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Abstract: 0> factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic
bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional
genes in an enhancer-binding protein (EBP)-dependent manner. ¢>* has two conserved functional
domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain
located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN1¢oGC, at the
—24/—12 position relative to the transcription start site of target genes. In general, bacteria contain
one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate
various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs
and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria.
However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic
bacteria, which cause economically important crop diseases and pose a serious threat to world food
security. In this review, we summarize the current knowledge on the regulatory function of RpoN,
including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching
motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic
bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth
and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory
network of RpoN in bacteria.
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1. Introduction

Transcription factors play a crucial role in microbial growth and response to environ-
mental changes by regulating the expression of target genes. In bacteria, sigma (o) factors
are the most widely occurring transcription factors. They reversibly bind RNA polymerase
(RNAP) to regulate the transcription of a myriad of functional genes. To initiate the RNA
synthesis, o factors guide RNAP holoenzyme to specific promoters, melt double-stranded
promoter DNA strands, and stabilize them as a single-stranded open complex [1-3]. Ac-
cording to their structure and evolution, o factors are categorized into (a) the ¢7° family and
(b) the 0> family (also called RpoN) [4]. In general, 6”° factors regulate the transcription of
target genes by recognizing the —35/—10 promoter site (upstream from the transcription
start site), while 6™ factors regulate the transcription of target genes by recognizing the
highly conserved sequence GGN19GC at the —24/—12 promoter site [5,6].

04 factors act as a multifunctional regulator of many important biological processes.
In Pseudomonas aeruginosa, c>* regulates global gene expression (680 genes) and a wide
range of biological processes, such as flagella synthesis, motility, metabolism, antibiotic
resistance, and virulence [7-10]. It affects the expression of nitrogen-regulated genes
(ntrBC, glnA, glnK-amtB, nirBD, nasA, nasST, and nosRZDFYL) and flagellum-related genes
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(fleSR, fiIEFGHI], flhA, fIhF, fleN, fIgA, fiLMNOPQR, and flhB) at the transcription level.
Furthermore, 0>* also regulates the susceptibility to tobramycin, quinolones, and carbapen-
ems [11-14]. In P. putida, it also affects the utilization of nitrate, urea, and uncharged amino
acids as nitrogen sources, as well as of lysine, C4-dicarboxylates, and alpha-ketoglutarate
as carbon sources [15,16]. In addition, 0®* factor controls bacterial growth [17-19], nitrogen
and carbohydrate assimilation [20,21], swimming and twitching motility [22], biofilm for-
mation [23,24], exopolysaccharide (EPS) production [23], quorum sensing [25,26], type VI
secretion systems (T6SS) [27,28], virulence [29,30], environmental adaptation [31,32], and
antibiotic resistance [33,34] in other bacteria.

Unlike ¢”? factors, the regulatory function of ¢>* is dependent on transcriptional
activators, i.e., enhancer-binding proteins (EBPs) [35]. EBPs generally contain three do-
mains: (a) an N-terminal signal-sensing domain, whose primary function is to perceive
signals and regulate the activity of transcription activators; (b) a central AAA* domain,
whose primary function is to interact with the 0>* factor and hydrolyze ATP to release
energy; (c) a C-terminal DNA-binding domain, whose primary function is to bind to gene
promoters [4,36-38]. The central AAA* domain is the most conserved domain, and it is
present in all EBPs. Thus, candidate EBPs can be identified using central AAA* conserved
domains, and their regulatory roles in bacteria can be further analyzed.

In general, bacteria only contain one or two ¢>* factors, but have multiple EBPs. For
instance, P. aeruginosa contains one ¢>* factor and a group of EBPs. Different stress-related
signals regulate these EBPs through their N-terminal regulatory domains [39]. Two EBPs,
DdaR and MifR, interact with the 0>* factor to induce the transcription of dimethylarginine
dimethylaminohydrolase and PA5530 genes by sensing aromatic amino acids and extra-
cellular Cs-dicarboxylates, respectively [40,41]. In addition, the 0>* factor regulates the
glyoxylate pathway, ethanolamine catabolism, (R)-3-hydroxybutyrate, the glycine cleavage
system, and pyocyanin biosynthesis via EatR, HbcR, and GcsR, respectively [42-45]. Other
EBPs, including PhhR, FleQ, AlgB, FhpR, CbrB, NtrC, DctD, FleR, RtcR, PilR, SfnR1, AauR,
and Sfa3, and their regulatory roles in metabolism, motility, and virulence have also been
studied in P. aeruginosa [13,15,46-51]. These results indicated that the 0°* factor forms a
complex regulatory network with these EBPs, and whether these EBPs have overlapping
regulatory roles needs further study. Moreover, numerous EBPs and their roles have been
identified in other human and animal pathogenic bacteria [52,53]. However, the regulatory
roles of the 0™ factor and EBPs in phytopathogenic bacteria remain largely unexplored.

Phytopathogenic bacteria, such as fungi and viruses, cause economically important
plant diseases and pose a serious threat to world food security. P. syringae, Ralstonia
solanacearum, Xanthomonas species, Erwinia amylovora, and Dickeya dadantii are the most im-
portant phytopathogenic bacteria [54]. P. syringae causes important crop diseases, and it is a
well-known model organism for plant-pathogen interaction-related study. R. solanacearum
is probably the most destructive pathogen worldwide, and it has a very broad host range
that can infect 200 plant species belonging to over 50 plant families. X. oryzae pv. oryzae
(Xo0) and oryzicola (Xoc) are the most important bacterial pathogens of rice, resulting in
a 20-50% loss of crop yield. X. campestris pv. campestris (Xcc) is the causative agent of
black rot of crucifers and affects cultivated brassicas worldwide. E. amylovora causes fire
blight disease of apple, pear, quince, blackberry, and raspberry, and it threatens the safe
production of major fruits. D. dadantii causes disease mainly in tropical and subtropical
environments and has a wide host range, including Saintpaulia and potato. In this re-
view, we summarized the recent research on the ¢>* factor and its regulatory functions in
these phytopathogenic bacteria to enhance the current understanding of the regulatory
mechanism of phytopathogenic bacteria’s motility, growth, and virulence.

2. The 0°* Factor-Mediated Transcriptional Regulation

The 0°* factor (RpoN) has two conserved functional domains: an N-terminal activator-
interacting domain (AID) and a C-terminal DNA-binding domain (DBD). AID performs
two distinct functions: (i) inhibition of polymerase isomerization and initiation in the
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absence of activation; (ii) interaction with EBPs and stimulation of initiation in response
to activation after binding to EBPs [55,56]. Unlike 6”°, RpoN is dependent on EBPs to
regulate gene transcription. Firstly, the transcription process involves the binding of the
RpoN-RNAP holoenzyme to a target gene promoter at —24/—12 base pairs relative to the
start codon, followed by a closed complex formation. The DNA in this complex remains
in an inactive, closed state. Secondly, EBP binds to the target gene promoter sequence at
nearly —150 base pairs relative to the RpoN binding sites. Thirdly, the RpoN interacts
directly with the EBP AAA* domain and hydrolyzes ATP to release energy. Lastly, the EBPs
assemble into a catalytically competent oligomer upon getting stimulated by a cellular
signal and remodel the RpoN-RNAP promoter complex using ATP. ATP hydrolysis opens
the RpoN-RNAP-DNA complex and initiates RNA synthesis [6,37].

3. The RpoN and EBPs in Major Phytopathogenic Bacteria

The majority of phytopathogenic bacteria contain either one or two RpoN factors
(Table 1). Two copies of rpoN, namely, rpoN1 and rpoN2, were identified in the Xanthomonas
genome. rpoN1 and rpoN2 are primarily located in a phosphotransferase system and a large
flagellar gene cluster, respectively [57-60]. The nucleotide sequences of rpoN1 and rpoN2
are not identical, and their protein sequences share 39% identity [61]. It is well known
that RpoN2 interacts with FleQ, an important EBP, and regulates flagellar-associated gene
transcription, which controls flagellum synthesis and swimming motility [57,61]. PiIRX,
an EBP type, is located in the T4P gene cluster and forms a two-component system with
PilSX [62]. In Xoo, RpoN2 positively regulates twitching motility and virulence in a PilRX-
dependent manner. The other four candidate EBPs that contain the AAA* domain were
identified in Xoo (Figure 1). PrpR is a propionate catabolism operon regulatory protein, and
it can interact with both RpoN1 and RpoN2. Deletion of prpR decreased the expression of
prpBC and reduced Xoo growth and virulence (data unpublished). PXO_03020, PXO_03564,
and PXO_03965 are NtrC family proteins, and their functions have not been studied
in Xoo so far. The RpoN2 regulatory effects on virulence and growth have also been
reported in other Xanthomonas species [58], but the type of EBP involved in these regulatory
processes remains elusive. In the R. solanacearum genome, rpoN1 and rpoN2 are present in
the chromosome and megaplasmid, respectively. Interestingly, RpoN1 but not RpoN2 is
required for T4P gene expression, twitching motility, and virulence in bacteria [63,64]. A
single RpoN has been found in P. syringae, which depends on two T3SS regulators, HrpS
and HrpR, to regulate HrpL-dependent T3SS gene expression and control virulence [65,66].
Unlike in P. syringae, HrpS activates the hrpL transcription by binding to RpoN, but HrpR
has not been found in E. amylovora and D. dadantii [67-69].

In the RpoN phylogenetic tree, the major phytopathogenic bacteria were divided into
two groups. Group I included Xanthomonas spp., and group Il included R. solanacearum, P.
syringae, E. amylovora, and D. dadantii (Figure 2). Group I was further subdivided into two
subgroups according to RpoN1 and RpoN2. Similarly, group II was also subdivided into
two subgroups: (a) R. solanacearum with two copies of RpoN, and (b) P. syringae, E. amylovora,
and D. dadantii with a single RpoN. The different classifications in the phylogenetic tree
indicated that single and multiple RpoN factors might have different regulatory models in
phytopathogenic bacteria.
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Table 1. The RpoNs and EBPs in major phytopathogenic bacteria.

Bacteria o4 Factors EBPs Target Genes Functions
RpoN1 PrpR prpBC Growth, virulence [59]
Xanthomonas oryzae RooN?2 FleQ, PiRX, PrpR fliA, fliC, fliTX, pilA, Growth, swimming, twitching,
P ’ 1P pilC, prpBC virulence [61,62,70]
Xanthomonas RpoN1 ) } DSE, branched—c.ham fatty-acid
. production [58]
campestris Swimming, flagellum synthesis [57];
RpoN2 FleQ A, flic biofilm, EPS, virulence [58]
Xanth L RpoN1 - - Swimming, virulence, growth [60]
anthomonas ciiri RpoN2 FleQ fliC;flgG Swimming, virulence, growth [60,71]
Ralstonia RpoN1 PehR pilA Twitching, growth, virulence [63,64]
solanacearum RpoN2 - - -
Pseudomonas T3SS [65,72];virulence [66]; coronatine
surineae RpoN HrpR, HrpS, CbrB hrpL,crcX, creZ biosynthesis [73]; carbon source
yring utilization, growth [74]
.. . T3SS, motility, growth,
Erwinia amylovora RpoN HrpS hrpL, ihfA, rsmB virulence [67,68,75,76]
Dickeya dadantii RpoN HrpS hrpL T35S, virulence [69]
Note: “-” represents not found.
-
pxo_osser  MEEED -
pxoossss MEEE - @R ) -

Figure 1. Six proteins containing an AAA* domain in Xoo. FleQ, PilRX and PrpR are three identified
EBPs of RpoN. FleQ and PilRX interact with RpoN2 to regulate the synthesis of flagella and pili,
thereby regulating swimming and twitching motility, respectively. PrpR combines with RpoN1 and
RpoN2 to control Xoo growth. PXO_03020, PXO_03564, and PXO_03965 are NtrC family proteins, and
their regulatory functions have not been studied in Xoo. REC, response regulator receiver domain;
AAA, ATPase ¢**-interaction domain. The sequences of these proteins were downloaded from the
NCBI website (https:/ /www.ncbinlm.nih.gov/ (accessed on 5 May 2021)), and conserved domains
were analyzed by SMART (http://smart.embl.de/smart/set_mode.cgi?NORMAL=1 (accessed on 5
May 2021)).
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Figure 2. Phylogenetic analysis of RpoN. Eleven full-length RpoN protein sequences of X. oryzae,
X. citri, X. campestris, R. solanacearum, P. syringae, D. dadantii, and E. amylovora were downloaded from
the National Center for Biotechnology Information. A maximum likelihood (ML) tree was generated
using MEGA-X with 1000 bootstrap values. Values on each branch represent the corresponding
bootstrap probability. The scale bar indicates the number of amino-acid substitutions per site.

4. RpoN Regulates Bacterial Flagella Synthesis and Motility

Flagella are sophisticated organelles found in many bacteria where they perform func-
tions related to motility, signal detection, biofilm formation, colonization, and attachment
to host tissues. Flagellar assembly is a highly organized process that requires the temporal
expression of dozens of genes, which are regulated hierarchically. In Xoo, a flagellar gene
cluster containing over 60 contiguous genes, was identified. These genes encode function-
ally diverse proteins, such as structural component proteins, protein export apparatus,
regulatory factors, and proteins involved in glycosylation and chemotaxis [61]. One of the
0* factor genes, rpoN2, is located in the central region of this gene cluster. In addition,
rpoN2 was transcribed in an operon with fleQ, which is located downstream of rpoN2 and
encodes an EBP [61]. Further study revealed that the flagellar gene cluster is regulated
under a three-tiered hierarchy by RpoN2/FleQ and ¢2® factor FliA (Figure 3). RpoN/FleQ,
as the master regulators, control the expression of 028 factor FliA and flagellar structure
component protein. Furthermore, FliA controls the expression of flagellin protein FliC,
flagellar cap protein FliD, flagellar chaperone proteins FliS and FliTX, and anti-0?3 factor
FlgM [61]. Moreover, RpoN2/FleQ regulates the transcription of flagellin glycosylation-
related genes (gigx1-gigx10), chemotaxis-associated genes (cheYZA), and c-di-GMP-related
genes (PXO 06199, PXO 06201, and PXO 06202) [59,77]. Deletions in rpoN2, fleQ, fliC, and
fliA resulted in the loss of flagella and swimming motility in Xoo. Interestingly, the fleQ
mutant did not show much difference in its ability to infect rice leaves compared to the
wild type. In contrast, the rpoN2 mutant caused much less severe disease symptoms and
shorter lesions [61]. This result indicated that RpoN2 might regulate Xoo virulence in a
manner independent of flagellar motility.
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Figure 3. The three-tiered hierarchy of flagella synthesis in Xoo. The RpoN2 and FleQ, encoded by the
class I genes rpoN2 and fleQ, are the master regulators and control the transcription of class II genes.
The class II gene products include most of flagellum structural components, regulatory factors (FIhE,
FleN and FIgRR), flagellin glycosylation-related proteins (GigX1-10), chemotaxis-related proteins
(CheYZA), c-di-GMP synthesis and degradation related proteins, and alternative sigma factor FliA.
FliA regulates the transcription of class III genes, which encode the flagellin FliC, the flagellar cap
FliD, the flagellar chaperone proteins FliS and FIiTX, and the anti-028 factor FlgM. Interestingly, FlgM
negatively regulates FliA activity and protects it from degradation.

Another ¢ factor, RpoN1, was also identified in Xoo. Transcriptome analysis showed
that RpoN1 and RpoN2 regulate more than 30 genes in flagellar regulon [59]. Interestingly,
the rpoN2 expression level was decreased in the rpoN1 mutant; moreover, abnormal flagel-
lum and decreased swimming motility were also reported in the rpoN1 mutant [59]. As per
a previous study, RpoN1 indirectly regulates the RpoN2 transcription in Xoo [59]. These
results indicate that RpoN1 and RpoN2 have overlapping regulatory roles in bacterial
flagellum synthesis and swimming motility in Xoo.

In X. campestris and X. citri, RpoN1 and RpoN2 are also involved in flagellum synthesis
and motility. RpoN2 positively regulates the transcription levels of flagellar synthesis-
related genes (filDCES, flhiAB) and chemotaxis-related genes (cheABDRWY, motAB). In
X. campestris, rpoN2 mutant lacked the typical single polar flagellum and swimming motil-
ity [58]. However, rpoN1 mutants showed flagellar morphology and swimming motility
identical to the wild-type strain, indicating that RpoN2, but not RpoN1, is required for
flagellum synthesis and motility in X. campestris [58]. Interestingly, the transcription levels
of eight flagellar biosynthesis genes (flhF, fIhB, fliQ, fliL, fliE, fliD, fIgG, and flgB) and bac-
terial swimming motility decreased in ArpoN2, but increased in ArpoN1, suggesting that
RpoN2 positively, but RpoN1 negatively regulates the flagellum synthesis and motility in
X. citri [60].

5. RpoN Is Required for Nutritional Metabolism and Growth

In P. syringae, RpoN positively regulates the transcription of two ncRNAs, crcZ and
crcX, thereby regulating the utilization of multiple carbon and nitrogen sources and influ-
encing bacterial growth [74,78]. This transcriptional regulation is activated by CbrB, which
is an EBP of RpoN and belongs to the NtrC family of response regulators [79-81]. CrbB
binds to CrbA and forms a two-component system [79]: a conserved signal transduction
system that regulates the cellular carbon and nitrogen balance and plays a central role in
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carbon catabolite repression in Pseudomonas species [82]. CbrA contains a domain similar
to the solute/sodium symporter family proteins, and it is typically found in bacterial
sensor kinases. CbrAB directly activates the transcription of SRNAs (crcZ and crcY) from
RpoN-dependent promoters, which antagonize the repressing activity of Hfg-Crc, the key
regulator of the carbon catabolite repression (CCR) process, positively regulating carbon
metabolism [83,84]. Furthermore, CbrAB controls the expression of alginate biosynthetic
genes and rsmA. It is also required to accumulate the sigma factor RpoS and core metabo-
lites of aromatic and sugar metabolism [85,86]. Importantly, CbrAB and the master nitrogen
regulator NtrBC directly control C/N homeostasis by regulating the transcription of histi-
dine utilization genes (hut) [87]. When histidine is the sole source of N, the CbrAB-mediated
promoter activity is weak, and NtrBC plays the dominant role in activating hut transcrip-
tion. In succinate-depleted media, CbrAB activates hut transcription while derepressing
the translation of hut mRNA mediated by the Crc/Hfq complex, which is sequestrated by
the CbrAB-activated ncRNAs (CrcY and CrcZ). Interestingly, deletions of cbrA and cbrB
impaired swimming and swarming motility, decreased T35S-associated genes expression,
and enhanced the sensitivity to cold [86,88]. This indicated that the RpoN/CbrAB-CrcYZ-
Crc/Hfq regulatory cascade system controls more important phenotypes beyond carbon
and nitrogen assimilation.

In Xoo, transcriptome analysis revealed that both RpoN1 and RpoN2 regulate multiple
genes involved in nitrogen and carbon metabolism. Deletion of rpoN1 significantly reduced
bacterial growth in rich media M210. In rpoN1 and rpoN2 double mutants, severe inhibition
of bacterial growth was observed compared to the rpoNI mutant. Interestingly, the rpoN2
mutant growth was identical to the wild-type strain in rich medium M210 but decreased
in plant-mimicking medium XOM2 [59,61]. These results suggested that both RpoN1 and
RpoN2 are required for Xoo growth, and RpoN1 might complement the effect of RpoN2 on
growth in rich media. PrpR, an EBP, was identified in Xoo, which is located at the propionate
catabolism operon and directly interacts with RpoN1 and RpoN2. The prpR deletion
showed decreased Xoo growth in M210 media. In addition, RpoN1, RpoN2, and PrpR
directly regulate numerous genes involved in the citric acid cycle (TCA cycle), such as prpB
and prpC, which encode methylisocitrate lyase and 2-methylcitrate synthase, respectively
(data unpublished). The TCA cycle is a well-studied and important central pathway that
connects almost all the individual metabolic pathways [89]. Therefore, RpoN1 and RpoN2
activated by PrpR may affect bacterial growth by regulating the TCA cycle in Xoo. However,
unlike in Xoo, RpoN1 but not RpoN2 is essential for nitrogen assimilation and growth in
R. solanacearum [63], and the EBP involved in the RpoN1-dependent regulation of the R.
solanacearum remains unexplored.

6. RpoN Regulates Virulence-Associated Phenotypes
6.1. T35S

T35S is an essential virulence mechanism in bacteria; it has highly conserved structural
components and participates in virulence by injecting the effector proteins into the cytosol
of host cells [90-94]. The alternative sigma factor, HrpL, is the primary transcription
factor that controls the expression of T3SS-associated genes [95]. In P. syringae, the hrpL
expression requires HrpR and HrpS. It forms a heterodimer on the hrpL promoter and
interacts with the RpoN-RNA polymerase holoenzyme to activate hrpL transcription [65,66].
Unlike most EBPs, HrpR and HrpS contain the conserved AAA* domain and C-terminal
DNA-binding domain but lack the N-terminal signal-sensing domain that functions in
phosphorylation-dependent modulation of response regulator activity [72,96]. Previous
studies have shown that HrpR and HrpS interact with RpoN via the conserved motifs of
GAFTGA and GAYTGA, respectively [66]. In addition, constitutive expression of hrpL in
the individual rpoN, hrpR, and hrpS mutants restored the transcription of hrp genes to wild-
type levels. Therefore, the RpoN-dependent cascade regulation of T35S has proven that
RpoN activates hrpL through HrpR and HrpS interaction, regulating hrp gene transcription
in P. syringae. Interestingly, rpoN mutant cannot produce the phytotoxin coronatine, infect
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the host plant, or cause HR in the nonhost plant. Additionally, the constitutive expression
of hrpL in rpoN mutant restored the HR to nonhost plants but did not restore coronatine
production and growth [73,97,98], indicating that the RpoN has both HrpL-dependent and
-independent regulatory pathways in P. syringae.

Unlike in P. syringae, HrpS but not HrpR interacts with RpoN and activates hrpL, thus
regulating the transcription of T35S-associated genes in E. amylovora and D. dadantii [67-69].
Sequence analysis revealed that HrpS and RpoN contact the promoter sequence of hrpL
at the —138/—125 (TGCAA-N4-TTGCA) and —24/—12 (GG-N1p-TGC) regions, respec-
tively [67]. Furthermore, a novel ribosome-associated protein, YhbH, was identified. YhbH
mediates HrpL-dependent T3SS regulation by modulating RpoN in E. amylovora. Indi-
vidual deletions of rpoN, hrpS, hrpL, or yhbH significantly decreased the transcription of
T3SS genes, such as hrpL, dspE, hrpN, and hrpA, and mutants failed to elicit hypersensitive
response (HR) in tobacco. On the other hand, overexpression of hrpL by an inducible
promoter rescued the T3SS gene expression and HR-eliciting ability in these mutants [76].

In addition, integration host factor (IHF), a nucleoid-associated protein, is often
required to enhance the interaction between RpoN and EBP and for virulence by posi-
tively regulating the expressions of hrpL and T3SS genes in E. amylovora [75]. HrpX/Y, a
two-component system, is also involved in the RpoN-dependent regulation of T3SS by
activating the hrpL expression in D. dadantii [69]. In our previous study, we observed that
RpoN2/FleQ positively regulates flagellin glycosylation, affecting the transcription of the
T3SS genes in Xoo [77]. fliTX, a hypothetical protein gene, is located upstream to rpoN2,
and regulated by RpoN2/FleQ and FliA in Xoo. fliTX deletion downregulated T3SS genes
and attenuated induction of HR in tobacco [70]. These findings indicated that RpoN2 is
dependent on FleQ to regulate T3SS genes in Xoo positively. However, either rpoN1 or
rpoN2 mutants induced a hypersensitive response in tobacco, which indicates that the o>*
factor is not required for the functionality of the T3SS in R. solanacearum [63]. These studies
revealed diversified regulatory effects of RpoN on T3SS in phytopathogenic bacteria.

6.2. T4P

The T4P, a special class of bacterial surface filament, plays a crucial role in surface ad-
hesion, motility, biofilm formation, and virulence in bacteria [99-101]. More than 20 genes
(named pilAX to pilZX) encoding T4P structural components and putative regulators were
revealed in Xoo. PilRX, an EBP located in the T4P gene cluster, directly interacts with
RpoN2 and regulates the T4P gene transcription, including the major pilin gene, pilAX, and
the inner membrane platform protein gene, pilCX. Individual deletions of rpoN2, pilRX,
pilAX, and pilCX resulted in significantly reduced twitching motility, biofilm formation,
and virulence [62]. These findings suggest that the RpoN2/PilRX regulatory system con-
trols bacterial motility and virulence by regulating T4P gene transcription in Xoo. The
RpoNT1 interaction with PilRX and its involvement in the regulation of T4P genes in Xoo
remain unknown.

Unlike in Xoo, RpoN1 but not RpoN2 regulates the T4P synthesis and twitching
motility in R. solanacearum [63]. The regulatory effect of RpoN1 on T4P genes depends
on PehR, which is one of the EBPs and forms a two-component system with PehS. pehR
deletion showed reduced bacterial swimming motility; however, the motility of the rpoN1
mutant was identical to that of the wild-type strain. Multiple studies have shown that
PehSR regulates the fliC expression by regulating FIhDC, the primary regulator of flagel-
lum synthesis, regulating swimming motility [102,103]. In addition, the regulator PhcA
is involved in the swimming and twitching motility by negatively regulating the pehR
expression [63,104]. These results indicated that both RpoN1 and PehR regulate T4P gene
expression and twitching motility. Furthermore, PehR plays specific roles in controlling
swimming motility in an RpoN1-independent manner in R. solanacearum.
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6.3. Biofilm

Biofilm is an important virulence-associated factor that promotes bacterial aggrega-
tion and surface attachment and protects bacteria from environmental stress, dehydration,
and host immune responses [105-108]. The RpoN regulation in biofilm formation has
been studied in Vibrio spp. As per the outcomes of this study, RpoN positively regulates
biofilm formation in V. cholera [109], V. parahaemolyticus [110], V. anguillarum [23], and V.
fischeri ESR1 [111], but negatively regulates biofilm formation in V. fischeri ES114 [112].
Interestingly, NtrC, one of the EBPs in V. cholera, inhibits biofilm formation by negatively
regulating the expression of core regulator genes (vpsR, vpsT, and hapR) [113]. Furthermore,
RpoN was shown to be unnecessary for the biofilm formation but essential for biofilm
detachment in V. alginolyticus [114]. The positive regulation of RpoN in biofilm forma-
tion has been well studied in Lysobacter enzymogenes [115], Labrenzia aggregata [33], and
P. fluorescens [116], but not in phytopathogenic bacteria. In our previous study, RpoN2 and
PilRX promoted biofilm formation by regulating the T4P gene expression, thereby affecting
virulence in Xoo [62]. Additionally, T4P is necessary for biofilm formation in other Xan-
thomonas spp., as demonstrated in previous studies [117,118]. These results indicated that
the RpoN-dependent biofilm regulation pathway is a vital virulence regulation pathway in
phytopathogenic bacteria.

6.4. EPS

EPSs are cell-associated or secreted outside the cell. They contain organic macro-
molecules, such as polysaccharides, proteins, and phospholipids in addition to some
non-polymeric molecules [119,120]. They are microbial biopolymers produced under stress
in harsh environments and nutrition-deprived conditions [121]. Therefore, EPS production
is one of the strategies of bacteria to fight against biotic and abiotic stresses. Additionally,
bacterial EPSs play essential roles in host-pathogen interactions, as well as biofilms [122].
In X. citri, VemR acts as a RpoN2 cognate activator [71], located in an operon flanked by
fleQ and rpoN2. It encodes an atypical response regulator that contains only a receiver
domain [123]. Deletion of the vemR gene resulted in a reduction in virulence and EPS
production [71]. Moreover, VemR positively regulates flagellar biosynthesis by controlling
the transcription of the rod gene flgG [71], but RpoN2- and VemR-mediated EPS production
remains largely unknown.

7. Conclusions and Future Perspectives

RpoN is an important and conserved regulatory factor in a majority of phytopathogenic
bacteria. Unlike other o factors, RpoN regulates the transcription of numerous functional
genes in an EBP-dependent manner. On the basis of the number of 0>* factors, we schema-
tized the regulatory mechanism of RpoN in P. syringae and Xanthomonas species, which
have single and double ¢>* factors, respectively (Figure 4). In P. syringae, a single RpoN
along with HrpS and HrpR activates HrpL-dependent transcription of T3SS, subsequently
regulating bacterial virulence. RpoN also regulates crcZX by binding to CbrB, regulating
nutritional metabolism and bacterial growth. In Xanthomonas, RpoN1 and RpoN2 have both
unique and overlapping regulatory roles. RpoN2 regulates flagellum and T4P synthesis by
interacting with FleQ and PilRX, respectively. RpoN2 also regulates the expression of fliTX
and vemR to positively control bacterial virulence. Interestingly, both RpoN1 and RpoN2
interact with PrpR and control prpBC expression, thereby modulating the TCA cycle and
bacterial growth. Moreover, RpoN1 indirectly regulates the transcription of RpoN2 with
unknown EBP.
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Figure 4. The regulatory functions of RpoN in major phytopathogenic bacteria. Left, P. syringae containing a single RpoN.

RpoN requires HrpS and

HrpR to activate HrpL-dependent transcription of T3SS, thereby regulating virulence. The

two-component system HrpXY and RsmA is involved in the T3SS gene expression by positively regulating hrpS and

negatively regulating hrpL.

It also regulates crcZX by binding with CbrB and regulates bacterial growth by affecting carbon

and nitrogen utilization. Right, Xanthomonas containing two copies of RpoN factors, RpoN1 and RpoN2, with unique and
overlapping regulatory roles. RpoN2 regulates the synthesis of flagellum and T4P by interacting with FleQ and PilRX,
respectively. It also depends on FleQ to regulate the fliTX and vemR expression and positively regulate bacterial virulence.
Both RpoN1 and RpoN2 are involved in the regulation of bacterial growth by interacting with PrpR. In addition, RpoN1,
along with unknown EBP, indirectly regulates the RpoN2 transcription.

In the past few years, our understanding of 0°*-dependent transcription has signif-
icantly progressed owing to the structural analysis of the 6®*-RNAP complex and the
application of transcriptome sequencing technology [5,124,125]. Concurrently, more and
more 0>*-dependent EBPs and target genes have been identified using the bioinformatic
method by analyzing the conserved AAA™ domain and special binding sites GGNoGC
on the promoter sequence, respectively [126-128]. However, whether these EPSs have re-
dundant regulatory functions and how they competitively interact with 0>* factors remain
unknown. Furthermore, the upstream signals received by EBPs to activate 0>*-dependent
regulatory pathways remain elusive. Our previous study identified the overlapping reg-
ulatory roles of two ¢>* factors in motility, virulence and growth, and identified three
EBPs in Xoo. However, it is not yet known how the two ¢>* factors work together to
regulate these pathways and which EBPs interact with ¢°* factors in these overlapping
regulatory pathways. Therefore, to dissect the complex regulatory network of 6>* in phy-
topathogenic bacteria, the following research-gaps should be addressed: (1) identification
of candidate EBPs and characterization of their functions, (2) characterization of the in-
teraction of EBPs with ¢ factors, (3) clarification of the redundant or unique regulatory
functions of EBPs, (4) identification of the upstream signals of ¢ factors, and (5) iden-
tification of the conserved and specific regulatory pathways of ¢>* factors in different
phytopathogenic bacteria.
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