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Abstract: Due to the inability to curb the excessive increase in the prevalence of obesity and over-
weight, it is necessary to comprehend in more detail the factors involved in the pathophysiology and
to appreciate more clearly the biochemical and molecular mechanisms of obesity. Thus, understand-
ing the biological regulation of adipose tissue is of fundamental relevance. Connexin, a protein that
forms intercellular membrane channels of gap junctions and unopposed hemichannels, plays a key
role in adipogenesis and in the maintenance of adipose tissue homeostasis. The expression and func-
tion of Connexin 43 (Cx43) during the different stages of the adipogenesis are differentially regulated.
Moreover, it has been shown that cell–cell communication decreases dramatically upon differentia-
tion into adipocytes. Furthermore, inhibition of Cx43 degradation or constitutive overexpression
of Cx43 blocks adipocyte differentiation. In the first events of adipogenesis, the connexin is highly
phosphorylated, which is likely associated with enhanced Gap Junction (GJ) communication. In an
intermediate state of adipocyte differentiation, Cx43 phosphorylation decreases, as it is displaced
from the membrane and degraded through the proteasome; thus, Cx43 total protein is reduced. Cx is
involved in cardiac disease as well as in obesity-related cardiovascular diseases. Different studies
suggest that obesity together with a high-fat diet are related to the production of remodeling factors
associated with expression and distribution of Cx43 in the atrium.

Keywords: connexins; gap junctions channels; adipose tissue; obesity; cardiovascular diseases

1. Introduction

Obesity and overweight are defined as an excessive or abnormal accumulation of
adipose tissue with health-risk consequences. Obesity prevalence has approximately
tripled in the past three decades with a mortality rate of 2.8 million per year associated
with this disease [1–3]. The excessive increase in obesity prevalence has been impossible
to halt; therefore, it is necessary to discern in more detail the factors involved in its
pathophysiology to more clearly understand the biochemical and molecular mechanisms
comprised in adipocyte formation and development, as well as adipose tissue behavior.

Adipose tissue is composed of different cell lineages, consisting mainly of adipocytes,
which are specialized cells that store energy reserves in the form of triglycerides. How-
ever, other cell types make part of this tissue, including fibroblasts, adipocyte precursors,
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endothelial cells, and immune cells such as macrophages, natural killer cells, T helper
lymphocytes, regulatory T lymphocytes, and B lymphocytes [4,5].

Adipose tissue is a metabolically and physiologically complex organ with functions
that are not restricted merely to energy storage. It is an active tissue with hormonal, im-
munological, and energy homeostasis functions, where angiogenic processes also take
place [4]. In the individual, adipose tissue has a high capacity of adaptation to differ-
ent energy conditions, allowing this tissue to undergo continuous remodeling processes,
including new fat-cell generation, known as adipogenesis.

In the process of adipogenic differentiation, after receiving a specific extracellular
signal a mesenchymal cell of mesodermic origin initiates the process of differentiation
into a pre-adipocyte. These signals allow a series of subsequent events to take place that
ultimately result in the formation of a mature adipocyte. Therefore, differentiation includes
morphological changes, cell growth arrest, and expression of specific lipogenesis-related
proteins [6–8].

Adipocyte differentiation occurs throughout the life cycle of an individual, as a
response to store additional energy in the form of fat or to restore cells lost by physiological
aging processes. As in any other cell differentiation process, the molecular and biochemical
mechanisms that regulate adipogenesis are highly orchestrated, where several transcription
factors are involved in adipogenic regulation [9].

Adipogenesis comprises consecutive changes involving gene expression to achieve
a mature adipocyte, including growth arrest, mitotic clonal expansion, and early and
terminal differentiation [10,11].

In an initial stage of differentiation, cellular processes activate proteins belonging to the
Activator protein 1 (AP1) family of transcription factors, which leads to the expression of
the receptor activated by Peroxisome proliferator-activated receptor gamma (PPARγ). This
transcription factor is considered the master regulator of adipogenesis, since it regulates the
expression of a large number of genes related to cell differentiation and the accumulation
of lipids in the cell [12–16].

Other additional factors contributing to mature adipocyte formation are the sig-
nal transducers and activators of transcription (STATs), and member proteins of the
CCAAT/enhancer-binding proteins (C/EBP), which fulfill essential functions during adi-
pogenesis [12,17]. In addition to positive adipogenesis regulators, important and potent
negative regulators have been described, which include proteins from the GATA and WNT
family [18–24].

2. Connexin Forms Gap Junction Channels and Hemichannels

The ability of animals to adapt to variable environmental conditions, adopting and
transitioning between different phenotypes, is mediated by efficient communication and a
synchronized response. In vertebrates, cell communication can be indirect or direct. In the
former, cellular communication comprises neuronal and hormonal signaling mechanisms
between distant cells, as well as local signaling between adjacent cells. Auto- and paracrine
mechanisms allow a coordinated function of tissues and organs. On the other hand, in
direct communication, interaction between cells is mainly carried out by Gap Junctions (GJ).
This type of communication corresponds to a specialized type of connection or channel
between neighboring cells with the ability to open or close, thus providing a direct and
selective conduit between their cytoplasms. The concept of GJ was established in 1967 by
Jean-Paul Revel and Morris Karnovsky [25], who were the first to describe the presence of
these intercellular junctions.

Gap junctions are formed by protein subunits called Connexins (Cxs), where six
Cxs form a hemichannel (HC) (or connexon). Gap Junction Channel (GJC) structure
comprises the serial coupling of two hemichannels, one provided by each cell. Connexins
have cytosolic amino-terminal and carboxy-terminal ends, one cytoplasmic loop (CL),
four transmembrane domains called M1, M2, M3 and M4, and two extracellular loop
domains (EL1 and EL2) [26–29]. The Cx has an average size of 380 amino acids, and the
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most commonly used connexin classification system is based on their molecular weight
(Figure 1) [30,31].
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mine channel conductance and selectivity, allowing the cell to regulate various cellular processes, 
including the transport of molecules between connected cells. The gating of GJC indicated by the 
open-closed transition is modulated by a variety of factors, including voltage, H(+), Ca(2+), and 
phosphorylation. 

Twenty-one different types of Cxs have been described in the human and mouse ge-
nome, in addition to an increasing number of orthologs in other vertebrates [32]. Hence, 
in the literature, they are identified by Cx, the abbreviation of Connexin, followed by a 
number corresponding to the estimated molecular weight, for example, Cx43 is a protein 
of 43 kDa. Of the different identified connexins, Cx43 is essentially expressed in all cell 
types. Consequently, the wide variety of processes and functions in which it is involved 
has been subject of research. 

It has been described that GJs are present in almost all tissues, including nerve and 
muscle tissue, in the liver, and in the retina, where they participate in a wide variety of 
processes, such as embryonic development [33], wound healing and cell differentiation 
[34]. Additionally, GJs are the basis of electrical coupling in excitable cells such as neurons 
and heart cells, mediating action potential propagation [35]. Alterations in the regulation 
of their expression and their cellular distribution are related to different diseases [36], for 
instance tumors [37], epilepsy [38], atherosclerosis [39], and heart diseases [40]. Gap junc-

Figure 1. Connexins (Cxs), and connexin-based channels. (A) The oligomerization of six Cxs creates a
hexamer named connexon or HC. (B) HCs interacting with opposing HCs from neighboring cells can
dock to form different types of GJCs. (C) Cxs have cytosolic amino-terminal and carboxy-terminal
ends, one cytoplasmic loop (CL), four transmembrane domains called M1, M2, M3 and M4, and two
extracellular loop domains. (D) The size and charge of the aqueous pore formed by Cxs determine
channel conductance and selectivity, allowing the cell to regulate various cellular processes, including
the transport of molecules between connected cells. The gating of GJC indicated by the open-closed
transition is modulated by a variety of factors, including voltage, H(+), Ca(2+), and phosphorylation.

Twenty-one different types of Cxs have been described in the human and mouse
genome, in addition to an increasing number of orthologs in other vertebrates [32]. Hence,
in the literature, they are identified by Cx, the abbreviation of Connexin, followed by a
number corresponding to the estimated molecular weight, for example, Cx43 is a protein
of 43 kDa. Of the different identified connexins, Cx43 is essentially expressed in all cell
types. Consequently, the wide variety of processes and functions in which it is involved
has been subject of research.

It has been described that GJs are present in almost all tissues, including nerve and
muscle tissue, in the liver, and in the retina, where they participate in a wide variety of
processes, such as embryonic development [33], wound healing and cell differentiation [34].
Additionally, GJs are the basis of electrical coupling in excitable cells such as neurons
and heart cells, mediating action potential propagation [35]. Alterations in the regulation
of their expression and their cellular distribution are related to different diseases [36],
for instance tumors [37], epilepsy [38], atherosclerosis [39], and heart diseases [40]. Gap
junctions allow the coordinated transport of small molecules, such as ions, amino acids,
nucleotides, second messengers (Ca2+, cAMP, cGMP, IP3), and various metabolites such as
ADP, glucose, lactate, and glutamate [41].
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Post-translational phosphorylation of Cxs plays a key role in HC and GJC function,
altering hydrophobicity and even the structure of the protein that forms the channel. These
modifications can influence channel activity or may change Cx interaction with other
proteins [42–45]. Connexin phosphorylation occurs through serine/threonine kinases or
tyrosine kinases, such as PKC, MAPK, CaMKII, casein kinase or PKA, among others. Phos-
phorylation performed by PKC is related to a decrease in GJC activity [46–48]. In contrast,
in Cx43 AKT-dependent phosphorylation increases the GJ’s size and its activity [49,50].
Consequently, this phosphorylation of Cx43 by AKT promotes transition of Cx43 HC
at the periphery of the GJ plaque in to the plaque by releasing the interaction with ZO-
1 [50,51]. Calmodulin-dependent phosphorylation results in a decreased Gap junction
activity [52–54]. MAPK phosphorylation is related to a rapid internalization and inhibition
of the connexin channel activity [47,55]. Collectively, Cx phosphorylation is associated
with changes in activity, assembly, and stability.

GJCs allow the exchange of cytoplasmic molecules with size up to ~1 kDa between
coupled cells, while HCs constitute a means of paracrine communication and provide
molecule exchange between the extracellular milieu and the cytoplasm [56–59]. Under
physiological conditions, HCs are preferably closed to preserve ion homeostasis [60]. Since
Cx HCs form poorly selective ion channels of high conductance, their opening leads to an
influx of Ca2+, breakdown of the electrochemical gradient across the plasma membrane, and
loss of essential metabolites. HCs are activated under pathological conditions, including
oxidative stress, mechanical stretch, inflammatory processes, and low pH [61–67]. An
exacerbated HC activity during pathological states can increase cell damage. Excessive
release of ATP or glutamate is an indicator of toxicity to neighboring cells and can spread
the damage to distant cells [68–70].

3. Connexins, Gap Junctional Communication, Hemi-Channels
Association with Adipose Tissue

Adipose tissue is of mesodermal mesenchymal origin, consisting mainly of adipocytes [6].
There are two main classes of adipose tissue: white adipose tissue (WAT) and brown adi-
pose tissue (BAT) [71,72]. Both tissues differ in morphology, function, and are molecularly
distinct among others [73]. White adipocytes specialize in storing energy, with a mor-
phological feature of a peripheral nucleus and a single lipid droplet. Contrarily, brown
adipocytes, whose function is to dissipate energy and regulate heat production, have a
central nucleus, and in its cytoplasm small drops of lipids are contained.

During adipogenesis, it is necessary for Cx43 expression and activity to starkly de-
crease. Preliminary studies by the Azarnia group [74] described a progressive loss of GJC
activity during adipogenesis in mouse 3T3-L1 cell line fibroblast cultures.

Umezawa et al. 1992 [75] showed that expression of Cx43 is downregulated at the
transcriptional level during adipocyte differentiation of H-1/A marrow stromal cells. The
role of Cx in the early stages of adipogenesis was analyzed by the Yanagiya group [76].
Their data showed that the characteristic increase in DNA synthesis and the number of
cells, attributed to the initial stage of differentiation, were inhibited by the presence of the
GJ blocker 18-α-glycyrrhetinic acid (AGRA), thus indirectly demonstrating that GJCs are
essential for mitotic clonal expansion during adipogenesis.

In a more detailed study of Cx43 during the different stages of adipogenesis conducted
by Yeganeh et al. [77], it was demonstrated that during the early stages of differentiation,
Cx43 was strongly phosphorylated; additionally, it was translocated from the endoplasmic
reticulum to the plasma membrane. In the intermediate and late stages of differentiation,
Cx43 phosphorylation levels decreased and Cx43 was removed from the cell membrane to
be degraded in the proteasome. Additional experiments also established that inhibition
of Cx degradation by the proteasome resulted in the arrest of adipogenic differentiation
(Figure 2).



Int. J. Mol. Sci. 2021, 22, 12145 5 of 15
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. Cx43 expression during adipogenesis. During the process of differentiation from pre-adi-
pocytes to mature adipocytes, the connexins undergo changes in their expression. Initially in a mes-
enchymal cell, the expression of Cx43 is high, but as differentiation occurs the expression levels of 
Cx43 decrease dramatically. 

Brown adipose tissue (BAT) is an organ specialized in regulating body temperature, 
particularly in humans in the neonatal period. Only mammals possess this tissue, and it 
is responsible for producing heat when the body temperature is below normal physiolog-
ical levels. Brown adipose tissue thermogenic activity is directed by the sympathetic nerv-
ous system and by the mitochondrial uncoupling protein 1 (UCP1), which decouples the 
ATP production to produce heat [6,71]. 

Brown and white adipose tissue have a common stem-cell mesodermal precursor. 
However, during embryonic development, instructive signals establish their different 
phenotypes [6]. Such is the case for Cx43, which is higher in BAT than in WAT. In an effort 
to understand the role of Cx in BAT, studies by Zhu et al. demonstrated that Cx43 plays a 
role during the “beiging” process of white fat in adipose tissue. “Beige” adipocytes are 
present in white adipose tissue and dissipate energy as heat as described in Zhu et al. [85]. 
Beiging of white adipose tissue was suggested as a therapeutic strategy for weight loss in 
humans [86]. Beige adipocytes residing in mice WAT have greater cell–cell communica-
tion via GJC when compared with the intercellular communication established by GJC in 
“white” adipocytes [85]. 

Under cold induction when a white adipocyte has the potential to become beige, it 
requires Cx43 expression and activity in a cAMP coupling dependent manner, via activa-
tion of β3-adrenoceptor [85]. This was verified by experiments involving Cx43 gene down-
regulation or by AGRA pharmacological inhibition of this protein, which ultimately re-
sulted in reduction of neuronal activation-induced beiging. Moreover, overexpression of 
Cx43 in mice exposed to mild cold stress was sufficient to induce WAT beiging [85]. 

On the other hand, in Chagas disease, adipose tissue is a relevant cell target for Tryp-
anosoma cruzi parasite infection. A characteristic of this disease is GJC expression and ac-
tivity alteration. Results of experiments with mice infected with T. cruzi demonstrated an 
alteration in the expression and protein activity of GJC in BAT adipocytes, establishing a 
decrease in BAT Cx43 expression and protein activity. However, in WAT an opposite ef-
fect was observed, increasing the levels of Cx43 and GJC activity [87]. 

The brown color of BAT tissue is due to the high content of highly branched vascu-
larization and numerous mitochondria [88]. The presence of Cx in the mitochondrial 
membrane (mtCx) has been described in diverse cell types, including BAT [89,90]. 

Kim et at. [89] studied the role of Cx43 in the functioning of mitochondria in BAT fat 
cells, beyond the classical role of Cx43 as GJC. They used an animal model of adipocyte-

Figure 2. Cx43 expression during adipogenesis. During the process of differentiation from pre-
adipocytes to mature adipocytes, the connexins undergo changes in their expression. Initially in a
mesenchymal cell, the expression of Cx43 is high, but as differentiation occurs the expression levels
of Cx43 decrease dramatically.

On the other hand, Cx43 plays a role in mesenchymal cell fate. Yamanouchi et al. [78]
demonstrated that Cx43 inhibition in skeletal muscle cell culture favored changes in
phenotype, promoting triglyceride accumulation and C/EBPα expression. In their study,
in muscle cells exposed to differentiation medium AGRA treatment did not have an effect
on adipogenesis, giving rise to mature adipocytes.

Additionally, Schiller and collaborators demonstrated that, in cultures of murine os-
teogenic cell line MC3T3-E1, inhibition of Cx43 by AGRA or oleamide halted the maturation
of pre-osteoblastic cells and favored trans-differentiation of osteoblasts into adipocytes [79].
These events were concomitant with an increase in lipoprotein lipase and PPARγ expres-
sion [79].

More recently Chen et al. [80] related Cx43 activity and capsaicin-mediated lipolysis.
This group demonstrated that activation of the transient receptor potential V1 (TRPV1) by
capsaicin increased the influence of calcium in 3T3-L1, augmenting lipolysis. This effect
was counteracted by the use of AGRA, concluding that Cx43 activity plays an intermediary
role in lipolysis. Experiments in mice fed high-fat diets and exposed to dietary capsaicin
had less accumulation of perirenal, mesenteric, and testicular adipose tissue and an increase
in Cx43 expression in this tissue [80]. A recent study by Turovsky et al. [81] demonstrated
a role of Cx43 HC in the stimulation of lipolysis in white adipocytes.

Most studies exploring the role of Cx43 in adipogenesis have been carried out on
mesenchymal cells with differentiation capacity towards osteogenic, chondrogenic, and
adipogenic lineage. However, the group of Shao et al. studied Cx43′s role in adipogenesis
differentiation in human-induced pluripotent stem cells (iPSCs). They employed wild-
type iPSCs cell culture and iPSCs carrying a GJA1 (Cx43) gene mutation from patients
suffering from oculodentodigital dysplasia, which were able to differentiate into adipocytes.
Interestingly, in their study, Cx43 expression was increased during differentiation. To clarify
the role of Cx43 during differentiation, the researchers used iPSC cell cultures carrying
complete GJA1 (Cx43) genetic ablation and observed that this cell type maintained the
ability to differentiate towards the adipocyte phenotype. However, Cx43-ablated cells
showed a higher propensity to suffer premature senescence when compared to control
cells. Their data demonstrated that GJ proteins can play a role in multipotent stem cells’
self-renewal [82].
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In addition, Mannino et al. [83] reported a decrease of Cx expression (Cx43, Cx32 and
Cx31.9) during adipogenic differentiation of adipose-derived stem cells. These authors
suggest that the presence of multiple Cx isoforms is in line with a high initial differenti-
ation ability of adipose-derived stem cells that is markedly restricted during adipogenic
differentiation.

The role of Cx43 is currently under study in pathologies related to adipogenesis. It
has been reported that transgenic mice carrying a Cx43 mutation -G60S- presented an early
osteopenia phenotype with a significant increase in bone marrow adiposity, which was
in parallel accompanied by a reduction in GJC formation and function. This increase in
adipogenic differentiation was accompanied by PPARγ activation [84].

Brown adipose tissue (BAT) is an organ specialized in regulating body temperature,
particularly in humans in the neonatal period. Only mammals possess this tissue, and it is
responsible for producing heat when the body temperature is below normal physiological
levels. Brown adipose tissue thermogenic activity is directed by the sympathetic nervous
system and by the mitochondrial uncoupling protein 1 (UCP1), which decouples the ATP
production to produce heat [6,71].

Brown and white adipose tissue have a common stem-cell mesodermal precursor.
However, during embryonic development, instructive signals establish their different
phenotypes [6]. Such is the case for Cx43, which is higher in BAT than in WAT. In an effort
to understand the role of Cx in BAT, studies by Zhu et al. demonstrated that Cx43 plays
a role during the “beiging” process of white fat in adipose tissue. “Beige” adipocytes are
present in white adipose tissue and dissipate energy as heat as described in Zhu et al. [85].
Beiging of white adipose tissue was suggested as a therapeutic strategy for weight loss in
humans [86]. Beige adipocytes residing in mice WAT have greater cell–cell communication
via GJC when compared with the intercellular communication established by GJC in
“white” adipocytes [85].

Under cold induction when a white adipocyte has the potential to become beige,
it requires Cx43 expression and activity in a cAMP coupling dependent manner, via
activation of β3-adrenoceptor [85]. This was verified by experiments involving Cx43 gene
downregulation or by AGRA pharmacological inhibition of this protein, which ultimately
resulted in reduction of neuronal activation-induced beiging. Moreover, overexpression of
Cx43 in mice exposed to mild cold stress was sufficient to induce WAT beiging [85].

On the other hand, in Chagas disease, adipose tissue is a relevant cell target for
Trypanosoma cruzi parasite infection. A characteristic of this disease is GJC expression and
activity alteration. Results of experiments with mice infected with T. cruzi demonstrated an
alteration in the expression and protein activity of GJC in BAT adipocytes, establishing a
decrease in BAT Cx43 expression and protein activity. However, in WAT an opposite effect
was observed, increasing the levels of Cx43 and GJC activity [87].

The brown color of BAT tissue is due to the high content of highly branched vas-
cularization and numerous mitochondria [88]. The presence of Cx in the mitochondrial
membrane (mtCx) has been described in diverse cell types, including BAT [89,90].

Kim et at. [89] studied the role of Cx43 in the functioning of mitochondria in BAT fat
cells, beyond the classical role of Cx43 as GJC. They used an animal model of adipocyte-
specific Cx43 knockout (Gja1 adipoqKO) subjected to cold stress and a high-fat diet. The BAT
of these mice showed a lower presence of mitochondria, along with increased mitochondrial
damage. The Gja1 adipoqKO mice exposed to β3-adrenoceptor activation by the CL316,243
agonist exhibited reduced mitochondrial integrity [89] (Figure 3).
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Figure 3. Cx43 during adipocyte tissue browning. During the browning process of WAT, the cell
undergoes changes, including an increase in the number and size of mitochondria. In this process,
the function of mtCx43 implies a protective role for mitochondrial integrity.

4. Obesity, Atrial Fibrillation and Cx

Different studies have shown the intimate relationship between obesity and atrial
fibrillation (AF) [91,92]. Atrial fibrillation is the most common type of heart arrhythmia,
where the central feature is very rapid and uncoordinated atrial activity [39]. A key feature
of AF is atrial enlargement and remodeling in the expression, function, and location of
cardiac Cxs [93–95]. Under normal conditions, GJCs are located at the intercalated disc
of the cardiomyocyte and play a role in action potential propagation [96]. Hence, any
alteration in the expression, function or location of GJC contributes to the formation of an
arrhythmogenic substrate [97–99]. Collectively, the arrhythmia caused by Cx remodeling is
considered the fundamental cause of AF.

In the heart, adipose tissue located in the epicardial and pericardial areas makes part
of its anatomy [100–102]. In individuals affected by obesity, fatty tissue can represent up
to 20% of the cardiac mass, where cardiac steatosis may develop. It has been observed
that adipose tissue participates in the pathophysiology of AF, as it can contribute to tissue
remodeling, including increases in fibrosis and fatty infiltration [103–105]. Furthermore,
pericardial and epicardial fat deposition results in altered conduction, where atria are
structurally and electrically remodeled, inducing AF [106–108].

Cardiometabolic changes produced by fatty tissue reduce metabolic flexibility, result-
ing in oxidative stress, inflammation, and fibrosis [108–111]. In patients with AF, high
levels of pro-inflammatory molecules in adipose tissue of the pericardium have been ob-
served [112,113]. Cytokines produced in adipose tissue or paracrine factors secreted during
the inflammation process might reach the atrium, and prompt further structural and elec-
trical remodeling. Various cytokines have been linked to arrhythmia, including TNF-alpha,
Interleukin-6, Interleukin-8 and Interleukin-10 (IL10). Kondo et al. [114] demonstrated
that IL10 treatment ameliorates high-fat diet-induced inflammatory atrial remodeling and
fibrillation [114]. Systemic inflammation has been hypothesized to promote atrial electric
remodeling as a result of cytokine-mediated changes in connexin expression [115].

On the other hand, in addition to cardiac fat, visceral fat depot is a source of free fatty
acids and bioactive molecules such as adiponectin, resistin, and inflammatory cytokines,
factors that may participate in AF pathogenesis [116,117]. Free fatty acid overload in
patients with obesity induces lipid accumulation within cardiomyocytes and apoptosis,
which might also trigger inflammation [118].
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Based on the relationship between adipose tissue components and the presence of AF,
various groups have investigated specific factors that regulate atrial electrical remodeling,
and the associations between adipose tissue and regulation of Cx43 expression and/or
activity during AF [119,120].

The state of obesity can affect cardiac Cxs expression and protein phosphorylation,
and in addition, alter Cx degradation, location, and activity [105,117]. Moreover, in the
physiological environment surrounding an organism with obesity, the oxidative and pro-
inflammatory stress processes characteristic of adipose tissue can influence cardiac GJ
protein abnormalities [117].

More recently, Sato et al. [120] studied the relationship between cardiac steatosis and
AF in mice overexpressing Perilipin 2 (PLIN2). In their study, transgenic mice showed
increased atrial fat accumulation and electrocardiographic abnormalities, with a higher
prevalence of persistent AF. In these mice, cellular Cx43 distribution was altered. Contrary
to the location at the intercalated disc in cardiomyocyte of wild-type mice, Cx43 was hetero-
geneously and laterally distributed in atrial cardiomyocytes of mice overexpressing PLIN2.

Concerning human studies, immunohistochemical analysis of the right atrial tissue
from patients with sinus rhythm or AF showed a correlation between BMI and Cx43
remodeling in atrial tissues. Patients affected by obesity had an increased presence of Cx43
in the lateral position of the atrial cell compared to lean patients [121].

5. Atrial Fibrillation, Cx and High-Fat Diets

Different studies suggest that obesity and high-fat diets (HFD) are related to the
production of remodeling factors associated with expression and distribution of Cx43 in
the atrium [119,122–124].

Experiments by Meng et al. [124] with HFD-fed rats observed obesity in one-third of
the animals along with an alteration in lipid homeostasis. The weight of the atrium was
higher in HFD and non-obese HFD rats in comparison with rats fed with a normal diet.
Additionally, the remodeling of the GJC was evidenced by changes in the expression as in
the cellular location of Cx43 and Cx40. Moreover, Takahashi et al. demonstrated that HFD
mice have reduced expression of Cx40 (mRNA and protein) and lateralization of Cx40 in
the atria [125].

Zhong et al. [126] conducted experiments with APOE−/− mice fed with HFD and
demonstrated a greater susceptibility to cardiac arrhythmias and electrical remodeling,
with an increase in cardiac expression of Cx43. The presence of obesity/hyperlipidemia
was associated with an increase in CaMKII expression. Treatment with CaMKII inhibitor,
KN93, reduced the slow cardiac conduction, and Cx43 expression levels were nominalized.

The influence of high-fat consumption independent of body weight on cardiac Cx
expression and activity was evidenced in experiments using a murine model with HFD
that did not develop obesity, hyperlipidemia or hyperglycemia [123]. The results of this
work demonstrated the presence of an arrhythmic phenotype, with a greater suscepti-
bility to ventricular tachyarrhythmias, which was accompanied by a decrease in Cx43
phosphorylation and an increase in Cx43 lateralization in the cardiomyocyte [123].

Similar studies by Jin et al. [127] in mice fed with HFD showed increased blood
glucose, body weight, total cholesterol, triglycerides, hemoglobin A1c, insulin, and brain
natriuretic peptide. In addition, HFD significantly down-regulated Cx43 and upregulated
β-catenin, N-cadherin, and plakoglobin in the hearts of HFD-fed mice compared with mice
fed with a normal diet. Long-term HFD in mice resulted in left ventricular hypertrophy,
interstitial fibrosis, and dysregulation of renin-angiotensin-system (RAS). It was shown that
HFD produced cardiac remodeling and change in interstitial collagen expression through
RAS activation.

In another study, obesity and metabolic syndrome were induced in rats with high
sucrose diets (HSD). In these experiments, the animals showed an increase in serum
cholesterol and TG levels, in body weight, heart weight and in amount of retroperitoneal
and epicardial fat. In addition, Cx43 and PKC signaling cascades were altered in the
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myocardium. Downregulation of cardiac Cx43 and a decrease in phosphorylated Cx43
were related to increased predisposition to ventricular arrhythmias [48].

Concerning therapies that seek to mitigate the deleterious effects of HFD or High
Fat Fructose (HFF) deleterious effects on action potential propagation in the heart, it
has been shown that different supplements or compounds can counteract arrhythmias.
Perdicaro et al. [128] demonstrated in Wistar rats fed with HFF that grape pomace extract
prevented diet-induced heart alterations. Moreover, this effect was accompanied by a
decrease in the non-phosphorylated form of Cx43.

On the other hand, the deleterious effects of HFD, such as decreased Cx43 expression
and lateralization, were partially reversed using melatonin and omega-3 polyunsaturated
fatty acids (PUFA). Intake of these compounds increased Cx43 expression and its protein
phosphorylation in atrial tissue [48]. Baum et al. showed omega-3 fatty acid inhibition of
inflammatory cytokine-mediated Cx43 regulation in the heart [129].

In another study, liraglutide effects, an analog of glucagon-like peptide-1, on heart
pathophysiology were evaluated in HFD-fed mice. Mice developed obesity, dyslipidemia
and insulin resistance. Liraglutide treatment significantly decreased HFD-induced al-
terations related to glucose metabolism. The results also revealed that liraglutide re-
stored Cx43 obesity-associated altered levels, without significant changes in animal body
weight [130].

Another interesting aspect that has been recently studied is the role of Cx43 in the
development of endoplasmic reticulum (ER) stress [131]. The ER is involved in protein
synthesis and intracellular calcium storage. However, under excess body weight conditions
and in comorbidities associated with this pathology, such as heart disease, hepatosteatosis,
or obesity-associated insulin resistance, an increase in misfolded proteins or Ca2+ dys-
regulation results in an increase in ER stress in the different tissues [132]. In this context,
recent works by Tirosh et al. [133] established that Cx43 intervenes in the propagation of
the signals produced during ER stress in a mouse model exposed to HFD. The results of
these experiments demonstrated an increase in the expression of Cx43 and GJ activity in
the liver of obese animals, which was related to the transmission of ER stress. Likewise,
the deletion of Cx43 in liver tissue decreased the ER stress caused by HFD.

Lastly, drug development targeting GJC is another aspect that has been studied in
regard to Cx and obesity. Sasaki et al. [134] analyzed the behavior towards food intake
in mice fed with HFD with and without high content of saturated fatty acids (SFA) and
very high content of SFAs. The authors demonstrated that the application of INI-0602,
an HC inhibitor, before HFD with very high SFA, prevented the intrinsic feeding rhythm
alteration caused by high-fat diets. These findings indicate that Cx HCs might be involved
in the molecular mechanisms underlying feeding pattern disturbance with HFD.

6. Conclusions

While the classic role of Cxs has been electrical coordination between excitable cells of
the nervous or cardiovascular system, the function in other tissues remains to be elucidated
in more detail.

In adipose tissue, Cx43 is involved in adipogenesis regulation and homeostasis main-
tenance. Increased Cx43 expression at early stages and its subsequent degradation during
intermediate and late stages are essential to ensure pre-adipocyte differentiation into a
mature adipocyte phenotype. In brown adipose tissue development and regulation, Cx43 is
essential in neuronal signaling for mitochondrial integrity preservation in BAT generation.

Due to the wide Cx distribution in different tissues, further studies are required to
elucidate the mechanisms governing pathophysiology of obesity and the role of Cx proteins
therein. For example, the understanding of Cx-mediated transmission of endoplasmic
reticulum stress and its relationship with obesity, or the interplay between insulin signaling,
insulin resistance, and gap junction function, are topics of scientific interest that need to
be investigated in greater depth. Hence, drugs targeting Cx can be developed aiming at
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fighting obesity and related pathologies, thereby allowing reduction of the growing burden
on health systems worldwide.
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