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Abstract: As major components of spider venoms, neurotoxic peptides exhibit structural diversity,
target specificity, and have great pharmaceutical potential. Deep learning may be an alternative
to the laborious and time-consuming methods for identifying these peptides. However, the major
hurdle in developing a deep learning model is the limited data on neurotoxic peptides. Here, we
present a peptide data augmentation method that improves the recognition of neurotoxic peptides
via a convolutional neural network model. The neurotoxic peptides were augmented with the known
neurotoxic peptides from UniProt database, and the models were trained using a training set with
or without the generated sequences to verify the augmented data. The model trained with the
augmented dataset outperformed the one with the unaugmented dataset, achieving accuracy of
0.9953, precision of 0.9922, recall of 0.9984, and F1 score of 0.9953 in simulation dataset. From the set
of all RNA transcripts of Callobius koreanus spider, we discovered neurotoxic peptides via the model,
resulting in 275 putative peptides of which 252 novel sequences and only 23 sequences showing
homology with the known peptides by Basic Local Alignment Search Tool. Among these 275 peptides,
four were selected and shown to have neuromodulatory effects on the human neuroblastoma cell
line SH-SY5Y. The augmentation method presented here may be applied to the identification of other
functional peptides from biological resources with insufficient data.

Keywords: deep learning; data augmentation; convolutional neural network; neurotoxic peptide
prediction; spider transcriptome

1. Introduction

Spiders constitute the most diverse terrestrial invertebrate taxonomic group, which
has evolved for >300 million years and adapted to various environmental conditions [1].
Such thriving was possible due to the venom production from venom glands that can be
used both to defend against predators and hunt prey [2]. Cysteine-rich neurotoxic peptides
in spider venom are known to affect the nervous system by targeting specific receptors, ion
channels, and synaptic vesicle exocytosis [3–6]. The specific targeting property gives rise to
many beneficial properties, such as insecticidal, pain control, and other pharmaceutical
potentials [7–11]. For example, π-TRTX-Pc1a peptide from tarantula Psalmopoeus cambridgei
has shown analgesic effects in vivo by inhibiting ASIC1a channel, and M-TRTX-Gr1a
from the tarantula Grammostola rosea venom suppressed atrial fibrillation by inhibiting
mechanosensitive channel. As the next-generation sequencing (NGS) technique became
more easily accessible, there has been great effort to screen neurotoxic peptides from
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transcriptome data of spider venoms by identifying cysteine patterns and disulfide bond
formation [12–16].

Although the biological data is accumulating, low accessibility due to the technical lim-
itations for screening restricts the identification of neurotoxic peptides. The NGS technique
generates genomic data implicating the complex interconnection of biological informa-
tion. Since machine-learning algorithms are a powerful method when analyzing large and
complex datasets, they may be suitable for utilizing the NGS data [17,18]. Conventional
machine learning technique are also applied to predict protein–ligand binding affinity and
epitope region with the physicochemical properties of peptides data [19,20]. Distinctively,
deep learning enables the extraction of latent feature information from complex data that
contributes to improved accuracy of the model prediction, such as annotating single-cell
RNA-seq data, predicting the phosphorylation site of protein, identifying cancer subtypes,
and functional prediction of peptides [21–23]. For example, research has been conducted
to identify antimicrobial activity from peptide sequence by a convolutional neural network
(CNN)-based model using multiple encoding methods [24]. However, the application of
machine learning to the discovery of neurotoxic peptides is currently problematic because
of insufficient data of neurotoxic peptides that draw unintentionally biased results.

Here, a peptide data augmentation method was developed that enhances the per-
formance of a deep learning model for neurotoxicity prediction. The augmentation was
conducted by generating peptide sequences based on neurotoxic peptides and selecting the
sequences homologous to the known neurotoxic peptides. When the models were trained
with either augmented (AUG) or unaugmented (unAUG) datasets, the model trained with
the AUG data outperformed those trained with the unAUG data, demonstrating that the
augmentation method fully mimicked the features of neurotoxicity. Finally, novel potential
neurotoxic peptides were discovered from the best performed model in the simulation
dataset among the transcriptome of an endemic spider of South Korea, Callobius koreanus
(C. koreanus). Our results suggest that the augmentation strategy improving identifica-
tion of novel neurotoxic peptides can broaden the opportunity to investigate functional
bioactive compounds.

2. Results
2.1. Application of an Augmentation Method to the Preparation of the Dataset for Model Training

For a deep learning model to avoid overfitting and class imbalance problems, a large
amount of data and uniform class distribution is indispensable. Peptide sequences for
training and validation were collected from the UniProt database (Figure S1A), yet the
number of neurotoxic peptides was insufficient compared to the non-neurotoxic peptides.
Accordingly, we augmented the data by randomly substituting or inserting arbitrary
amino acids based on known neurotoxic peptides (Figure 1A). The generated sequences
were selected for augmentation only when the sequence showed homology with known
neurotoxic peptides from the UniProt by Basic Local Alignment Search Tool (BLAST) (E-
value < 1 × 10−5) [25]. The example of the sequence alignment between neurotoxic and
augmented neurotoxic peptides was shown (Figure 1B).

To verify the augmented peptides, we organized four types of datasets (Figure 1C).
The unAUG training and AUG training datasets, individually containing only known or
augmented neurotoxic peptides, were created to confirm whether the augmented data
sufficiently expresses the characteristics of neurotoxic peptides by the differences in data
organization. The test and simulation datasets were organized to assess model prediction
performance. The known peptides were distributed into unAUG training and test datasets
for 5-fold cross-validation to avoid data selection bias when evaluating model performance
(Figure 1D). Considering that the number of neurotoxic peptides in test data was 173,
which was insufficient to measure model performance, the simulation data comprised
adequate AUG data that were not included in AUG training datasets (Figure 1D). Finally,
we prepared two types of the training datasets—unAUG and AUG—to train the model, and
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two types of datasets—test and simulation datasets—to evaluate the model performance
(Table S1).
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Figure 1. Data preparation overview. (A) Neurotoxic peptide data were augmented by using known peptides. The
sequences were generated by random substitution and insertion of amino acids, and peptides under the E-value of 1 × 10−5

were selected by BLAST. (B) An example of a known neurotoxic peptide (P83561) and the derived AUG peptides. (C) Four
types of datasets, two for training, and two for performance testing were prepared to evaluate the validity of the AUG
neurotoxic peptides. (D) unAUG training and test data included neurotoxic and non-neurotoxic peptides from the UniProt.
The data were split into 5-fold, of which one fold was selected for the test, and the others for model training.

2.2. Selection of an Optimized Deep Learning Model for the Identification of Neurotoxic Peptides

To assess whether the AUG dataset is more effective than the unAUG dataset, a
comparative analysis of deep learning models was conducted along with the verification of
the augmentation method. Among the various deep learning architectures, we selected the
convolutional neural network (CNN). For the comparison between the datasets, various
model hyperparameters were applied to each training dataset. A total of 864 CNN models
were obtained by 6 training data types of 5-fold unAUG datasets and an AUG dataset,
together with 2 learning rates, 24 model structures, and 3 iterative learning (Table S2).
Two trained model groups—unAUG and AUG—were generated, where the unAUG CNN
model group was divided into groups 1 to 5 according to dataset folds for 5-fold cross-
validation (Figures 1D and 2A).
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Figure 2. Prediction results of the CNN models using test and simulation datasets. (A) CNN models were trained by AUG
and unAUG training datasets. Trained model performances were evaluated based on 5-fold of test datasets and a simulation
dataset. (B) The performance results of test dataset prediction are represented in boxplots. The prediction performances of
unAUG and AUG CNN models were compared by four performance metrics of accuracy, precision, recall, and F1 scores
(** p < 0.01, *** p < 0.001, **** p ≤ 0.0001). (C) Boxplots showing simulation dataset prediction performance results. The
prediction performance of the models was compared with the above four performance metrics.

To compare the prediction performance by the training dataset, model prediction
performances were measured by four performance metrics—accuracy, precision, recall,
and F1 score—and the statistical analyses between the unAUG and AUG CNN model
groups were performed. In the test dataset, the AUG CNN model group excelled in every
metric, which showed statistical significance with p-value under at least 0.05 except only
precision with the 4-fold test dataset (Figure 2B). The unAUG CNN model group showed
poor performance on recall, misclassifying true neurotoxic peptides as non-neurotoxic
peptides more abundantly. Furthermore, the AUG CNN model group achieved better
performance on neurotoxic peptide classification in the simulation dataset (Figure 2C).

Further analysis was conducted based on the difference in model performance by
hyperparameters. The model architectures in the unAUG CNN model group did not
significantly affect the prediction performance of test and simulation datasets (Figures S2
and S3). In the case of the AUG CNN model group, the precision parameter of simu-
lation prediction was increased with the number of conv-pool layers. The architecture
with four conv-conv-pool layers showed improved performance over the other structures
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(Figure S5A), whereas the other structural differences did not have any significant effect on
the performance (Figures S4 and S5B–D).

Altogether, the CNN models trained by the AUG dataset showed better performance
compared with the other models, strongly suggesting that the AUG dataset sufficiently
represented characteristics of neurotoxic peptides. The optimized models from each model
group were selected based on the F1 score of the simulation dataset. The cases that showed
the best performance were the hyperparameters of no. 16 and no. 2 from the AUG and
unAUG CNN model groups (Table 1), respectively, which were chosen for screening
neurotoxic peptides.

Table 1. The prediction performances of the optimized models on simulation data.

Accuracy Precision Recall F1

unAUG CNN model 0.9410 0.9149 0.9653 0.9395
AUG CNN model 0.9953 0.9922 0.9984 0.9953

2.3. Screening C. koreanus Transcriptome for Neurotoxic Peptides

In order to identify neurotoxic peptides via the two obtained CNN models, C. koreanus,
an endemic spider in South Korea, was selected for the transcriptome data generation and
analysis. The venom gland was separated from the body, and each venom gland and the rest
of the body was subjected to de novo assembly (simply stated as “body” hereupon). A total
of 151,080 transcripts and 21,214 protein-coding genes were identified (Table S3); 15,411
and 10,116 genes were found to be expressed in the body and venom gland, respectively.
The number of differentially expressed genes (DEGs) between C. koreanus body and venom
gland was individually found to be 4962 and 5275 genes (Figure S8). By using the egg-NOG
mapper, the protein-coding genes among C. koreanus transcripts were sought for gene
ontology (GO) and clusters of orthologous groups (COG) analyses. The results showed that
more than half of the genes were not annotated or assigned to unknown function in the
COG (Figures 3A and S9) as well as in the GO terms (Figures S10 and S11). Additionally,
the body showed less annotation, as the overall functionality of the transcript data was
rarely known.

We searched for the putative neurotoxic peptides among the C. koreanus transcripts
via the two selected CNN models and BLAST search after translating the predicted coding
regions. BLAST is a conventional and popular way to predict function based on protein se-
quence, which stems from homology analysis [26]. Thus, the BLAST search was conducted
for comparison with the predicted results of the CNN models to confirm whether the
selected models can discover the novel neurotoxic peptides not identified in a conventional
way. A total of 27 peptides from C. koreanus showed homology with the known spider
neurotoxic peptides by BLAST (Table 2). When we screened C. koreanus transcriptome data
by two CNN models, each AUG and unAUG CNN model estimated 275 and 628 putative
neurotoxic peptides (Figure 3B). The overlapping peptides with the BLAST result were
23 peptides and 16 peptides from the AUG and the unAUG CNN models (Figure 3C and
Table 2). Although the number of estimated peptides was larger in the unAUG model, the
AUG model showed a higher overlapping ratio with the BLAST results. The AUG CNN
model captured every peptide that showed homology with E-value under 1 × 10−8 from
the BLAST result. In conclusion, it was suggested that the AUG CNN model outperformed
the unAUG model in identifying putative neurotoxic peptides. Regarding the results from
the AUG model, a total of 252 sequences lacking homology with the known-neurotoxic
peptides were identified, of which 32 and 46 were significantly differentially expressed in
the body and venom gland, respectively (Figure S12).
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(C) The number of the putative neurotoxic peptides predicted from the BLAST search was larger in the AUG model than in
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Table 2. The list of peptides estimated from CNN models overlapping with the BLAST result.

C. koreanus ID Uniprot
Accession ID E-Value Bitscore

CNN Prediction Results

unAUG CNN Model AUG CNN Model

1 c142900 P15969 3.74 × 10−43 134.42 Neurotoxin Neurotoxin
2 c66652 P15969 1.99 × 10−40 127.487 Neurotoxin Neurotoxin
3 c47691 B3EWT5 7.55 × 10−37 118.242 - Neurotoxin
4 c7268 P15969 1.51 × 10−34 112.079 Neurotoxin Neurotoxin
5 c63588 Q5Y4U3 7.15 × 10−32 105.916 - Neurotoxin
6 c64685 B6DCU0 3.00 × 10−27 93.9745 Neurotoxin Neurotoxin
7 c14525 P15969 5.44 × 10−26 90.1225 Neurotoxin Neurotoxin
8 c103362 B6DD31 5.99 × 10−19 71.633 Neurotoxin Neurotoxin
9 c68025 P15969 1.49 × 10−17 67.3958 Neurotoxin Neurotoxin
10 c70375 Q5Y4U2 4.29 × 10−15 62.003 - Neurotoxin
11 c48731 Q5Y4U3 8.59 × 10−13 54.6842 Neurotoxin Neurotoxin
12 c62771 Q5Y4U4 5.57 × 10−12 51.9878 Neurotoxin Neurotoxin
13 c68135 B3EWT5 4.28 × 10−10 46.595 Neurotoxin Neurotoxin
14 c12324 B3EWT5 7.29 × 10−10 46.595 - Neurotoxin
15 c63710 P83303 1.98 × 10−8 41.5874 Neurotoxin Neurotoxin
16 c68692 B3EWT5 6.73 × 10−8 40.817 - -
17 c31828 B3EWT5 1.94 × 10-7 38.891 Neurotoxin Neurotoxin
18 c67995 P0C2S9 2.07 × 10−7 38.891 Neurotoxin -
19 c61830 B3EWT5 2.46 × 10−7 38.5058 - Neurotoxin
20 c72098 Q8MTX1 2.89 × 10−7 38.891 Neurotoxin Neurotoxin
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Table 2. Cont.

C. koreanus ID Uniprot
Accession ID E-Value Bitscore

CNN Prediction Results

unAUG CNN Model AUG CNN Model

21 c62649 Q8MTX1 5.47 × 10−7 38.5058 - Neurotoxin
22 c50230 Q8MTX1 6.96 × 10−7 38.5058 - -
23 c68303 B3EWT5 1.14 × 10−6 37.7354 - Neurotoxin
24 c65952 P59367 2.25 × 10−6 36.1946 Neurotoxin Neurotoxin
25 c33223 Q5Y4U4 6.97 × 10−6 35.039 Neurotoxin Neurotoxin
26 c31543 B3EWT5 9.04 × 10−6 35.4242 - Neurotoxin
27 c51710 B3EWT5 9.08 × 10−6 34.6538 - -

2.4. Experimental Investigation of Selected Neurotoxic Peptides

To further validate the capability of the AUG CNN model in predicting neurotoxicity,
we selected four putative neurotoxic peptides for further analysis and experimentation
(Table 3). Among the selected peptides, c136163, c43972, and c68875 were novel, and c62771
was the only peptide that showed homology with known neurotoxic peptides. Notably,
c136163 was predicted to be expressed only in the venom gland. Before the experimental
assessment, the functional regions of the peptides were determined and synthesized
because the full sequences were lengthy for synthesis. First, four putative peptides were
first predicted of mature peptide region by SignalP and SpiderP server, without the signal
and propeptide region (Table S4) [27,28]. As the cysteine-rich neurotoxic peptides possess
characteristic structural motifs or features, the secondary structure and disulfide bond
were analyzed by XtalPred Server and Disulfind tool [29,30]. The regions predicted to
have disulfide bonds that match the pattern of the known neurotoxins and/or secondary
structure were selected to be functional from the putative neurotoxic peptides and were
synthesized for the experimental evaluation of neurotoxic potential (Table 4) [31–33].

Table 3. Selected neurotoxic peptides predicted with neuromodulatory effects.

Name
BLAST Search

Body Venom
Gland

DEG Result CNN Prediction Results

UniProt
Accession ID E-Value Fold

Change p-Value unAUG
CNN Model

AUG
CNN Model

c62771 Q5Y4U4 5.57 × 10−12 Expressed Expressed 1.52 4.00 × 10−1 Neurotoxin Neurotoxin
c136163 - - Expressed - - - - Neurotoxin
c43972 - - Expressed Expressed −3.09 3.00 × 10−4 - Neurotoxin
c68875 - - Expressed Expressed −72.3 2.00 × 10−7 Neurotoxin Neurotoxin

Table 4. Target peptide region expected of neuromodulatory function.

Name Secondary
Structure Cysteine Distribution/Disulfide Bond Prediction Length

c62771 β-sheet SCIRRSASCDHRPSDCCFNSSCRCNLWGTNCRCQRAGLFQKWGK
[C1–C5, C2–C6, C3–C7, C4–C8] 44

c136163 β-sheet KCRLEGCKSRTRVCVKCQMYLCIMKNNCF
[C1–C4, C2–C5, C3–C6] 29

c43972 β-sheet WCSCGLSKKQPFCDGSHINHPKKLQPVRFNPPKDGRFLLCRCKQTNNRPYCD
[C1–C4, C2–C5, C3–C6] 52

c68875 α-helix GRRGRRQRCSSLLRNWERCDRRNQCPCGAGL
- 31

Human neuroblastoma cell line SH-SY5Y was used as the cell line maintains various
properties of neurons in culture. As the cell line stably expresses functional L-/N-type Cav
channels, Nav1.7 channels, and nicotinic acetylcholine receptors (nAChRs), we targeted
these channels for investigating the modulatory activity of the peptides [34–37]. Specific
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activators and inhibitors were selected to be used as positive and negative controls for the
comparison. The intracellular calcium ion influx was measured via fluorescent dye fluo-4
that binds with calcium ions in a live cell. The relative fluorescence was compared among
that of the inducer treatment and that of the inhibitor, activator, or 10-µM peptide treatment
(Materials and Methods Section 4.6). The maximum increase in the signal was evaluated as
to whether the peptide significantly modulated the ion channel activity. It was suggested
that all of the four synthesized peptides have neuromodulatory effects on the targeted ion
channel or receptor (Figure 4). c62771 exhibited an inhibitory effect on the Nav1.7 channel,
while c136163 showed a mild increase on the same ion channel. In the case of c43972 and
c68875, the peptides activated the activity of the Nav1.7 channel and nAChR, comparable to
the activators OD1 and GTS-21. The results showed that the putative neurotoxic peptides
predicted by the AUG CNN model are potentially neurotoxic.
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Figure 4. Modulatory effects of predicted peptides on the ion channel activity. Each of the four peptides from the AUG
model prediction showed either activation or inhibition on specific ion channel subtype. Peptides were treated with the final
concentration of 10 µM. (A) Peptide c43972 had an inhibitory effect on Cav when compared with the L-/N-type calcium
channel inhibitor cilnidipine. (B) Peptide c62771 reduced the activity of Nav1.7 channels, whereas c136163, c43972, and
c68875 activated the channel. (C) The nAchR were activated when treated with c43972 and c68875.

3. Discussion

The advancement of deep learning and data production technologies has led to the
grafting of deep learning technologies onto various fields of biology [38]. However, there
are specific fields that face difficulty in data accumulation, which are often confronted
with “the curse of dimensionality” due to small amounts of data [39]. Neurotoxic peptides
from spiders are one such case where the dataset is insufficient, making it unfeasible
to train machine learning algorithms for classifying neurotoxic peptides. In this study,
we developed a new data augmentation method that successfully generates and selects
biologically significant data for neurotoxic peptides.
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Data augmentation is a method that enables the enlargement of data diversity without
collecting new data. Recent studies showed an automated search for best augmentation
policy in image classification models, where it confirmed the model performance increase
in deep learning algorithms [40,41]. These cases show that using the appropriate augmen-
tation methods can bring out significant generalization improvements, leading to a better
application of the trained model onto unseen data drawn from the same distribution. The
application of the general methodology of natural language processing is difficult since
the peptide sequences are string data represented with amino acid residues. Generative
models, including generative adversarial network (GAN) and variational autoencoder
(VAE), are often used for peptide sequence augmentation that lacks data; however, such
technique has a limitation in that the model must be trained for each application [42,43].

To develop a data augmentation technique for general peptides without additional
training steps, a BLAST-based augmentation method was implemented. BLAST is a major
tool that is actively used in biological fields that provides information on similarity and
homology among known sequences. The Generalized functional prediction was possible
since BLAST predicts functionality-based sequence similarity. The augmented sequences
were generated while retaining the distribution of amino acid residues, and then the
generated sequences were screened and selected via BLAST. Thus, we applied this method
to identify neurotoxic peptides derived from spiders.

In order to confirm the validity of the AUG dataset, we trained the CNN models
with each of the AUG and unAUG training datasets and then evaluated the models by
using the test and simulation datasets. We organized a limited environment with a small
amount of data by using spider-specific 865 peptides. To focus on the productivity of
the dataset, model hyperparameters were identically applied to both training datasets.
The prediction results of the test and the simulation dataset indicated the classification
performance of the known peptide dataset and the degree of generalization. In this regard,
the AUG CNN model group outperformed in known and simulation datasets, suggesting
that our augmentation method has extracted biological features from the known neurotoxic
peptides successfully. The optimized model from each model group was selected for
further analysis using the actual example of the spider transcriptome.

The transcriptomic data from C. koreanus were screened for the predicted neurotoxic
peptides by using each optimized model. The BLAST resulted in 27 peptides that showed
significant similarities with spider neurotoxic peptides. The prediction results by the AUG
CNN model contained more overlapping sequences from BLAST results than those of
the unAUG model, and the comparison confirmed the effectiveness of the AUG dataset.
Four peptides were selected to evaluate their neurotoxic potentials. Among these peptides,
1 was predicted via both models, BLAST search and DEG results (c62771); 1 peptide was
predicted only from both models (c68875); and 2 peptides were predicted only via the AUG
model (c136163 and c43972). The experiments were conducted to determine the modulatory
effects of the peptides on ion channels, L- or N-type Cav, Nav 1.7, and nAchR by measuring
the calcium ion influx. Four peptides were shown to possess modulatory activity on specific
subtypes of ion channels, concurring the results of the AUG model prediction. As the AUG
CNN model successfully discovered potential neurotoxic peptides, it is suggested that the
augmented neurotoxic peptide data contributed to finding additional two novel neurotoxic
peptides that were not identified by the unAUG model or BLAST search.

Various research is being conducted to utilize the neurotoxic peptides advantageously,
and spider venom is a major target as it possesses them in abundance. Up to this point, the
number of known neurotoxic peptides in the UniProt database may be insufficient for deep
learning training. Thus, we developed a peptide data augmentation method containing
latent representation of the biological information. We successfully demonstrated that
AUG data mimicked the known neurotoxic peptides, suggested by the actual performance
of the AUG CNN model. It is expected to be more effective for model training when the
known and augmented peptides are simultaneously applied in other types of peptide data.
Further, as the model performance improved using the traditional CNN model; we believe
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that incorporating the peptide data augmentation method into the state-of-the-art models
may even boost the prediction performance. The result may provide a useful method
for peptide data augmentation and alleviate the limitations of data deficiency, aiding the
research on deep learning applications in biology.

4. Materials and Methods
4.1. Data Preparation

The peptide data for the training of CNN models were obtained from the UniProt
database [44] (Figure S1A). The sequences of the neurotoxic and non-neurotoxic peptides
were obtained by using the keywords “spider AND neurotoxin” and “NOT neurotoxin”
from the database, respectively, and the peptides of 50–300 amino acids were selected. The
augmented neurotoxic peptides were generated to increase the size of the model training
dataset (Figure S1B). The sequences were created by random substitution and insertion
of amino acids of the known neurotoxic peptides. For each amino acid in the existing
neurotoxic peptides, random substitution was performed with a 50% chance. When the
random substitution was performed, the amino acid was replaced with an amino acid with
a side chain of similar physiochemical properties by a 60% chance. Random insertion was
performed with a 10% chance by selecting an arbitrary amino acid. These sequences were
selected by BLAST v2.9.0 with a cutoff E-value of 1 × 10−5.

Four types of datasets were prepared (Supplementary Material; Figure S1C); the
known neurotoxic peptides comprised the unAUG training and test datasets, whereas the
generated sequences comprised the AUG training and simulation datasets (Figure 1C). The
known sequences were randomly partitioned into unAUG training and test datasets for 5-
fold cross-validation (Figure 1D). In each dataset, the known non-neurotoxic peptides were
randomly selected and included in equal amounts as neurotoxic sequences. The known
non-neurotoxic peptides were included as the equal amount of each dataset’s neurotoxic
sequences. The data were transformed using a one-hot-encoding method by converting
peptide sequences into a two-dimensional array.

4.2. Selection of the CNN Model

The training data were separated into training and validation data to obtain an opti-
mized CNN model. Hyperparameters of different model architectures, learning rates, and
training data were used to evaluate CNN models. Twenty-three architectures of the CNN
model (Table S1) were trained with two learning rates (0.005 and 0.0001), Adam optimizer
and training data (5-fold training and AUG training datasets), which were repeated three
times each. Softmax function was used at the final node to identify the neurotoxic peptides
as follows:

so f tmax(xi) =
exi

∑2
j=1 exj

for i = 1, 2—where 1 is for non-neurotoxicity class and 2 for neurotoxicity class.
The performances of the trained models were measured by accuracy, precision, recall,

and F1 score as follows:

Accuracy =
TP + FP

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2
Precision × Recall
Precision + Recall
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where TP stands for a true positive number, TN for a true negative number, FP for a false
negative number, and FN for a false positive number. The best-performing models from
each hyperparameter were acquired by the lowest F1 score of the validation dataset.

The models trained with the unAUG training dataset and AUG training dataset were
grouped as the unAUG CNN model group and AUG CNN model group, respectively. The
significance of the difference between the two groups was determined using the paired
t-test. Finally, we selected the best-performing model from each of the unAUG CNN and
AUG CNN models according to the lowest F1 score from the simulation data.

4.3. Preparation of C. koreaus Samples

The spider C. koreanus was collected from Chungbuk, Korea. The venom glands of
the spider were separated from the chelicerae and stored at −80 ◦C after washing with
phosphate-buffered saline. TRIzol Reagent (Life Technologies, Grand Island, NY, USA)
was used for extracting total RNA, which was subsequently used for NGS (Theragen Etex
Bio Institute, Suwon, Korea). The sequencing was performed in triplicate for both venom
gland and body, producing 6 data pools.

4.4. De Novo Assembly and Functional Annotation of the Transcriptome

Paired-end sequencing reads of cDNA libraries (101bp) were generated using a No-
vaSeq6000 instrument (Illumina, San Diego, CA, USA), and then verified for their sequence
quality by using FastQC v 0.10.0. For data preprocessing, the low-quality bases and adapter
sequences among the reads were trimmed using Trimmomatic v0.3225. The trimmed reads
were assembled using Trinity (strand-specific option: –SS_lib_type RF) [45]. The Trinity pro-
gram was utilized for de novo transcriptome assembly to generate unigenes. The unigenes
were further processed for read alignment and abundance estimation by using Bowtie and
RSEM [46,47]. The expression level of each unigene was calculated using the Fragments
Per kilobase of exon per Million mapped fragments (FPKM) method. We filtered contigs
out when at least one sample read count was zero in one group (body or venom gland)
or lowly expressed (average FPKM ≤ 1) in both groups. The transcripts detected in the
body or venom gland were classified into GO and COG by using eggnog-mapper with
the E-value cutoff of 1 × 10−3 [48] (Figure S1F). The read count data of filtered genes
were normalized by Relative Log Expression normalization with DESeq2, which includes
the nbinomTest function tests for differential expression [49]. The output-printed fold
change and p-value, and FDR values were corrected by the Benjamini–Hochberg procedure.
DEGs were determined by |fold change| ≥ 2 and p-value < 0.05. For DEGs, hierarchical
clustering analysis was performed with a complete linkage method and Euclidean distance
as a measure of similarity.

4.5. Identification of the Neurotoxic Peptides in C. koreanus

TransDecoder v5.3.0 was used to extract the peptide-coding regions from the reference
assembly [50]. Putative peptide data were obtained from both groups, body and venom
gland, separately. Neurotoxic peptides from C. koreanus were predicted by the unAUG and
AUG CNN models and BLAST (Figure S1G). The BLAST result was used as a baseline to
compare the performances of the CNN models. We searched the UniProt spider neurotoxic
peptide data for peptides homologous to C. koreanus peptides by using BLAST with a cutoff
E-value of 1 × 10−5. The overlapping sequences between our CNN models and BLAST
results were identified.

4.6. Reagents

Dulbecco’s modified eagle medium fetal bovine serum (FBS), penicillin, and strep-
tomycin (PS) were purchased from Gibco (Grand Island, NE, USA). Quanti-Max WST-8
Cell Viability assay kit (Biomax, Seoul, Korea) and Fluo-4 NW Calcium Assay Kit (In-
vitrogen, Carlsbad, CA, USA) was obtained for in vitro assays. Selective inducers, ag-
onists, and antagonists against Cav, Nav1.7, and nAChR were prepared for the intra-
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cellular calcium ion measurement. Hank’s balanced salt solution (Gibco) with 20 mM
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid was used as an assay buffer and
every reagent was diluted in the buffer according to their final concentration. For inducers,
5-mM calcium chloride (Sigma-Aldrich, St. Louis, MO, USA), 90-mM potassium chloride
(Sigma-Aldrich), 50-µM veratridine (Abcam, Cambridge, MA, USA), and 30-µM nicotine
(Sigma-Aldrich) were prepared for Cav, Nav1.7, and nAChR, individually. L-/N-type Cav
blocker cilnidipine, Nav1.7 channel blocker PF-05089771, and nAChR antagonist hexam-
ethonium bromide were purchased from Sigma-Aldrich, and the final concentration used
for assays were 15 µM, 50 nM, and 100 µM, respectively. Nav1.7 activator OD1 (R&D
Systems, Minneapolis, MN, USA) and α7 nAChR agonist GTS-21 dihydrochloride (Abcam)
were each treated with the final concentration of 20 nM and 10 µM. The peptides used
in assays were synthesized by BioStem (Ansan, Gyeonggi, Korea), with purity >95% and
verified by mass spectroscopy and high-performance liquid chromatography.

4.7. Cell Culture and Cell Viability Assay

Human neuroblastoma SH-SY5Y cells were purchased from the American Type Cul-
ture Collection (Manassas, VA, USA) and maintained in DMEM supplemented with 10%
FBS and 1% PS. The cells were cultured under a humidified atmosphere at 37 ◦C with 5%
CO2. Before further investigation, cell viability assay was conducted to test the cytotoxicity
of the peptides against SH-SY5Y. The cells were seeded on a 96-well plate and cultured
for 24 h. After the cells were treated with the peptides (1, 5, or 10 µM) for 24 h, WST-8
solution was added to each well and then incubated for 1 h. The absorbance was measured
at 450 nm using a microplate reader (Molecular Devices, Sunnyvale, CA, USA). All the
experiments were conducted in triplicate, and the results were expressed as mean ± SEM.
The statistical significance of the data was evaluated by one-way ANOVA followed by
Tukey’s post-test. The results are shown in Figure S13.

4.8. Intracellular Calcium Ion Measurement

Fluo-4 AM is a cell-permeable Ca2+ indicator that its fluorescence enhances upon
intracellular calcium ion binding. To investigate the modulatory effect of the peptides
on ion channels, the Fluo-4 NW kit was used according to the manufacturer’s protocol.
In brief, SH-SY5Y cells were seeded on 96-well black plates and cultured for 48 h. The
background fluorescence was measured after the dye was incubated at 37 ◦C for 30 min
followed by an additional 30 min at room temperature. The cells were then treated with
an inhibitor or activator of each ion channel or 10-µM peptide for 10 min to evaluate ion
channel activity. Fluorescent responses were measured at the excitation and emission
wavelengths of 470–495 nm and 515–575 nm, respectively, by using the Infinite F200 Pro
multimode microplate reader (Tecan, Männedorf, Switzerland). The inducer was injected
after measurement of 10 cycles, and the following 60 cycles were continued. The changes
in fluorescence intensity were normalized to the baseline and plotted for each ion channel
using GraphPad Prism 5.03 (GraphPad Software, La Jolla, CA, USA). All the experiments
were conducted in triplicate, and the results were expressed as mean ± SEM.

5. Conclusions

The augmentation method in this study successfully mimicked the features of neu-
rotoxic peptides. The augmented data improved the prediction performance of the deep
learning model, leading to the discovery of novel peptides. The AUG CNN model pre-
dicted the putative neurotoxic peptides in C. koreanus transcriptome, and four selected
sequences showed neuromodulatory potency. Since the augmentation method was based
only on the peptide sequences, it may be applied to the development of other prediction
models using peptide data without limitations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222212291/s1. Figure S1: Research workflow; Figure S2: Prediction results from the
unAUG CNN model with the test data; Figure S3: Prediction results from the unAUG CNN model
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with the simulation data; Figure S4: Prediction results from the AUG CNN model group with
the test data; Figure S5: Prediction results from the AUG CNN model with the simulation data;
Figure S6: Preprocessing of C. koreanus transcriptomic data; Figure S7: Reproducibility among
C. koreanus samples; Figure S8: DEG analysis of C. koreanus transcriptomic data; Figure S9: Functional
annotation of the clustal of orthologous groups (COGs) from C. koreanus peptide-coding genes;
Figure S10: Functional annotation of gene ontology (GO) from C. koreanus peptide-coding genes;
Figure S11: Distribution of the level-2 GO terms of C. koreanus peptide-coding genes; Figure S12:
Comparison of C. koreanus transcriptome between the DEGs and prediction results from the AUG
CNN model; Figure S13: Evaluation of cytotoxicity of the peptides against human neuroblastoma
cell line; Table S1: Dataset information; Table S2: CNN model hyperparameters; Table S3: Genomic
statistics of C. koreanus; Table S4. The predicted mature peptide region of the selected peptides.
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