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Abstract: Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the
lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed
protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea
mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize
endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms
disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling
into PB. We have investigated whether the peculiar features of 16γz are also maintained during
transgenic seed development. We show that 16γz progressively changes its electron microscopy
appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like,
compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature
embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz
remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone
BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms
aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled
subunit of a large heteropolymer, the PB, and could have evolved successfully only following the
emergence of the much more structurally self-sufficient 27γz.

Keywords: seed development; storage proteins; prolamins; zeins; protein body biogenesis; endoplas-
mic reticulum

1. Introduction

The polypeptides of seed storage proteins undergo different interchain interactions
that are important for their synthesis, intracellular traffic, and accumulation. At the end of
seed development and irrespective to their final subcellular compartment of accumulation—
protein storage vacuoles (PSV) or protein bodies (PB) directly derived from the endoplasmic
reticulum (ER)—storage proteins appear to the electron microscope as condensed electron-
dense structures [1,2]. The origin and biochemical features of these structures are, however,
quite variable, depending on the specific storage protein and the tissue of accumulation
(endosperm or embryo). Trimerization of newly synthesized 7S/11S globulins, mainly
due to hydrophobic interactions, is required for their approval by ER quality control and
consequent intracellular traffic to PSV [3]. Further, transient polymerization of vacuolar
storage proteins occurs during traffic and also has a role in correct sorting. This can be
visualized both biochemically and by the detection of electron-dense structures in the Golgi
cisternae or late endosomes en route to storage vacuoles [4–6]. In seeds of certain plants,
such as pumpkin (Cucurbita sp cv Kurokawa Amakuri Nankin), transient polymerization
occurs already in the ER lumen, leading to the formation of electron-dense precursor-
accumulating (PAC) vesicles that reach storage vacuoles bypassing the Golgi apparatus [7].
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All these transient, large structures that may involve the two major classes of vacuolar
storage proteins—7S/11S globulins and the monomeric 2S albumins—are easily solubilized
in aqueous buffers, whereas the major storage proteins of cereals—prolamins—form very
large insoluble PBs in the ER [8]. In Panicoideae and rice (Oryza sativa), PB permanently
accumulates in the ER, whereas in other cereals such as wheat they are delivered to storage
vacuoles at late stages of seed maturation, bypassing the Golgi apparatus. A major feature
of PBs permanently located in the ER is the presence of extensive interchain disulfide bonds
that lead to protein insolubilization [9].

Zeins, the prolamins of maize (Zea mays), can be divided into four classes: alpha
(more than thirty genes), gamma (three genes that produce polypeptides of 27, 50, and
16 kDa), beta (a single gene), and delta (two genes that encode for 10 kDa and 18 kDa
polypeptides) [10,11]. Alpha and delta zeins constitute the core of the PB, whereas 27 kDa
and 50 kDa gamma zeins (27γz, 50γz) form the outer PB layer, in contact with the luminal
face of the ER membrane, and 16 kDa gamma zein (16γz) is at the interface between the
inner core and outer PB layer [2,12]. 27γz, the single most abundant PB polypeptide, forms
homotypic, insoluble, electron-dense PBs also when ectopically expressed in vegetative
tissues [13,14]. Unlike α-zeins, which can be solubilized by aqueous alcohol, 27γz and 50γz
are solubilized by reducing buffers; in agreement with this, progressive mutagenesis of the
Cys residues involved in the interchain bonds of 27γz results in its increasing solubility
and ability to traffic from the ER along the secretory pathway [15]. 27γz and 50γz have
orthologs in other Panicoideae, but 16γz has instead been found only in maize and has
originated, most probably from 27γz, as a consequence of the relatively recent whole-
genome duplication of this cereal [16]. With respect to 27γz, 16γz has lost part of the Cys
residues involved in interchain bonds and a large portion of a Pro-rich repeated domain [17].
Unlike its paralogous zein 27γz, 16γz is unable to form PBs when expressed ectopically in
transgenic vegetative tissues, where instead it polymerizes into disordered electron-dense
threads that markedly enlarge the ER lumen [14]. The protein is also partially soluble in
aqueous buffers in the absence of reducing agents, but when co-expressed with 27γz it
becomes fully insoluble unless reduced, supporting the hypothesis that in a natural PB
16γz interacts with 27γz and has the role of establishing ordered interactions between the
inner PB core and the outer PB layer [14].

In this work, we have investigated whether the peculiar features of 16γz are also
maintained when the protein is synthesized in a storage seed tissue, where other types of
storage proteins are synthesized as well, and where a development program is active to
favor their optimal accumulation.

2. Results
2.1. 16γzf Accumulates in Arabidopsis Embryos without Interfering with the Synthesis and
Processing of Endogenous Storage Proteins

Leaf, root, or seed proteins from Arabidopsis (Arabidopsis thaliana) transgenic plants
singly expressing 27γz or 16γz C-terminal tagged with a FLAG epitope (27γzf and 16γzf,
respectively [14]), were analyzed to compare the accumulation and electrophoretic patterns
of the recombinant proteins in seeds and vegetative tissues. Proteins were extracted
from dry seeds, or from leaves or roots of 6-week-old plants, with homogenation buffer
supplemented with reducing agent. Protein blot with anti-FLAG antibodies showed that
accumulation of both zeins was highest in leaves and lowest in roots (Figure 1A). Based on
the known electrophoretic migration of the different forms of the two zeins [14], the relative
amount of unmodified 27γzf monomers (Figure 1A, empty arrowhead) with respect to the
modified form (migrating between the 35 and 45 kDa markers) was markedly higher in
seeds than in vegetative tissues. Minor proportions of incompletely denatured dimers and
larger polymers were also detected as lower migration forms (empty circle). In all tissues,
16γzf was detected mainly as monomers (black arrowhead) and in minor proportion,
dimers (black circle), with no marked, qualitative tissue-specific differences.



Int. J. Mol. Sci. 2021, 22, 12671 3 of 11

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 12 
 

 

(empty circle). In all tissues, 16γzf was detected mainly as monomers (black arrowhead) 
and in minor proportion, dimers (black circle), with no marked, qualitative tissue-specific 
differences.  

 
Figure 1. 27γzf and 16γzf accumulate in dry seeds and do not interfere with the sorting of 
endogenous Arabidopsis storage proteins. (A): Total protein homogenates were prepared with 
denaturing buffer from leaves (L), roots (R), or dry seeds (S) of Arabidopsis constitutively 
expressing FLAG-tagged versions (f) of 27γz or 16γz, or from wild-type (wt) plants. Top panel: 
Analysis by SDS-PAGE and protein blot with anti-FLAG antibodies. The position of 27γzf (empty 
arrowhead), 16γzf (black arrowhead) monomers and their respective dimeric forms (empty and 
black circles, respectively) are indicated. Bottom panel: total proteins staining with Ponceau S. (B): 
Analysis of total protein extracts from dry seed by SDS-PAGE and Coomassie blue staining. The 
positions of the mature polypeptides of the endogenous 12S globulins and 2S albumins are 
indicated. Numbers on the left in both A and B indicate the position and size (kDa) of molecular 
mass markers. 

Overall, electrophoretic analysis indicates that both zeins expressed under the 
CaMV35S promoter accumulate in seeds to levels comparable to those in leaves. No 
fragmentation product still containing the FLAG epitope was detected. Since the 
modification of 27γz expressed in vegetative tissues most probably consists of 
hydroxylation of proline residues [13,15], the results suggest lower proline hydroxylation 
activity in seeds. Such hydroxylation seems to be mainly limited to vegetative tissues since 
proline residues of 27γz naturally synthesized in maize endosperm are also unmodified 
[18]. 

Figure 1. 27γzf and 16γzf accumulate in dry seeds and do not interfere with the sorting of endogenous
Arabidopsis storage proteins. (A): Total protein homogenates were prepared with denaturing buffer
from leaves (L), roots (R), or dry seeds (S) of Arabidopsis constitutively expressing FLAG-tagged
versions (f) of 27γz or 16γz, or from wild-type (wt) plants. Top panel: Analysis by SDS-PAGE and
protein blot with anti-FLAG antibodies. The position of 27γzf (empty arrowhead), 16γzf (black
arrowhead) monomers and their respective dimeric forms (empty and black circles, respectively) are
indicated. Bottom panel: total proteins staining with Ponceau S. (B): Analysis of total protein extracts
from dry seed by SDS-PAGE and Coomassie blue staining. The positions of the mature polypeptides
of the endogenous 12S globulins and 2S albumins are indicated. Numbers on the left in both A and B
indicate the position and size (kDa) of molecular mass markers.

Overall, electrophoretic analysis indicates that both zeins expressed under the CaMV35S
promoter accumulate in seeds to levels comparable to those in leaves. No fragmenta-
tion product still containing the FLAG epitope was detected. Since the modification of
27γz expressed in vegetative tissues most probably consists of hydroxylation of proline
residues [13,15], the results suggest lower proline hydroxylation activity in seeds. Such
hydroxylation seems to be mainly limited to vegetative tissues since proline residues of
27γz naturally synthesized in maize endosperm are also unmodified [18].
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The major Arabidopsis seed storage proteins belong to the 12S and 2S classes; their
precursor polypeptides (around 50 kDa and 15 kDa for 12S and 2S, respectively) are
proteolytically matured only upon correct traffic from the ER and sorting to PSVs [19]. The
SDS-PAGE patterns of total seed proteins did not show any change in the zein-expressing
seeds compared to the wild-type plants (Figure 1B), indicating that the two zeins constitute
only a very minor percentage of total proteins.

2.2. 16γzf Avoids Traffic to PSVs and Forms Electron-Dense Threads That Progressively Coalesce
during Embryo Development

16γzf is unable to form PBs in Arabidopsis transgenic leaves, but accumulates as
electron-dense thread-like structures that enlarged the ER lumen [14] (Figure 2A,B). To ver-
ify if these structures are also formed in seeds, the subcellular localization and morphology
of 16γzf during seed development was determined by immunogold electron microscopy
(EM) with anti-FLAG antibodies.

Mature embryos showed labeling of 16γzf in round structures with diameters of
about 1 µm and nearly homogeneous electron-dense content (Figure 2G and magnification
in Figure 2H, white asterisk), resembling homotypic PBs formed by 27γzf in leaves [14],
and markedly different from the 16γzf threads that irregularly enlarge the leaf ER lumen
(conventional EM analysis in Figure 2A and magnification in Figure 2B, see also Figure 7
in [14]). In immature embryos, conventional (Figure 2C and magnification in Figure 2D)
and immunogold (Figure 2E and magnification in Figure 2F) EM analysis showed struc-
tures having an intermediate pattern between those of leaves and mature embryos: 16γzf
accumulated in smaller (around 2 µm) and less irregularly shaped compartments than
those in leaves, but not as round-shaped and homogeneously electro-opaque as those in
the mature embryos (in Figure 2 compare panels C–F black asterisks, with panels G,H
white asterisks). In immature embryos, 16γzf was organized in threads that appeared more
dispersed in the compartment lumen than those in leaf cells. PSVs, where Arabidopsis stor-
age proteins accumulate, were clearly devoid of 16γzf (PSV in Figure 2G,H). In immature
embryos, the PSVs content appeared very dissimilar in electron density and shape from
those of 16γzf structures (compare PSV and asterisks in Figure 2E).

2.3. 16γzf Forms Insoluble Aggregates in Mature Embryos, Unlike 27γzf

Based on the morphology of the structures formed by 16γzf in leaves, its PB-like
condensation in mature seeds was unexpected. It was therefore determined whether the
biochemical features of 16γzf accumulated in mature seeds were also similar to those of
PB-forming 27γzf. Dry seeds were first homogenized in saline buffer without detergent
and subjected to low-speed centrifugation. Both zeins were recovered in the pellet fractions,
with marginal amounts of 27γzf and only a slightly higher proportion of 16γzf remaining
in the supernatant (Figure 3). Therefore, the 16γzf PB-like structures visualized by EM are
largely insoluble in salt buffer, similarly to 27γzf PBs.

We then compared the solubility of the two zeins in leaves and in immature or mature
seeds by sequential extraction in different buffers. In all the three tissues analyzed, 27γzf
was almost completely insoluble unless reduced (Figure 4A, lanes 2, 5, 8), a feature of
natural 27γz accumulated in maize endosperm PBs and already observed in transgenic
leaves [14]. In leaves, and to a minor extent in developing seeds, 16γzf was also partially
soluble in the absence of a reducing agent (Figure 4B, lanes 1, 4). No soluble polypeptides
were, however, detected in dry seeds, where the major proportions of 16γzf could not be
solubilized even by reducing agent, indicating that a large part of the morphologically
PB-like 16γzf structures is not held together by interchain disulfide bonds, but is actually
due to aggregation (Figure 4B, lane 9).
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Figure 2. Progressive coalescence of 16γzf during embryo development. (A,B): leaves; (C–F): 
developing embryos (11 dap); (G,H): mature embryos. (A–D): Ultrathin sections post-fixed with 
osmium. (E–H): Immunolabelling with anti-FLAG antibody and secondary 10 nm gold-conjugated 
donkey anti-rabbit serum. Boxes in (A,C,E,G) indicate the regions that are shown at higher 
magnification in (B,D,F,H), respectively. Symbols and acronyms: 16γzf threads and loosely packed 
structures (black asterisks), ER membrane continuous with the membrane enclosing the 16γzf 
threads (arrow), homogeneously electron-dense structures (white asterisks), cell wall (cw), 
chloroplast (chl), oil bodies (ob), protein storage vacuoles (PSV), and vacuole (v). Scale bars in 
(A,C,E,G) and (B,D,F,H) are 1 µm and 0.5 µm, respectively. 

Mature embryos showed labeling of 16γzf in round structures with diameters of 
about 1 µm and nearly homogeneous electron-dense content (Figure 2G and 
magnification in Figure 2H, white asterisk), resembling homotypic PBs formed by 27γzf 

Figure 2. Progressive coalescence of 16γzf during embryo development. (A,B): leaves; (C–F): devel-
oping embryos (11 dap); (G,H): mature embryos. (A–D): Ultrathin sections post-fixed with osmium.
(E–H): Immunolabelling with anti-FLAG antibody and secondary 10 nm gold-conjugated donkey
anti-rabbit serum. Boxes in (A,C,E,G) indicate the regions that are shown at higher magnification
in (B,D,F,H), respectively. Symbols and acronyms: 16γzf threads and loosely packed structures
(black asterisks), ER membrane continuous with the membrane enclosing the 16γzf threads (arrow),
homogeneously electron-dense structures (white asterisks), cell wall (cw), chloroplast (chl), oil bodies
(ob), protein storage vacuoles (PSV), and vacuole (v). Scale bars in (A,C,E,G) and (B,D,F,H) are 1 µm
and 0.5 µm, respectively.
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without reducing agents or detergent. Soluble (S) and insoluble (P) fractions were separated by 
centrifugation. Both (S) and (P) fractions were analyzed by SDS-PAGE followed by protein blot. Top 
panel: anti-FLAG antibodies. The positions of 27γzf and 16γzf monomers are indicated by the empty 
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positions of the Arabidopsis endogenous seed storage proteins 12S globulins (α and β subunits) and 
2S albumins are indicated. Numbers on the left indicate the position and size (kDa) of molecular 
mass markers. 

Figure 3. 16γzf PB-like structures visualized by EM are mainly insoluble in salt buffer, similar to
27γzf PBs. Dry seeds from wt, 27γzf, or 16γzf plants were ground and homogenized in saline buffer
without reducing agents or detergent. Soluble (S) and insoluble (P) fractions were separated by
centrifugation. Both (S) and (P) fractions were analyzed by SDS-PAGE followed by protein blot.
Top panel: anti-FLAG antibodies. The positions of 27γzf and 16γzf monomers are indicated by the
empty and the black arrowheads, respectively. Bottom panel: Ponceau S total protein staining. The
positions of the Arabidopsis endogenous seed storage proteins 12S globulins (α and β subunits) and
2S albumins are indicated. Numbers on the left indicate the position and size (kDa) of molecular
mass markers.
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polypeptides. In dry seeds, where protein synthesis is terminated, no reduced-soluble BiP 
was detected (Figure 4C, lane 8). The solubility of BiP1/2 was quite different in the tissues 
expressing 16γzf. There was almost no reduced-soluble BiP1/2 in any tissue, whereas fully 
insoluble BiP1/2 increased during seeds maturation, reaching about half of the total in dry 
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Figure 4. 16γzf forms insoluble aggregates in mature embryos, unlike 27γzf. Leaves, immature embryos (siliques) or dry
seeds from 27γzf (A,C) or 16γzf (B,D) transgenic Arabidopsis plants were homogenized in saline buffer supplemented with
nonionic detergent to solubilize membranes, in the absence of reducing agents. Soluble (S) proteins were collected after
centrifugation. Pellets were resuspended in the same buffer supplemented with 4% 2-Mercaptoethanol to reduce disulfide
bonds; the new soluble proteins (I) were separated from the completely insoluble pellet (P) by centrifugation. Analysis was
done by SDS-PAGE and protein blot. (A,B): anti-FLAG antibodies; the positions of 27γzf and 16γzf monomers are indicated.
The black arrow in A indicates the 27γzf modified form only present in vegetative tissues. (C,D): anti-BIP antibodies; the
position of BiP is indicated.
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The major ER chaperone BiP has affinity to not yet folded and assembled polypeptides
and to misfolded proteins [20,21]. In transgenic Arabidopsis leaves, BiP1/2 (the two highly
homologous, major Arabidopsis BiP polypeptides, which cannot be distinguished from
one another by antibodies) are found associated with both gamma zeins, but in higher
proportion to 16γzf, most probably because the N-terminal domain of this zein has high
affinity to BiP and because its assembly in the absence of other zein partner polypeptides
could remain permanently unresolved [22]. Protein blot with anti-BiP antiserum showed
that, in 27γzf leaves and immature embryos, even if the most of polypeptides were in the S
fraction (BiP is per se a soluble protein), a minor but not irrelevant proportion of BiP1/2
was solubilized only after reduction (Figure 4C, lanes 2, 5), probably because associated to
newly synthesized, not yet polymerized 27γzf polypeptides. In dry seeds, where protein
synthesis is terminated, no reduced-soluble BiP was detected (Figure 4C, lane 8). The
solubility of BiP1/2 was quite different in the tissues expressing 16γzf. There was almost
no reduced-soluble BiP1/2 in any tissue, whereas fully insoluble BiP1/2 increased during
seeds maturation, reaching about half of the total in dry seeds (Figure 4D, lanes 3, 6, 9).
This paralleled the increasing full insolubilization of 16γzf, strongly suggesting extended
interactions between this zein and the chaperone also during embryo development, which
persist in mature embryos.

3. Discussion

The results reported here show that electron-dense 16γzf threads, similar to those
accumulated in the ER of Arabidopsis leaf cells, are present in developing embryos and
that these then coalesce into smaller, nearly homogeneously electron-dense structures
that accumulate in mature seeds. These structures are regularly round-shaped and have
diameters up to 1 µm, thus morphologically resembling the homomeric PBs formed by
27γzf in Arabidopsis leaves [14]. However, the results also show that most 16γzf present in
mature, dry seeds is also insoluble in the presence of reducing agents that fully solubilize
seed-accumulated 27γzf, as well as both recombinant zeins accumulated in leaf cells [14].
This indicates that 16γzf coalescencing into morphologically PB-like structures is not a
process of ordered polymerization; rather, it reflects most probably unregulated hydropho-
bic interactions leading to aggregation. The lack of detectable precursors of endogenous
storage proteins in the transgenic seeds indicates that neither 16γzf nor 27γzf, at least at
the levels of synthesis allowed by the 35S promoter, interfere with the traffic, processing,
and correct intracellular sorting of 12S and 2S polypeptides to PSVs.

Seed storage proteins evolved to maximize the protein-to-volume of storage com-
partment ratio; polypeptides are therefore highly packed, but they avoid falling into an
aggregate state that can compromise their hydrolysis during germination. Electron-dense
accretions of soluble seed storage proteins can form in the ER naturally or in transgenic
plants. In pumpkin [7] and castor bean (Ricinus communis) [23] seeds, similar accretions
containing 2S albumins and 11S globulins occur naturally, being then concentrated into
PAC vesicles and then transported to PSV. These are correctly assembled and folded
polypeptides that do not permanently aggregate into insoluble structures [7,23]. In soybean
(Glycine max), suppression of two members of the 7S globulin gene family (conglycinins)
induces the formation of PB-like structures in the ER, that entrap the precursor forms
of other conglycinins as well as additional PSV polypeptides [24]. Biochemical analysis
showed that these precursors were assembled into soluble trimers, but cannot proceed
along the pathway to PSVs. Sunflower (Helianthus annuus L.) 2S albumins [25] or pea
(Pisum sativum) 7S globulin [26] with an added C-terminal sequence for retention in the ER,
can form in transgenic plants spherical electron-dense structures, which are solubilized in
a saline buffer. All these unusual formations of PB-like structures in the ER are therefore
condensations of correctly folded polypeptides rather than aggregations of misfolded
polypeptides. Normally soluble, secreted proteins can also change their fate when ectopi-
cally expressed in storage tissues: naturally secreted phytase is included into zein PBs at
late stages of maturation, indicating that PBs can be a dominant destination in the secretory
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pathway [27]. However, extraction with saline buffer in reducing conditions solubilized
the recombinant phytase.

The aggregation of 16γzf is therefore a specific process, unrelated to the other above
described examples of PB-like structure formations. The peculiarity of the process is
also indicated by the unusual, progressive full insolubilization of BiP that parallels 16γzf
insolubilization during embryo maturation. This is not observed in embryos expressing
the PB-forming 27γzf and indicates that the extended interactions between 16γzf and the
chaperone observed in Arabidopsis leaves [22] also occur during embryo development
and persist in the mature embryo.

16γz’s position and intermediate solubility between those of α-zeins and the two other
γ-zeins in natural maize PBs, its very unique polymerization into threads, high affinity to
BiP, and high stimulation of the unfolded protein response when expressed individually in
transgenic leaves are consistent with the hypothesis that 16γz evolved as a contact structure
between the outer layer and the inner core of maize PBs [2,12,14,22]. The acquisition of a
stable conformation would thus remain unaccomplished in the absence of the other partner
zeins. The results presented here provide additional support to this scenario. During seed
desiccation, late embryogenesis abundant (LEA) proteins and a number of small heat shock
proteins (sHSP) are specifically synthesized and are believed to avoid damages, including
irreversible protein aggregation, caused by the decrease of water availability [28–30].
Certain LEA and sHSP are located in the ER and thus may be involved in avoiding storage
protein aggregation that would hamper their hydrolysis during germination. In vitro
experiments indicate that, at a low ratio to the substrate, the anti-aggregation function
of a model LEA is impaired [31]. As seeds progress to desiccation, it is thus possible
that these aggregation inhibitors, as well as the ubiquitous chaperones like BiP, become
progressively unable to inhibit unspecific interactions between 16γzf polypeptides, which
would thus start to form fully insoluble, irreversible aggregates that cannot be solubilized
even by treatments that reduce interchain disulfide bonds. This strengthens the view that
16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could
have evolved successfully only following the emergence of the much more structurally
self-sufficient 27γz [14,22].

ER quality control exerts three functions in the secretory pathway: it favors fold-ing
and assembly of newly synthesized proteins, avoids their traffic until a native state has been
achieved and targets for degradation polypeptides that fail for too long time to become
competent for traffic. The ability to take advantage of the first two activities of quality
control and at the same time avoid the third one is a major, unique feature of prolamins
and PB assembly. In this respect, it is remarkable that even 16γz does not seem to undergo
marked long term degradation under the stressing conditions of seed desiccation and
does not disturb the normal structural maturation and traffic of PSV endogenous storage
proteins, in spite of the fact that it very strongly challenges ER quality control compared to
27γz and, unlike the latter, is unable to form a typical PB in the absence of the other zein
partners. Besides making 16γz a useful model to study the molecular features that regulate
the balancing between folding, degradation, and aggregation in the ER, this may also be
relevant for possible strategies to improve the protein nutritional quality of seeds through
protein engineering strategies.

4. Materials and Methods
4.1. Plant Material

Transgenic Arabidopsis plants (ecotype Columbia) expressing 27 kDa γ-zein or 16 kDa
γ-zein C-terminally tagged with the FLAG epitope DYKDADDDK—and named 27γzf
and 16γzf, respectively [22]—or wild-type plants were grown in sterile conditions on
half-concentrated Murashige and Skoog solid media (Duchefa Biochemie), 10 g/L Sucrose,
0.8% (w/v) phyto agar (Duchefa Biochemie) at 23 ◦C under a 16/8 h light/dark cycle.

Siliques were harvested on the eighth day after flowering.
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4.2. Antibodies

The following antisera or antibodies were used, at the indicated dilutions. Rabbit
polyclonal anti-FLAG (1:2,000 Sigma Aldrich, St. Louis, MO, USA); rabbit polyclonal anti-
tobacco (Nicotiana tabacum) BIP (1:10,000 [3]); goat anti-rabbit IgG-peroxidase conjugate
(1:16,000, Pierce Biotechnology Rockford, IL, USA).

4.3. Total Protein Extraction from Leaves, Roots, and Dry Seeds

Leaves or roots, 2–3 cm in length from 6-week-old plants were ground in liquid
nitrogen and homogenized with five volumes (5:1 V/W) of buffer T (150 mM NaCl, 1.5 mM
EDTA, 1.5% Triton X-100, 150 mM Tris-Cl pH 7.5) supplemented with cOmplete™ Protease
Inhibitor Cocktail (Life Technologies, Wien, Austria). Dry seeds were homogenized using
the same procedure, but with a 25:1 buffer volume/weight ratio.

Equal amounts of total proteins from each sample were denatured and loaded on 15%
SDS-PAGE followed by protein blot incubation with the appropriate antiserum or antibody,
and detection with SuperSignal West Pico Chemiluminescent substrate (Thermo Scien-
tific, Rockford, IL, USA). Unstained Protein MW Markers (Fermentas, Vilnius, Lithuania)
were used as molecular mass markers. Total proteins were stained with Ponceau S, for
normalization and as a loading control.

4.4. Protein Body Precipitation

Dry seeds were ground in liquid nitrogen and homogenized with eight volumes
(8:1 v/w) of buffer A (10 mM KCl, 2 mM MgCl2, 100 mM Tris-Cl pH 7.8) supplemented
with cOmplete™ Protease Inhibitor Cocktail (Life Technologies). The homogenates were
centrifuged at 1500× g for 10 min at 4 ◦C. The supernatants were saved (soluble fraction,
S). The pellets, containing protein bodies, were resuspended in the same volume of buffer
A supplemented with 4% 2-mercaptoethanol (2-ME) and incubated for 30 min at room
temperature to reduce the disulfide bonds (insoluble proteins unless reduced, I). Equal
volumes of soluble (S) and insoluble (I) fractions were then adjusted to 1.0% SDS, 4% 2-ME,
and analyzed by 15% SDS-PAGE followed by protein blot incubation as described above.

4.5. Protein Sequential Extraction with Different Buffer and Centrifugation

Dry seeds, 8-day-old siliques, or 2–3 cm long leaves were ground in liquid nitrogen
and homogenized with fifteen volumes (15:1 v/w) of buffer T (150 mM NaCl, 1.5 mM
EDTA, 1.5% Triton X-100, 150 mM Tris-Cl pH 7.5) supplemented with cOmplete™ Protease
Inhibitor Cocktail (Life Technologies). After 30 min of incubation in ice, the homogenates
were centrifuged at 1500× g for 10 min at 4 ◦C. The supernatants were saved (soluble
fraction, S). The pellets were resuspended in the same volume of buffer T supplemented
with 4% 2-mercaptoethanol (2-ME), incubated for 30 min at 4◦C to reduce the disulfide
bonds, and centrifuged at 1500× g for 10 min at 4 ◦C. The recovered supernatant contained
proteins insoluble unless reduced (I). The pellets contained fully insoluble material (P).
Soluble (S), insoluble (I), and pellet (P) fractions were then adjusted to 1.0% SDS, 4% 2-ME,
and analyzed by 15% SDS-PAGE followed by protein blot incubation as described above.

4.6. Electron Microscopy

For immunolocalization, transgenic isolated mature embryos, as well as developing
embryos (bent cotyledon) expressing 16γzf were fixed and processed as described be-
fore [27]. Shortly, embryos were fixed in 4% paraformaldehyde and 0.5% glutaraldehyde
in 0.1 M cacodylate buffer pH 7.4 for 2h at room temperature. After several washes with
0.1 M cacodylate buffer, samples were dehydrated through ethanol series and then infil-
trated with LRWhite resin. Immunolocalization was performed with rabbit anti-FLAG
antibodies on sections showing silver interferences collected on copper grids as previously
described [27]. The antigen–antibody reaction was visualized with donkey anti-rabbit
serum labeled with 10 nm gold particles. Imaging was performed under a FEI Tecnai G2
electron microscope.
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For ultrastructural analysis, sections obtained from leaves expressing 16γzf were
fixed as described [27]. Briefly, samples were fixed in 2% paraformaldehyde and 2.5%
glutaraldehyde in 0.1M cacodylate buffer pH 7.4 overnight at 4 ◦C. After several washes
in 0.1 M cacodylate buffer pH 7.4, leaf sections were subjected to double osmium impreg-
nation, followed by en bloc staining with uranyl acetate and lead aspartate. Leaf samples
were dehydrated through ethanol series and progressively infiltrated and embedded with
low viscosity epoxy resin. Thin sections showing silver interferences were mounted on
copper grids prior to imaging. Developing embryos (bent cotyledon) expressing 16γzf
were isolated and fixed and processed as described in [32] with slight modifications. Thus,
embryos were fixed in 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer, pH 7.4 O/N at 4 ◦C. After several washes with 0.1 M sodium cacodylate
buffer, pH 7.4, samples were incubated in 1% (w/v) tannic acid in 0.1 M Cacodylate buffer,
followed by 1% (w/v) aqueous osmium tetroxide. Subsequently, embryos were dehydrated
through ethanol series and embedded in low viscosity epoxy resin. Sections showing
silver interferences were collected on copper grids and imaged using a FEI Tecnai G2
transmission electron microscope operating at 160 kV.
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