. Shu
et al. (2015) found an increased osteoclast number in the femoral metaphyseal sections of
HFD-fed mice, associated with the finding of RANKL, TNF, and PPARγ in bone marrow
cells [153]. In fact, an increase in osteoblast function was also noted in the same study. To
explain these findings, it can be hypothesized that, despite the harmful effect of HFD on
bone by changing the bone marrow microenvironment, the weight gain of animals gives
the bone a greater biomechanical stimulus, which only partially reduces bone fragility.

4.6. Gut Microbiota

Microbiome science is relatively new and evolving. Gut microbiota (GM) dysbiosis
has been identified in various diseases, such as hypertension, Alzheimer disease, type
2 diabetes, depression, and also in obesity [164–169]. Several studies have also shown a
relationship of GM dysbiosis with bone health [170]. It can be inferred that the relationship
between obesity and bone can also be conditioned by GM. In an animal study by Wang
et al. [171,172], the GM dysbiosis induced by the transfer of feces from osteoporotic senile
rats to young rats, made the latter osteoporotic. From the study by Zhou et al. on 264
obese or overweight subjects [173], it emerges that the gut microbiota-related metabolite
trimethylamine N-oxide (TMAO) protects against BMD reduction during weight loss. An
important study on this topic is that of Fernández-Murga et al. [172].

The experiment was conducted on two groups of mice: both groups of mice were fed
a high-fat diet (HFD) for 14 days, but in one of the two groups the diet was supplemented
with Bifidobacterium pseudocatenulatum CECT 7765. In HFD-fed mice, bone alterations were
detected, such as reduced volumetric bone mineral density in the trabecular bone and
deteriorated trabecular architecture in bone volumetric fraction, trabecular number, and
trabecular pattern factor at the level of the distal femur. In HFD-fed mice supplemented
with B. pseudocatenulatum CECT 7765, the findings were the following: low negative
effect on bone microstructure, increased Wnt/β-catenin pathway gene expression (which
improves BMD), and decreased serum C-terminal telopeptide (CTX) and parathormone.
These findings demonstrate the protective effect of B. pseudocatenulatum CECT 7765 on bone
in obese mice.

4.7. Effect of Weight Loss

From what has been said so far, it can be inferred that the increase of body weight
generally induces an increase of BMD, but that the bone is not protected by it, on the
contrary, its microstructure is damaged and the risk of fracture increases. What happens
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when the obese subject loses weight? It is interesting to analyze the studies that deal with
this topic.

In rats, long-term calorie restriction with subsequent decrease in body weight is associated
with reduced bone mass [7]. All the studies we found in the literature highlight how weight
loss, both intentional and unintentional, leads to a loss of BMD at the hip and proximal
humerus [174–176], with a consequent increase of the risk of fracture at these sites, while this
effect is not detected at the spine [177–180]. The results of the study by Ensrud et al. showed
that older women had a 35% decline in hip BMD for every 5 kg lost, compared to weight-stable
women, and doubled hip fracture risk. A human study showed similar but less striking results:
the adjusted average rate of change in total hip BMD was 0.1%/year in men who gained
weight, −0.3%/year in weight-stable men, while men who lost weight had a decrease in
BMD of 1.4%/year. [174–176]. Similar results are reported by other RCTs [168,170,172,173].
If diet-induced weight loss is combined with exercise training, there is an attenuation of the
loss of total hip BMD in older obese patients [168,169,173]. One of the hypotheses that would
explain the negative effect of weight loss on BMD is the decreased intestinal absorption of
calcium in a manner independent from the effects of vitamin D [172], but this theory needs to
be better verified. A study by Shah et al. [173] on 107 older (age > 65 years) obese subjects (body
mass index (BMI) ≥ 30 kg/m2), compares the following four groups of individuals: a diet–
exercise group (a group that had an exercise program associated with the diet), a diet group,
an exercise group, and a control group, for 1 year. Body weight decreased in the diet (−9.6%)
and diet–exercise (−9.4%) groups, but, regardless of weight loss (which was comparable), the
comparison between these two groups showed, in the diet group (no exercises), a significantly
greater decline of hip BMD (−2.6% versus 1.1%), and a serum C-terminal telopeptide (CTX)
and osteocalcin concentration increase (31% and 24%, respectively). Serum leptin and estradiol
concentrations decreased in both groups. What could be inferred from this study is that
subjects who practice physical activity have less bone loss because of the lower loss of lean
mass. In fact, the authors report that changes in lean body mass were independent predictors
of changes in hip BMD. Then, the explanation may be that, in subjects who perform exercises,
repeated muscle loading reduces the damaging effect of weight loss on bone.

4.8. Bariatric Surgery

Strictly connected with the effect of weight loss are the consequences of bariatric
surgery, on which numerous papers have been published.

The most performed surgical techniques in bariatric surgery are the following: la-
paroscopic adjustable gastric banding (LAGB), sleeve gastrectomy (SL), roux-en-Y gastric
bypass (RYGB), biliopancreatic diversion with duodenal switch (BPD/DS) [181].

Related to this topic, available evidence suggests the following conclusions about the con-
sequences of bariatric surgery: (1) decrease in BMD and areal BMD (aBMD) [13,182–190], with
endocortical resorption, evidenced by the decrease in the number of trabeculae and a great increase
of cortical porosity [12,13,186]; (2) early and dramatic increase of biochemical markers of bone
turnover, such as serum C-terminal telopeptide (CTx), especially after RYGB [183,184,190–192]; (3)
as far as the type of surgery is concerned, these consequences seem to be rare after LAGB [193],
while they are frequent after RYGB and BPD-DS [194–197]; (4) the risk of fracture increases, but the
most frequent fracture sites are different from those typically found in the obese subjects. In detail,
the mostly incident fractures reported are wrist, humerus, spine, hip, femur [194–196], clavicle,
scapula, sternum, foot [197]; (5) The risk of fracture increases at a longtime distance from the
operation (it starts to increase between 2 and 5 years after surgery) [194–197]; (6) The negative
consequences on bone can be mitigated with exercise [198].

It should be kept in mind that most of the patients who undergo bariatric surgery are
women between the ages of 30 and 40 [163]. It follows that the risk of fracture in that age
group is low, but it is, however, increased after this type of surgery.

There are several hypotheses on the etiopathogenesis of the negative influence of
bariatric surgery on bone. The etiopathogenesis is presumably multifactorial, and mech-
anisms may involve nutritional factors, mechanical unloading, hormonal factors, and
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changes in body composition and bone marrow fat. The first indisputable factor is hypovi-
taminosis D, which occurs in the operated subject. Already before surgery, as previously
described, the patient is probably deficient in vitamin D, because of their obesity, but in the
postoperative period, this deficiency worsens and, unfortunately, the therapeutic intake of
vitamin is unable to compensate for the deficit, with persistence of a serum concentration
of 25OHD below 30 ng/mL [199]. As a result, there is severe calcium malabsorption, which
is reduced by up to 7% after RYGB by 6 months from surgery [190]. Another consequence
is that subjects undergoing bariatric surgery almost always have high levels of parathyroid
hormone [200,201]. Another conceivable cause is that the patient’s sudden weight loss can
significantly affect the bone stoke as a result of mechanical unloading. This last factor can
contribute to the increment of bone fragility, but it cannot be considered the most important,
also because it would not explain the increase in fractures in sites not subjected to load,
such as the upper limb.

In patients submitted to bariatric surgery, several hormonal changes have been de-
tected. In particular, the increase of adiponectin and peptide YY and the reduction in
estradiol, leptin, insulin, and ghrelin (the latter not always increases) causes a decrease
of bone mass, while the increase in testosterone, GLP-1, and IGF-1 is able to induce bone
gain [188,189,202,203].

Another hypothesized mechanism to explain bone loss after bariatric surgery is the
reduction of lean mass, which would lead to a decline in aBMD [13,189,204,205].

4.9. Osteosarcopenic Obesity Syndrome

“Sarcopenic obesity” is characterized by loss of muscle mass due to obesity [206–208].
The combination of osteoporosis/osteopenia and sarcopenia has been called “osteosar-
copenia” [209–211]. The “osteosarcopenic obesity syndrome”, first described by Ilich
et al. [212], is a syndrome characterized by the combination of three conditions: adiposity,
with infiltration of fat in muscle tissue and bone, sarcopenia, and osteopenia/osteoporosis.
The condition that most of all induces the other two is obesity, as a form of low chronic
inflammation that causes the release of numerous cytokines harmful to the bone and
muscle and produces fatty infiltration of the muscles, making the latter less strong and
efficient [212–214]. In sarcopenia, it has also been observed the release of specific muscle
cytokines, such as myostatin, which can inhibit osteogenic differentiation of BMSCs, as
well as osteoblast differentiation and mineralization [214–216].

Sarcopenic obesity is a highly prevalent condition in the elderly. According to data
from the European Working Group on Sarcopenia in Older People (EWGSOP), the preva-
lence of sarcopenia increases by 11% in subjects between 50 and 59 years of age and by 37%
in subjects aged 80 and over [217]. Sarcopenic obesity sums up the effects of obesity and
sarcopenia on elevation of fracture risk. Scott et al. report that older adults with sarcopenic
obesity have a three times greater risk of fracture than older adults with nonsarcopenic
obesity and controls (no sarcopenia, no obesity) [218]. It has also been shown that older
adults with sarcopenic obesity have higher percentage of nonvertebral fractures, compared
with those with sarcopenia alone and those with obesity alone [218,219].

The reasons for this increased risk of fractures are the following: (1) the decreased
bone strength, partly due to the age-related decrease of BMD [220,221] and, as we said
earlier, to the action of myostatin [215,216] and to the worse bone quality connected with
obesity [14–18]; (2) the greater risk of falling [213,222–225] connected to the muscular
weakness of sarcopenia, postural instability and reduced physical activity [224] derived
both from the condition of obesity and from that of sarcopenia [226] without forgetting
that we are generally speaking of elderly patients, whose physical abilities are naturally
reduced. The greater incidence of falls in the subject affected by sarcopenic obesity is
reported by several authors [213,222–225].
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4.10. Obesity and Falls

One of the causes of the increased risk of fractures in the obese subject is the greater
tendency to fall compared to the non-obese.

The increased risk of falling in obese people is reported by various authors [223,227–230].
In a meta-analysis published in 2019, which analyzed 31 observational studies [231], it emerges
that obese people not only have a greater risk of falling than non-obese, but also that obese
subjects have a significantly greater tendency to experience multiple falls.

Several causes for the greater risk of falling in obese people are reported in the
literature: (1) excessive body weight reduces the subject’s agility and therefore his ability
to move skillfully avoiding obstacles [232] and slows down the reaction time in supporting
the body mass during falling [233–235]. (2) Postural instability. The body center stability is
lower in obese people [229,230], especially in older women with central adiposity [236]. In a
cross-sectional study conducted on 201 older adults, Azevedo-Garcia et al. [237] concluded
that obesity is associated with postural balance on unstable surfaces. The lower stability
was also associated with the greater pressure on the heels exerted by the obese subject,
which decompensates the load distribution and alters the correct dynamics of the gait [238].
(3) The poorer physical activity performed on average by obese subjects [239,240] also
influences their lower balance capacity, both because of the lower muscle strength and the
lower agility related to the poor daily exercise [241]. (4) The term “dynapenic obesity” is
referred to the association of obesity with lower muscle strength, due to fatty infiltration
of the muscles [219,241–243]. This leads to a greater predisposition to falls. Dynapenic
obesity is also present in “sarcopenic obesity”, a highly prevalent condition in the elderly
which, as already explained in a previous paragraph, involves a greater risk of falls and
fractures [213,222–225]. (5) Obesity is associated with some diseases, of which it can be
cause or effect, such as diabetes, cardiovascular diseases, chronic pulmonary diseases, sleep
apnea, hypertension [232]. These conditions can be associated to peripheral neuropathy,
orthostatic hypotension, general weakness, all predisposing to falls [244]. We should
not forget that hip and knee osteoarthritis is a disease to which overweight people are
predisposed [245,246]. The arthritic subject is often affected by limping or, in any case,
by pain that makes their gait less fluid, less stable, predisposing them to a greater risk of
falling [247–249].

In Figure 1 are listed the possible causes for the increased risk of falls in obese people
and the hypotheses for the paradoxical fracture site distribution.
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5. Obesity and Bone Health in Children and Adolescents

Childhood obesity can nowadays be seen as an international public health problem
with epidemic proportions. The most recent epidemiological data have revealed a strong
increase of childhood overweight and obesity [250]. This has consequently caused a
significant public health burden with high costs and resources utilization. The changes
in metabolism and bone structure in obese child and adolescent can cause consequences
during childhood itself, but also consequences in later stages of life with the development
of chronic diseases and fractures [251,252].

A significant amount of bone mineral content finally acquired by adult individuals
depends on processes occurring during the period of puberty. During childhood and
adolescence, the rate of bone formation exceeds that of bone resorption, favouring bone
acquisition. Almost half of the adult bone mass is acquired during adolescence. In both
genders, peak bone mass acquisition occurs around the seventh or eighth month after the
maximum longitudinal bone growth (growth spurt) as a result of the high concentrations
of hormones [253–255].

Impaired bone growth during childhood and adolescence is thought to be able
to lead to suboptimal peak bone mass and to increase the risk of developing osteope-
nia/osteoporosis and fractures in old age. In fact, adolescence is considered a critical
period for bone mass gain. The greatest gain in bone occurs during this phase, when peak
bone mass is reached [256].

It has been shown that up to 80% of peak bone mass has a significant genetic influence,
whilst the remaining 20% is thought to be depending on environmental factors, which
have the potential to cause a reduced bone mineral density and increased risk of fracture.
Therefore, it appears evident that factors affecting the bone mass during childhood can
determine a reduction in bone mass in the adulthood period. There is still ongoing
discussion on whether there is a positive or negative effect of fat mass on bone, or even
neutral effect, and whether excessive adiposity is either beneficial or detrimental to the
growing skeleton [257].

As in adulthood, the positive effect of being overweight on BMD also occurs in
children [257,258]. This early increase in bone mass may lead to an accelerated skeletal
maturity and advanced bone age beyond the actual child’s age [259,260]. Oh et al., in a
study of 232 children between the ages of 6 and 15, found that an increase in weight, height,
BMI, and waist circumference percentiles all favored advanced bone age [261]. One could
infer that an acceleration of bone development could create an anomaly of its structure
which would also influence bone quality in adulthood.

In children, there can be a risk of overestimation or underestimation of the true bone
density, respectively, for taller children with larger bones and shorter children with smaller
bones. Several studies have shown that bone mass is reduced in obese children, but many
debates still exist. Neither the use of DEXA Scan has helped the researchers in achieving
a consensus on the topic. On the other hand, BMC is recommended as the best bone
parameter to assess bone mass status in children and adolescents [257].

Exactly as in adults, the phenomenon of “obesity paradox” is observed in children.
Even in children, overweight has a positive effect on BMD, but the incidence of fractures
is higher than in non-obese individuals [252]. An interesting large study conducted in
Catalonia by Lane et al. [262] found that preschool obesity is associated with an increase in
fracture risk in teenage children. Studies related to slipped capital femoral epiphyses and
tibia vara helped in understanding and highlighting that skeletal complications might be
caused by excessive mechanical loading due to excessive adipose tissue [252,263].

Another interesting, proven aspect is that related to the different and opposing effects
of total adiposity and central adiposity on body bone mass (similarly to the adult popula-
tion). Whereas total body fat had a positive association with bone mass, visceral fat had a
negative relationship with bone mass [264]. This concept has been demonstrated even in
adults, as reported in the previous paragraphs. In children and adults with high level of
visceral adiposity, physiological secretion of growth hormone (GH) is impaired. This in



Int. J. Mol. Sci. 2021, 22, 13662 13 of 25

turn may impact on bone mass accrual and skeletal integrity as GH promotes myogenesis
and osteoblastogenesis and regulates the hepatic generation of insulin-like growth factor 1
(IGF-1) which promotes chondrogenesis at the growth plate and osteoblast proliferation
and activity. IGF-1 also acts indirectly to promote renal tubular resorption of phosphate and
the synthesis of calcitriol. Impaired GH secretion may be compounded by highly caloric
low protein diets in obese children that impacts on the synthesis of IGF-1. Androgens stim-
ulate the differentiation and proliferation of osteoblasts via androgen receptors, decrease
osteoblast and osteocyte apoptosis, and indirectly and directly modify osteoclastogenesis
in favour of a reduction in bone resorption. Indirectly, androgens upregulate the Trans-
forming Growth Factor β (TGF-β) and Insulin-like Growth Factors (IGFs), promoting bone
formation, and downregulate Interleukin 6 (IL-6), thus inhibiting osteoclastogenesis [252].

It is very likely that a “melting pot” of factors interplay altogether with increased
childhood fracture rates. These might involve genetic, hormonal, environmental, and
behavioural factors, such as inadequate calcium intake, low vitamin D levels, inadequate
physical activity, weight, diet. These predisposing factors need to be precipitated by further
events able to trigger the underlying predisposition. The long-term effect is an increased
risk for fractures and the overall health status [251]. In fact, with regards to the hypotheses
that could justify the increased risk of fractures in obese children, the discussion is still
open. On the one hand, it can be attributed to poor bone quality, for reasons that can also
be found in adults, i.e., the metabolic syndrome with its low inflammation process (and the
consequent release of TNFα, IL-6 and other cytokines), the excessive production of some
adipokines, the excessive release of estrogens by the overabundant adipose tissue, and all
the other metabolic causes already described in the previous paragraphs [256]. Most factors
and substances (together with their effects) with a significant impact on bone metabolism
are shared between the adult and the paediatric population (leptin, adiponectin, osteocalcin,
activation of the immune system, chronic low-grade inflammation with proinflammatory
cytokines, vitamin D, parathyroid hormone, etc.) [264–269].

A studied hypothesis is the existence of a strong relationship between type 2 diabetes
and osteoporotic fractures. In fact, insulin resistance can be seen as the linking factor
between poor bone health and childhood obesity. Another related hypothesis is that
childhood obesity could promotes low bone mass accrual and risk for diabetes through
several studied mechanisms [265].

On the other hand, it is thought that the increase in fracture risk simply results from
the increased propensity to falls seen in obese children due to changes in postural stability
and gait. However, this could well be caused by a suboptimal response of skeletal adaption
to body size resulting in a mismatch between body and bone size, thus increasing fracture
risk [257]. It is also supported the hypothesis that the increased bone mineral density in
obese adolescents may not be sufficient to overcome the significant greater forces that are
generated when an overweight child falls [270].

Very interesting is the topic related to the anatomical distribution of fractures. If the
“obese’s fracture site paradox”, previously described, corresponds to a higher incidence of
fractures in the obese at uncommon sites in comparison to non-obese subjects, a comparable
fact occurs in children, where the distribution of fractures in the obese child is different
from that of the non-obese child.

The fractures that have a higher incidence in paediatric and adolescent age are those
of the distal forearm. According to a study by Naranje et al. [271], conducted on a large
American population of individuals between 10 and 19 years of age, forearm fractures
accounted for 17.8% of all fractures, whereas finger and wrist fractures were the second and
third most common, respectively. Finger and hand fractures were most common for age
groups 10 to 14 and 15 to 19 years, respectively. A Swedish study conducted in a population
of youths < or =19 years of age [272] showed that the first most common fracture site was
the forearm, followed by the clavicle and the fingers.

Obese children are significantly more likely to sustain lower extremity injuries than
upper extremity injuries and less likely to sustain head and face injuries than non-obese
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children. Pre-school obese children have been reported to have an increased incidence of
both upper and lower limb fractures in childhood compared with contemporaries of normal
weigh [270,273]. The fracture pattern of both upper and lower limbs differs between the
obese children and the normal-weight children. An interesting study by Nhan et al. [274]
divides the study population (608 patients) into three groups: 58% normal weight, 23%
overweight, and 19% obese children. Overweight/obese patients sustained significantly
more upper-extremity physeal fractures and greater proportions of complete fractures
compared with normal-weight children.

We can therefore summarize that obese children have a greater risk of fracture than
normal weight children, both of the upper and lower limbs, that the ratio lower limb/upper
limb fractures is greater and that the fracture pattern also differs according to body weight.

In Table 2 the characteristics common to the obese child and the obese adults, as well
as the peculiarities of the paediatric population are illustrated.

Table 2. Aspects and consequences of obesity in relation to bone health that are shared among
the adult and paediatric populations (left column) and those peculiar of the paediatric popula-
tion (right column).

Aspects Shared by the Adult and Paediatric
Population Specific Aspects of the Paediatric Population

Increase of overweight and obesity
A significant amount of bone mass and mineral

content in adults depends on processes occurring
during puberty

Development of chronic diseases and fractures Risk of overestimation or underestimation of the true
bone density

Positive effect of overweight on BMD Increased risk of fractures in obese children

Phenomenon of “obesity paradox” Strong relationship between type 2 diabetes and
osteoporotic fractures

Higher incidence of fractures than in non-obese
individuals

Increased propensity to falls due to changes in
postural stability and gait

Positive association of total body fat and bone mass
“Obese’s fracture site paradox”: greater incidence of

fractures in the obese at uncommon sites in
comparison to non-obese subjects

Negative relationship of visceral fat and bone mass
Significantly higher risk to sustain lower extremity

injuries than upper extremity injuries and less likely
to sustain head and face injuries

Predisposing factors for increased fracture rates need
to be precipitated by further events able to trigger

the underlying predisposition

Negative influence on bone of inflammatory
cytokines, adipokines, estrogens, and all other

metabolic causes

6. Conclusions

For many years it was thought that a high body weight was a protective factor against
osteoporosis. In fact, it is true that, in heavier subjects, DEXA shows an increase in BMD,
but the literature agrees that the obese subject is at greater risk of fractures than a normal-
weight individual. The greater risk of fractures is due to numerous factors, which can be
grouped into two large groups: metabolic factors and increased risk of falls. Fractures of
the obese have an atypical distribution, both in adulthood and in childhood. Obesity is
therefore confirmed as a very dangerous condition for men and women, due to the possible
serious consequences on numerous systems, including the skeleton.
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