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Abstract: Thyroid hormones control lipid metabolism by exhibiting specific effects on the liver and
adipose tissue in a coordinated manner. Different diseases of the thyroid gland can result in hypothy-
roidism. Hypothyroidism is frequently associated with dyslipidemia. Hypothyroidism-associated
dyslipidemia subsequently results in intrahepatic accumulation of fat, leading to nonalcoholic fatty
liver disease (NAFLD), which leads to the development of hepatic insulin resistance. The prevalence
of NAFLD in the western world is increasing, and evidence of its association with hypothyroidism
is accumulating. Since hypothyroidism has been identified as a modifiable risk factor of NAFLD
and recent data provides evidence that selective thyroid hormone receptor β (THR-β) agonists are
effective in the treatment of dyslipidemia and NAFLD, interest in potential therapeutic options for
NAFLD targeting these receptors is growing. In this review, we summarize current knowledge
regarding clinical and molecular data exploring the association of hypothyroidism, dyslipidemia
and NAFLD.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most important chronic liver disease
in the western world, affecting almost 30% of the general population. Moreover, the
prevalence of NAFLD can be higher in type 2 diabetic patients and obese patients, affecting
up to 90% of people with a body mass index higher than 40 kg/m2. NAFLD is also the most
rapidly increasing cause of hepatic cirrhosis requiring hepatic transplantation in the future.
The pathophysiology of NAFLD is complex and involves multiple hits, but the principal
contributing factor to its development is hepatic lipid accumulation, which leads to hepatic
insulin resistance [1]. All lipids are not equivalent in terms of their association with the
development of insulin resistance. For instance, triglycerides are usually considered inert,
whereas diacylglycerols and ceramides can alter insulin signaling [2].

Hypothyroidism can be the result of different diseases of the thyroid gland. Hy-
pothyroidism can be primary, i.e., due to a thyroid gland disorder, or secondary, i.e., due
to hypothalamic or pituitary disorders. Primary hypothyroidism is the most frequently
encountered in the clinic and can be due to rare congenital disorders (such as thyroid
dysgenesis, defective embryonic formation of the gland and genetic diseases) or acquired
secondary to different types of thyroiditis (such as Hashimoto’s thyroiditis, silent thy-
roiditis, subacute thyroiditis and drug-induced thyroiditis) or secondary to surgery or
radiotherapy. As thyroid hormones regulate lipid metabolism at various levels in the
liver and adipose tissue, hypothyroidism can result in dyslipidemia, which is frequently
encountered in hypothyroid patients at the clinic. Dyslipidemia is itself frequently asso-
ciated with NAFLD. Therefore, NAFLD can be the result of hypothyroidism-associated
dyslipidemia. As such, hypothyroidism has been identified as a potentially modifiable
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factor of NAFLD, and potential therapeutic targets have been identified for the treatment
of hypothyroidism-associated NAFLD.

This review aims to present the various potential molecular mechanisms underlying
the association between hypothyroidism-related dyslipidemia and NAFLD and clinical
data, with a focus on future therapeutic perspectives.

2. Thyroid Hormones and Thyroid Hormone Receptors

Thyroid hormones (TH) regulate tissue and cellular metabolism. Tri-iodothyronine
(T3) controls gene expression by binding to its receptors. Thyroid hormone receptors
(THR) are nuclear receptors, functioning as transcription factors after activation by their
ligands [3]. Thyroid hormone receptor isoforms exhibit a tissue-specific expression pattern
and function. THR-α (whose gene is located in chromosome 19) mediates TH actions in the
heart and brown adipose tissue, whereas, THR-β (whose gene is located in chromosome
3) mediates TH actions on thyroid-stimulating hormone (TSH) secretion and cholesterol
metabolism. THR-β has two isoforms. THR-β1 is mainly found in the liver, brain and the
kidney, while THR-β2 is found in the hypothalamus and pituitary, exhibiting an important
role in the negative feedback of thyroid hormones on the hypothalamic-pituitary axis [4].

Mutations of the THR-β gene are responsible for thyroid hormone resistance syndrome,
characterized by tachycardia and increased TSH and free tetra-iodothyronine (FT4) levels.

Thyroid hormone and thyroid receptor agonist treatments have been shown to effec-
tively decrease hepatic steatosis and circulate free fatty acids (FFA) and triglycerides in
animal models [5,6]. Research focuses on the beneficial effects of thyroid hormones on
metabolism via their receptors while avoiding undesirable effects of systemic hyperthy-
roidism, such as arrhythmia and bone and muscle loss. Recently, interventional studies
have shown the benefits of levothyroxine supplementation in patients with NAFLD and
subclinical hypothyroidism in terms of hepatic fat content and liver enzyme levels [7]. In-
terestingly, these findings were also reproduced in euthyroid individuals with NAFLD [8].

3. Thyroid Hormone Effects on Lipid Metabolism in the Liver and the Adipose Tissue

Thyroid hormones control body weight, lipid and carbohydrate metabolism and
thermogenesis. They regulate lipid metabolism by exhibiting specific effects on the liver
and adipose tissue, summarized in Figure 1, in a coordinated manner but with occasionally
contradictory actions [9].
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T3 controls the expression of genes involved in hepatic lipogenesis and genes involved
in the oxidation of free fatty acids through the thyroid hormone receptor-β, which is the
main isoform expressed in the liver [3,10]. Thyroid hormone receptor-α is the main
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mediator of thyroid hormone actions in the heart and brown adipose tissue. Thus, thyroid
hormones regulate lipid metabolism in a tissue-dependent manner, and this was confirmed
by studies in knockout mice. THR-α-knockout mice exhibit decreased liver fat content and
white adipose tissue mass via a decrease in genes involved in lipogenesis. They have less
insulin resistance and hepatic steatosis [11]. THR-β-knockout animals display an increased
liver mass and hepatic lipid accumulation through increased lipogenic genes and decreased
fatty acid β-oxidation but no significant change in white adipose tissue [11].

Hyperthyroidism has been shown to increase adipose tissue lipolysis [12] and hep-
atic lipogenesis and is associated with lower body weight, notably due to increased
catabolism [13]. These actions are mediated by a T3-induced increase in the expression
of several lipogenic genes (such as acyl-CoA-synthetase, fatty acid synthase, acetyl-CoA
carboxylase and glucose-6-P dehydrogenase) and genes involved in fatty acid oxidation
(such as lipoprotein lipase, fatty acid-binding protein and fatty acid transporter) [3].

Hypothyroidism reduces liver uptake of FFA derived from triglycerides [14] and is
associated with a decrease in lipolysis in the adipose tissue and decreased cholesterol
clearance [15]. As a result, β-oxidation of free fatty acids and triglyceride clearance is
reduced, with a consequent hepatic accumulation of triglycerides and increased low-
density lipoprotein (LDL) uptake. Hypothyroidism reduces hepatic lipase activity, which
mediates fatty acid oxidation and long-chain fatty acids’ oxidation for energy production.
Lipid storage in the liver is further increased by obesity and low resting energy expenditure,
both enhanced by hypothyroidism [16,17]. Thyroid hormone treatment in human and
murine models reverses hepatic lipase reduced activity.

In the mitochondria, thyroid hormones stimulate carnitine palmitoyltransferase-1a
(Cpt1a), the rate-limiting enzyme in fatty-acid oxidation.

Obesity, in both human and animal studies, is found to lead to lipid accumulation
in the liver, resulting in fibrosis and cirrhosis. Increased hepatic lipid deposition induces
downregulation of several metabolism-related genes, which are dependent of T3 actions [3].

Thyroid hormones are activators of lipogenesis through direct and indirect mecha-
nisms. T3 stimulates enzymes that catalyze several important steps of hepatic fatty acid
synthesis, such as acetyl-CoA carboxylase (which catalyzes the carboxylation of acetyl-CoA
to malonyl-CoA, the first step of hepatic fatty acid synthesis) and fatty acid synthetase [18].
T3 also induces several transcription factors that participate in de novo lipogenesis, such
as carbohydrate responsive element-binding protein (ChREBP), a strong lipogenic regu-
lator [19]. Thyroid-stimulating hormone is also believed to stimulate hepatic lipogenesis
through binding with the TSH-receptor expressed at the surface of the hepatocytes, which
further leads to stimulation of the peroxisome proliferator-activated receptor-α (PPARα)
pathway and activation of sterol regulatory element-binding transcription factor 1 (SREBP-
1c) [20,21]. TSH directly increases hepatic gluconeogenesis and decreases phosphorylation
of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the main target of
statins, thereby inducing hypercholesterolemia [22].

Animal studies have suggested a role of T3 in hepatic mitochondrial turnover, which is
altered in nonalcoholic fatty liver disease; thyroid hormones seem to increase mitochondrial
biogenesis and mitophagy through nuclear receptors [16]. On the other hand, hepatic
steatosis leads to the suppression of T3-dependent genes involved in metabolism in both
humans and animal models [4,23].

Thyroid hormone signaling also responds to cross-talk interactions between thyroid
receptors and other nuclear receptors sensitive to circulating metabolite levels, such as
PPARs and the liver X receptor (LXR) [24]. Alteration of lipophagy, the mechanism of
autophagy of lipid droplets, which is an important step of lipid mobilization in the liver,
is also believed to participate in NAFLD, and T3 has been shown to stimulate lipophagy
in vitro and in vivo [25].

Oxidative stress derived from β-oxidation is thought to contribute to the progression
of nonalcoholic steatohepatitis (NASH) to hepatocyte inflammation and liver fibrosis. Hy-
perthyroidism has been shown to increase oxidative stress, leading to liver cell injury [26],
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while hypothyroidism lowers oxidative stress levels through a decrease in energy expendi-
ture [27]. Thus, thyroid hormones may contribute to the progression of nonalcoholic fatty
liver disease to nonalcoholic steatohepatitis, but the exact pathophysiological mechanisms
remain to be clarified.

4. Thyroid Hormones and Dyslipidemia

Hypothyroidism is associated with hyperlipidemia through modifications in lipid
synthesis, absorption, circulation and metabolism. Thyroid hormones increase cholesterol
synthesis by increasing the expression of HMG-CoA reductase in the liver [28]. Thus,
hypothyroidism leads to decreased hepatic cholesterol synthesis. However, two additional
concomitant mechanisms outweighed this effect. First, there is an increase in gastro-
intestinal cholesterol absorption mediated by the Niemann-Pick C1-like 1 protein, the target
of the lipid-lowering molecule ezetimibe, in the gut [29]. Second, there is a decrease in cell-
surface LDL-cholesterol receptors, possibly via T3-mediated effects on the sterol regulatory
element-binding protein-2 (SREBP-2), leading to reduced plasma LDL-cholesterol clearance
and increased apo-B lipoproteins [30].

Hypothyroidism also decreases cholesterol excretion and plasma triglyceride clear-
ance, the latter through a decrease in lipoprotein lipase levels [31]. Plasma cholesteryl ester
transfer proteins (CETPs), shifting cholesterol from high-density lipoproteins (HDL-C) to
LDL-C and very low-density lipoproteins (VLDL) are reduced in hypothyroid states [32].

The combined result of the above changes is an increase in total cholesterol and LDL
levels, a slight increase in HDL and triglycerides levels and triglyceride accumulation
in the liver, a risk factor for the development of nonalcoholic fatty liver disease [33].
Increased triglyceride accumulation in the liver also contributes to the development of
hepatic insulin resistance, another condition linking hypothyroidism with NAFLD, which
will be discussed later.

Observational studies confirm that among patients with overt hypothyroidism, 30%
have increased total cholesterol and LDL levels, and 90% have dyslipidemia. Furthermore,
levothyroxine treatment reverses lipid alterations, with the exception of patients with
underlying hyperlipidemia [34].

The effect of subclinical hypothyroidism on lipid levels is less obvious, and the results of
clinical studies have been inconsistent. Some observational studies found no difference in
lipid levels among subclinical hypothyroid patients and matched controls [35,36], whereas
others found significantly higher total cholesterol, triglycerides and LDL-C levels in sub-
clinical hypothyroidism [37,38]. Insulin resistance and smoking are believed to be possible
confounding factors since they both induce higher cholesterol increase in the presence of
hypothyroidism [34].

5. NAFLD and Dysregulated Lipid Metabolism

The pathophysiology of NAFLD is complex, multifactorial and involves multiple
systemic alterations [39]. The classical “two-hit” theory is divided into a first “hit” with
intrahepatic accumulation of fatty acids and a second “hit” that includes other factors
such as oxidative stress and mitochondrial dysfunction. Nevertheless, this theory has been
considered inadequate to fully represent the pathogenesis of NAFLD. Therefore, it has
been replaced by the “multiple parallel hits” hypothesis that more accurately represents
the process of NAFLD development and progression. Indeed, various factors, such as
genetic and environmental factors (notably dietary habits), act in parallel and in a synergic
way to cause NAFLD [39,40]. NAFLD is due to hepatic lipid accumulation that will
subsequently lead to hepatic insulin resistance, alterations in gut microbiota and other
deleterious phenomena such as mitochondrial dysfunction, endoplasmic reticulum stress,
oxidative stress and production of reactive oxygen species [41]. These different deleterious
elements will subsequently lead to a chronic inflammatory state in the liver, promoting
NAFLD and NASH [42].
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Hepatic lipid accumulation consists of different lipid intermediates, such as triglyc-
erides, which are usually considered inert, and diacylglycerols and ceramides, which have
been shown to cause hepatic insulin resistance in different animal models of nonalcoholic
fatty liver disease [43–49]. Insulin resistance also promotes hepatic de novo lipogenesis and
adipose tissue lipolysis, leading to an increased flux of free fatty acids to the liver [50]. This
process is also associated with an increase in plasma triglycerides (TG) concentration and
a reduction in plasma HDL concentration, contributing to the atherogenic dyslipidemia
seen in NAFLD [51]. The plasma HDL level is usually lower in insulin-resistant states,
which can be explained by the following mechanism: VLDL TG can be exchanged for
HDL cholesterol in the presence of increased plasma VLDL concentrations and the normal
activity of cholesteryl ester transfer protein, where a VLDL particle gives a molecule of
TG to an HDL particle in return for one of the cholesteryl ester molecules from HDL. This
mechanism leads to a cholesterol-rich VLDL remnant particle that is atherogenic and a TG
rich, cholesterol-depleted HDL particle [52]. The TG-rich HDL particle will then undergo
further change, notably hydrolysis of its TG, which will lead to the dissociation of the
apoA-1 protein. Subsequently, the free apoA-1 will be cleared more rapidly in the plasma
than the apoA-1 bound to HDL particles, and this process results in reduced circulating
apoA-1, HDL cholesterol and the absolute number of HDL particles [53], as summarized
in Figure 2. Altogether, these processes lead to the dysregulated lipid metabolism seen
in NAFLD.
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Figure 2. Cholesterol metabolism induced by hepatic de novo lipogenesis. Skeletal muscle insulin resistance increases
hepatic de novo lipogenesis, leading to increased hepatic triglycerides (TG). TG can be exchanged for high-density
lipoprotein (HDL) cholesterol in the presence of increased plasma very low–density lipoprotein (VLDL) concentrations and
normal activity of cholesteryl ester transfer protein (CETP). A VLDL particle then donates a molecule of TG to an HDL
particle in return for one of the cholesteryl ester (CE) molecules from HDL. The TG-rich HDL particle can be hydrolyzed of
its TG, leading to dissociation of the Apolipoprotein A-1 (Apo A-1) protein. The resulting free Apo A-1 is cleared more
rapidly in plasma than the apo A-1 bound to HDL particles, leading to reduced circulating apo A-1, HDL cholesterol and
the number of HDL particles.

6. Hypothyroidism and NAFLD: Clinical Studies

Insulin resistance, diabetes, obesity and dyslipidemia have all been linked to nonal-
coholic fatty liver disease. Hypothyroidism has recently been identified as a potentially
modifiable risk factor of NAFLD [54]. Thus, the high prevalence of hypothyroidism, the
fact that levothyroxine is a widely available and affordable treatment and recent data
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providing evidence that THR-b agonists are effective in the treatment of dyslipidemia and
NAFLD, all contribute to the growing interest in this association.

Thyroid hormones are regulators of various metabolic processes such as energy ex-
penditure, lipid and glucose homeostasis and body fat distribution, and hypothyroidism is
associated with an increased risk of developing components of metabolic syndrome [20].
As a result, several studies have explored the relationship between thyroid status and
NAFLD, summarized in Table 1.

The prevalence of NAFLD, diagnosed by ultrasound, in patients with treated hypothy-
roidism was found to be 30%, compared to 19% in controls, and treated hypothyroidism
remained predictive of NAFLD after adjustment of other risk factors, such as age, gender, body
mass index (BMI), hypertension and diabetes, with a 1.38 OR (95% CI: 1.17–1.62) [17–54,59].
This relationship is less clear in subclinical hypothyroidism, with some studies concluding
that subclinical hypothyroidism represents an independent risk factor for the development
of NAFLD and NASH after adjustment for usual confounders [55–58,61,66]. Other clinical
studies failed to prove such an association [62–64,67,70].

The inverse relationship also appears to be true. The prevalence of hypothyroidism
in patients with biopsy-proven NAFLD was 21% versus 9.5% in controls after adjustment
for age, gender, race and BMI [60], and this prevalence seems to be higher in patients with
NASH compared with those with a more benign disease [60]. In a meta-analysis including
13,000 individuals, the prevalence of hypothyroidism was around 15–35% among patients with
NAFLD, but a clear association was not found [71]. Most cross-sectional and other retrospective
studies evaluating this association had inconsistent results, which were also confirmed by two
more recent meta-analyses that failed to prove direct causalities [65,68,71–74]. Some studies
have found a strong association between hypothyroidism and NAFLD in a severity-dependent
manner [69], while others yielded no association [68]. Nevertheless, a recent systematic review
and meta-analysis including 42,000 patients from 13 studies found a high correlation between
NAFLD and hypothyroidism, both subclinical and overt, in a severity-dependent manner.
However, overt hypothyroidism more significantly correlated with NAFLD than subclinical
hypothyroidism. This result was possibly due to the combined effect of low thyroid hormones
and high TSH in the liver [75].

Prospective cohorts are more conclusive: A prospective study in a Chinese population
suggested that subclinical hypothyroidism is a risk factor for NAFLD [61]. The Rotterdam
Study, a large population-based multicenter prospective cohort including 9419 participants
with a 10-year follow-up, also showed that low thyroid function is associated with a higher
risk of developing NAFLD with a 1.24-fold higher risk of hypothyroidism compared with
the euthyroid state [68].

Hypothyroidism was also found to be associated with increased NAFLD activity in
some studies but not with fibrosis or steatosis severity [16], while others found a strong
association between biopsy-proven advanced fibrosis in NAFLD with increasing TSH
levels in a dose-dependent manner, even in the euthyroid range [76]. Furthermore, in a
large population-based US study, low thyroid function was found to be an independent
predictor of all-cause and cardiovascular mortality in patients with NAFLD [77].

The pathophysiological hypothesis underlying this epidemiological association seems
to be the development of insulin resistance in hypothyroidism, probably through increased
oxidative stress, lipid peroxidation and the rise of several adipocytokines such as leptin
and tumor necrosis factor α (TNFα) [78]. Some advocate that hypothyroidism-induced
NAFLD could be a separate clinical entity with specific treatment options [79].
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Table 1. Principal clinical studies examining the association between hypothyroidism and NAFLD.

Reference Study Design Study Sample Diagnosis of NAFLD Definition of Hypothyroidism Main Findings

Liangpunsakul
et al. 2003 [55]

Cross-sectional
case-control study

174 patients with NASH and
442 controls Biopsy (all cases had NASH) Self-reported use of levothyroxin Hypothyroidism was independently associated

with NASH (OR 2.30, 95% CI 1.20–4.20)

Reddy et al. 2007 [56] Case-control study

54 patients with HCC of
unknown etiology and 2

groups of controls (57 HCC
patients with HCV and 49 HCC

patients with alcoholic
liver disease)

Biopsy or clinical and
imaging criteria

TSH > 5 mIU/L, history of
hypothyroidism

Hypothyroidism is significantly higher prevalent
in subjects with HCC of unknown etiology

compared to controls with viral or alcoholic HCC

Silveira et al. 2009 [57] Cross-sectional study 97 patients with NAFLD Biopsy
TSH > 5 mIU/L or < 0.3 mIU/L

Total T4 > 12.5 µg/dL or < 5 µg/dL
History of hyper/hypothyroidism

The prevalence of hypothyroidism in patients
with NAFLD was 20%

Xu et al. 2011 [58] Cross-sectional study 227 patients with NAFLD and
651 controls Ultrasound TSH > 4.5 mIU/L or < 0.5 mIU/L

FT4 > 14.4 pmol/L or < 7.85 pmol/L

Patients with hypothyroidism are more likely to
develop NAFLD (p < 0.001), FT4 is a risk factor for

NAFLD (OR = 0.847, 95% CI: 0.743–0.966)

Chung et al. 2012 [59] Cross-sectional study
2324 patients with

hypothyroidism and
2324 controls

Ultrasound

Subclinical hypothyroidism:
TSH > 4.1 mIU/L and normal FT4

Overt hypothyroidism:
TSH > 4.1 mIU/L and FT4 < 0.7 ng/dL

Hypothyroidism is an independent risk factor for
NAFLD (OR = 1.38, 95% CI: 1.17–1.67)

Pagadala et al.
2012 [60] Cross-sectional study 233 patients with NAFLD and

430 controls Biopsy Clinical diagnosis and on thyroid
replacement therapy

Prevalence of hypothyroidism was higher in
NAFLD patients (21.1% vs. 9.5%, p < 0.001)

Xu et al. 2012 [61] Prospective
case-control study

327 patients with subclinical
hypothyroidism and

327 controls

Ultrasound (15% developed
NAFLD after 4.9 years

median follow-up)

TSH > 4.5 mIU/L and normal
FT4 levels

Subclinical hypothyroidism was independently
associated with risk of developing NAFLD (HR

2.21, 95% CI: 1.42–3.44)

Itterman et al.
2012 [62] Population-based study

3661 individuals without a
self-reported history of thyroid

or liver disease

Ultrasound (16.1%
had NAFLD)

Subclinical hypothyroidism:
TSH > 3 mIU/L and normal FT4

Overt hypothyroidism: TSH > 3 mIU/L
and FT4 < 7 pmol/L

Hypothyroidism was not independently
associated with NAFLD.

FT4 levels were inversely associated with NAFLD
in men (OR 0.04, 95% CI: 0.01–0.17]) and in

women (OR 0.06, 95% CI:0.01–0.42)

Eshraghian et al.
2013 [63] Cross-sectional study 832 individuals Ultrasound (15.3%

had NAFLD)

Subclinical hypothyroidism:
TSH > 5.2 mIU/L and normal

FT4 levels
Overt hypothyroidism: TSH > 5.2

mIU/L and FT4 < 11.5 pmol/L

Subclinical hypothyroidism was not associated
with NAFLD (OR 1.12, 95% CI: 0.51–2.46).

Overt hypothyroidism was not associated with
NAFLD (OR 0.87, 95% CI: 0.33–2.28)

Posadas-Romero et al.
2014 [64] Cross-sectional study 753 adults Computed tomography

(31.1% with NAFLD)
Subclinical hypothyroidism:

TSH > 4.5 mIU/L and normal FT4
Subclinical hypothyroidism was not associated

with NAFLD (OR 0.83, 95% CI: 0.55–1.25)

Lee et al. 2015 [65] Retrospective cohort study 18,544 individuals Ultrasound

Subclinical hypothyroidism:
TSH > 4.2 mIU/L, normal FT4

Overt hypothyroidism: TSH > 4.2
mIU/L, FT4 < 10.97 ng/dL

NAFLD incidence did not differ significantly with
thyroid hormonal status (Subclinical

hypothyroidism: HR = 0.965, 95%
CI = 0.814–1.143, p = 0.67; Overt hypothyroidism
group: HR = 1.255, 95% CI = 0.830–1.899, p = 0.28)
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Table 1. Cont.

Reference Study Design Study Sample Diagnosis of NAFLD Definition of Hypothyroidism Main Findings

Parikh et al. 2015 [66] Case-control study 500 patients with NAFLD and
300 controls Ultrasound

Subclinical
hypothyroidism: TSH > 5.5 IU/mL and

<10 IU/mL)
Overt hypothyroidism: TSH > 10

IU/mL)

NAFLD was statistically significantly associated
with hypothyroidism (OR: 14.94, 95% CI: 3.5–62.6)

Ludwig et al. 2015 [67] Cross-sectional,
population-based study 1276 individuals Ultrasound (24.7% with

NAFLD)

Subclinical hypothyroidism:
TSH > 3.4 mIU/L and normal total T4

Overt hypothyroidism: TSH > 3.4
mIU/L and total T4 < 12.8 pmol/L

Hypothyroidism was not associated with NAFLD
(OR 1.19 95% CI: 0.65–2.17)

Bano et al. 2016 [68] Longitudinal prospective
cohort study 9419 euthyroid adults

Ultrasound (12.9%
developed incident NAFLD

after 10 years of median
follow-up)

Subclinical hypothyroidism:
TSH > 4.0 mIU/L and normal FT4

Overt hypothyroidism:
TSH > 4.0 mIU/L and FT4 < 10.9

pmol/L

Hypothyroidism was associated with a 1.24-fold
higher NAFLD risk (95% CI: 1.01–1.53).
NAFLD risk decreased gradually from

hypothyroidism to hyperthyroidism
(p for trend = 0.003).

Kim et al. 2018 [69] Cross-sectional study 425 patients with NAFLD Biopsy Subclinical hypothyroidism:
TSH > 4.5 mIU/L and normal FT4

Subclinical hypothyroidism was independently
associated with NASH (OR 1.61, 95% CI:

1.04–2.50) and advanced fibrosis (OR 2.23 95% CI:
1.18–4.23).

Martinez Escude et al.
2020 [70]

Cross-sectional,
retrospective population

study
10,116 adults Ultrasound

Subclinical hypothyroidism:
TSH > 4.94 UI/mL and

normal T4
Overt

hypothyroidism: elevated
TSH and decreased T4

Hypothyroidism is not associated with NAFLD
(p = 0.631)

NAFLD: nonalcoholic fatty liver disease, NASH: nonalcoholic steatohepatitis, OR: odds ratio, CI: confidence intervals, HCC: hepatocellular carcinoma.
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7. Thyroid Hormone Analogues for Dyslipidemia Treatment

Although hypothyroidism and NAFLD seem to share at least some common patho-
physiological mechanisms, no guidelines exist for the combined treatment of these two
entities. Considering the decrease of hepatic lipid accumulation through thyroid hormone
actions, the latter could theoretically represent a potential therapeutic option for patients
with NAFLD. Thyroid hormone analogues have different affinities with thyroid hormone
receptors, leading to diverse biologic effects. Research focused on the development of
thyroid receptor agonists with selective hepatic action offers a favorable impact on lipid
metabolism without adverse effects on the cardiovascular system. THR-β selective agonists
can thus be useful while avoiding the side effects of systemic hyperthyroidism.

The first thyroid receptor analogues were developed and studied in 1990. SKF-94901
and CGS-23425 resulted in a significant decrease in cholesterol levels when administered
in animal models. Interestingly, no important side effects were reported. Despite those first
promising results, research on both molecules was quickly terminated [80,81].

Studied 20 years ago, GC-1 (sobetirome) and GC-4 were two other analogues with
high selectivity for THR-β receptors. Sobetirome binds to TH-β1 receptors with a higher
affinity compared to TH-α1 and has tissue-specific accumulation properties, which further
enable selectivity [82,83]. Animal studies showed a significant reduction of body weight
and adipose tissue. GC-4 is characterized by an inability to cross the blood–brain barrier
and, thus, shows no activity in the brain [84].

Eprotirome (KB-2115) is another THR-β agonist developed for the treatment of dys-
lipidemia. It has a higher affinity for the TH-β receptors in the liver compared to THR-α
receptors in the heart. In animal models, eprotirome increased secretion of hepatic choles-
terol and inhibited its intestinal absorption. Eprotirome, which also seems to reduce
PCSK9, showed a 30–40% reduction of LDL cholesterol in human studies but resulted in
liver enzyme increase in some patients [85]. Other changes observed were a reduction in
triglyceride, apoB and Lp (a) levels in a dose-related manner. There were no changes in
TSH levels and only a slight decrease of T3 and T4 [86,87]. However, the largest multicenter
RCT with this agent was stopped prematurely due to cartilage damage in pre-clinical
studies in animal models [81].

New generation agents were more focused on the treatment of NAFLD. The agent
resmetirom (MGL-3196), used in patients with biopsy-proven NASH in phase 2 trials,
resulted in a 30% reduction of LDL cholesterol, 60% reduction of triglycerides and 25%
reduction of apoB levels compared to a placebo. The agent also resulted in a significant
decrease in intrahepatic fat accumulation, without any change in TSH and free-T3 (FT3)
levels and only a slight decrease in FT4 levels, at the highest dose. Heart safety data derived
from animal models were very satisfying. This agent was also tested in healthy volunteers,
and these studies yielded similar results on lipids and thyroid profile [88,89].

The agent VK-2809 was also used in patients with biopsy-proven NASH in phase 2
trials and induced a significant decrease in intrahepatic fat accumulation after 12 and 36
weeks of treatment [89,90].

3,5-di-iodo-L-thyronine (T2) was also evaluated in animal models with promising
results (reduction of lipid levels and fat accumulation) but did not significantly impact
lipid profile and insulin resistance in human studies. Thus, despite the absence of cardiac
side effects, 3,5-di-iodo-L-thyronine failed to gain further attention. Another thyromimetic,
T1AM (3-iodothyronamine), has shown beneficial effects on lipid levels in animal studies
but, so far, has not been tested in humans [79].

In 2008, a Californian research group suggested a different approach, which was to
develop thyroid hormone analogues that would be selectively transported to the liver,
thus, avoiding their actions and side effects in the pituitary–hypothalamic axis and the
heart. According to this theory, the agent MB-07811, which is converted to MB-07344 in
the liver, was developed and studied. MB-07811 decreases cholesterol plasma levels as
well as hepatic steatosis [91,92]. In human studies, MB-07811 reduces LDL cholesterol and
triglyceride levels without cardiac side effects compared to a placebo [81].
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Selective THR-β agonists have been tested mostly in euthyroid patients. Thus, since
THR-β are also found in the pituitary gland, questions on safety and correct monitoring
of this treatment in hypothyroid individuals remain. Altogether, resmetirom (MGL-3196)
seems to be the most promising agent, although cardiovascular safety data are needed.

8. Conclusions

Hypothyroidism is widely prevalent in the general population and is associated with
an increased risk of developing components of metabolic syndrome, such as obesity and
insulin resistance. Data from clinical studies show increased prevalence of NAFLD in
patients with hypothyroidism, and hypothyroidism is more frequent in patients with
NAFLD proved by biopsy. Nevertheless, NAFLD is a growing problem in the western
world and the most frequent cause of chronic liver disease with complex pathophysiology.

Thyroid hormones (TH) regulate tissue and cellular metabolism, and their receptors
exhibit a tissue-specific expression pattern and function. THR-α is mostly found in the heart
and brown adipose tissue, while THR-β is found in the liver, brain and the kidney. Thyroid
hormones control lipid metabolism in the liver and adipose tissue, and hypothyroidism has
been identified as a potentially modifiable risk factor for nonalcoholic fatty liver disease.
Hypothyroidism results in increased cholesterol absorption in the gut and decreased LDL
cholesterol clearance, leading to higher LDL cholesterol plasma levels and triglycerides
accumulation in the liver. Intrahepatic accumulation leads to NAFLD and, subsequently,
to the development of hepatic insulin resistance.

Since hypothyroidism and NAFLD seem to share common pathophysiological mecha-
nisms, THR-b selective agonists are developed to provide specific effects in the liver, aiming
to reduce fat accumulation while avoiding the side effects of systemic hyperthyroidism
and, therefore, represent potential therapeutic molecules targeting NAFLD caused by
hypothyroidism-associated dyslipidemia. Several thyromimetics have been studied in the
last 30 years, and resmetirom (MGL-3196) seems to be the most promising. Nevertheless,
obtaining cardiovascular safety data is a challenging objective for the future.

Translational research could provide a more thorough understanding of the mecha-
nisms underlying tissue-specific actions of thyroid-hormone analogues. Clinical studies
need to focus on the beneficial effects on the liver, body weight and lipid levels of long-
term treatment with thyromimetics while determining their impact on cardiovascular
outcomes and bone density. Therefore, future research on molecular mechanisms linking
hypothyroidism-related dyslipidemia and NAFLD development, and clinical data on the
association, will provide a better understanding of this complex relationship to provide
targeted treatment options.
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