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Abstract: The optical control and investigation of neuronal activity can be achieved and carried
out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining
a known ligand of the target protein and a photochromic group, as well as an additional electrophilic
group for tethered ligands. Such a design strategy can be optimized by including structural data.
In addition to experimental structures, computational methods (such as homology modeling, molecu-
lar docking, molecular dynamics and enhanced sampling techniques) can provide structural insights
to guide photoswitch design and to understand the observed light-regulated effects. This review
discusses the application of such structure-based computational methods to photoswitchable ligands
targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near
the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target
protein in a complex with the photoswitchable ligand can shed light on the different activities of
the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as
well as ion channel subtype selectivity. The examples presented here show how the integration of
computational modeling with experimental data can greatly facilitate photoswitchable ligand design
and optimization. Recent advances in structural biology, both experimental and computational,
are expected to further strengthen this rational photopharmacology approach.

Keywords: photopharmacology; photoswitchable ligands; ion channels; voltage-gated ion chan-
nels; ligand-gated ion channels; homology modeling; molecular docking; molecular dynamics;
enhanced sampling

1. Introduction

Photopharmacology (also known as optopharmacology) is a discipline that aims at
regulating the activities of biological systems with light. Light-controlled modulation
can be accomplished with photoswitchable compounds [1–4]. Such molecules contain
a bioactive ligand coupled to a photochromic group that, upon irradiation, causes bond
isomerization or formation. For instance, the most commonly used photochromic group,
azobenzene [5], isomerizes between trans and cis configurations (Figure 1a). This results
in changes in both length and dipole moment that can affect the shape and chemical
complementarity of the photoswitchable ligand with the protein binding pocket. When
the two forms of the photoswitchable ligand have different binding preferences and/or
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differentially regulate protein function, optical control is achieved. Thereby, irradiation
with light of the appropriate wavelength can turn protein activity on or off with high
temporal and spatial resolutions.

Figure 1. Chemical toolbox for the design of photoswitchable ligands. (a) Chemical structure of
azobenzene, the most commonly used photochromic group, showing its trans-cis photoisomerization.
(b) Modular design of photoswitchable ligands, either soluble photochromic ligands (PCLs) or
photochromic tethered ligands (PTLs). (c) Covalent bond formation between the typical tethering
protein residue, cysteine (shown here by its sidechain thiol group) and a common electrophile group
included in PTLs, maleimide (colored in green); the rest of the PTLs are represented as a substituent R.

Photoswitchable ligands have been widely applied to the field of ion channels, be-
cause the picosecond timescale of the photochromic group transition upon irradiation is
faster than the timescale of ion flow across the neuronal membrane. Among other applica-
tions, photopharmacology has been used to study ion channel properties and kinetics, the
regulation of neuronal circuits and the control of animal responses, such as heartbeat, pain,
vision and behavior [4]. Two main types of photoswitches have been used: freely diffusible
photochromic ligands (PCLs) and photoswitchable tethered ligands (PTLs). Their design
is modular (Figure 1b), containing a ligand known to regulate protein function (bioactive
group) connected to a photochromic group (e.g., azobenzene). In the case of PTLs, they
additionally contain an electrophilic group that binds covalently to an amino acid with nu-
cleophilic properties near the binding site (typically cysteine; see Figure 1c). Although this
nucleophilic residue can be naturally present in the target protein, in most cases the reac-
tive cysteine is introduced by site-directed mutagenesis (i.e., optochemical genetics [6]).
In addition to PCLs and PTLs, photopharmacological applications to ion channels can also
employ photocaged ligands, which contain a protecting group (i.e., the cage) that is cleaved
upon light irradiation, resulting in a rapid release of the bioactive molecule (e.g., the neuro-
transmitter). However, their design has been extensively reviewed in references [4,7–10]
and thus will not be considered here.

The first ion channel to be photomodulated was the nicotinic acetylcholine receptor
(nAchR). Both PCLs and PTLs were developed [11,12], consisting of a known nAchR ligand
linked to a photoswitchable azobenzene group and, for PTLs, also coupled to a benzylic
bromide (i.e., the electrophile for Cys tethering). In the trans form, the photoswitchable
ligand was able to modify the receptor activity, whereas isomerization to cis upon UV light
irradiation turned off the modulatory effect of the photoswitch. Although at the time molec-
ular biology techniques were still in their infancy, two fortunate coincidences contributed
to this first success story. On the one hand, nAChR is highly expressed in the electroplaques
of electric eels. On the other, even without sequence knowledge, it was known that treat-
ment with a disulfide reducing agent generated a free cysteine residue that allowed the
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covalent conjugation of tethered ligands [13]. Despite this remarkable achievement, it was
still unexplained why some of the PTLs, designed based on nAChR agonists, acted instead
as light-modulated antagonists [11], i.e., why the addition of the azobenzene group was
changing the ligand pharmacological properties. More than thirty years later, experimen-
tal determination of the first crystal structures of the snail acetylcholine binding protein
(AchBP, the soluble counterpart of the ligand binding extracellular domain of nAChR) gave
a hint of the molecular basis of this change in activity (Figure 2a). The degree of closure
of the so-called loop C over the binding site is correlated with the agonist (closed loop)
or antagonist (open loop) activity of the cholinergic ligands [14–17]. This demonstrates
that, although a photoswitchable ligand design can be successfully achieved with only
ligand structure–activity relationship data, structural knowledge of the target receptor or
ion channel can greatly facilitate such a task [2].

Figure 2. Crystallographic structures used for rational structure-based design of photoswitchable
ligands (a,b) or its validation (c). (a) Structure of the acetylcholine binding protein (AchBP) bound to
carbamylcholine (CarCh), PDB code 1UV6 [15]. (b) Structure of the KcsA potassium channel with
the pore blocker tetrabutylammonium (TBA) bound in the intracellular site below the selectivity
filter, PDB code 2BOB [18]. (c) Structure of the ligand binding domain (LBD) of the kainate receptor
GluK2 in complex with 4-glutamyl-azobenzene (4-GluAzo), PDB code 4H8I [19]. For the sake of
clarity, only one or two subunits of the oligomeric proteins are shown in cartoon representation and
colored either in gray or apricot. Ligands are displayed in space-filling representation, with C, O and
N atoms colored in green, red and blue, respectively. The position of the cysteine residue serving as
covalent attachment point for the PTL is highlighted with a yellow circle.

The next generation of photoswitchable ligands was developed in the early 2000s
thanks to the resolution of the crystal structures of a voltage-gated potassium channel and
an ionotropic glutamate receptor. Based on the KcsA crystal structure solved in the pres-
ence of tetraethylammonium (TEA)-like pore blockers (Figure 2b) [18,20], light-control
blockage of the homologous Shaker potassium channel [21,22] was achieved. A Cys mu-
tation was introduced near the extracellular TEA binding site (E422C mutant) and a PTL
was synthetized consisting of a Cys-reactive maleimide group, an azobenzene photoswitch
and quaternary ammonium (MAQ). Trans-MAQ extends from the tethering site to reach
the ammonium binding site in the pore, whereas cis-MAQ is too short to do so. Similarly,
the X-ray structure of the soluble ligand binding domain (LBD) of the kainate receptor [23]
was used to design photoswitchable ligands targeting this receptor. Namely, a PCL (con-
sisting of the glutamate agonist and an azobenzene photoswitch, 4-GluAzo) [24] and a PTL
(composed of a Cys-reactive maleimide, an azobenzene photoswitch and the glutamate
ligand, MAG) [25] were developed. The latter covalently attaches to a light-modulated
glutamate receptor (LiGluR) containing an L439C mutation. Moreover, the structure-based
PCL design was later validated by solving the crystal structure of 4-GluAzo bound to
the GluK2 LBD [19] (Figure 2c). The clamshell-like structure of the LBD showed a closed
state, similar to other agonist-bound LBD structures and in contrast with the open state
observed in the antagonist-bound structures [23]. Therefore, the design of photoswitchable
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ligands with the desired activity requires not only information about the protein structure,
but also about the dynamical rearrangements occurring after ligand binding [2].

Unfortunately, experimental structures for the (voltage-gated and ligand-gated) ion
channels involved in neurotransmission are still scarce, despite recent advances in struc-
tural biology tools, in particular cryo-electron microscopy (cryo-EM). To fill this gap,
computational modeling can be used to generate structural models for these channels.
Moreover, computer-aided drug design techniques (either ligand- or structure-based) can
be applied to the design of photoswitchable ligands. Indeed, a recent computational study
showed that a large number of bioactive molecules can be susceptible of azologization
(i.e., fragment replacement by an isosteric azobenzene group to make the drug photoswitch-
able) [26]. In other words, a computational microscope, a term coined by the late Klaus
Schulten to describe the use of modeling and simulations to study protein function and
dynamics [27], can also shed light on the photopharmacology field.

For a systematic review of all the PCLs and PTLs available to date, we refer
the reader to several excellent published reviews on photopharmacology or optochemical
genetics [1–4,6,10,28–34]. Here we focus on photopharmacological applications targeting
ion channels in which structure-based computational methods were applied, in combi-
nation with experimental approaches. We start with a short theoretical description of
the computational methods used for photopharmacology so far. Then, we present some of
the applications published in the literature (Tables S1–S4), where computational methods
have been used to rationally design and optimize photoswitchable ligands, explain their
observed effect on ion channel activity and/or identify possible tethering positions for
Cys mutation. We have classified such studies depending on whether the photoswitchable
ligand targets voltage- or ligand-gated ion channels (VGICs and LGICs, respectively).
The chemical structures of all the PCLs and PTLs discussed in the text are shown in
Figures S1–S4. To the best of our knowledge, most ion channel photopharmacology studies
integrating computational methods have been carried out on azobenzene-based photo-
switchable ligands.

2. Computational Modeling

Ion channels are oligomeric proteins, in which several subunits assemble to form
the functional channel (see Sections 3 and 4 below). The large number of VGIC families,
as well as receptor (sub)types for LGICs, gives rise to a large number of possible combi-
nations. Moreover, each of these ion channels can adopt different functional states (open,
closed, desensitized or inactivated) and their activities can be regulated by a myriad of
ligands (agonists and antagonists, as well as pore blockers and allosteric modulators).
Unlike the examples mentioned in the Introduction [21,22,25], an experimental structure of
the ion channel of interest (in the relevant functional state and in complex with the ligand
used as a bioactive group of the PCL or PTL) may not be available. This structural gap can
be filled by structure-based computational approaches, such as those included in Figure 3.
In the following, we mention some basic ideas underlying these methodologies; a full
description of these computational methods is beyond the scope of this review, and thus
we refer the reader to the excellent advanced reviews cited below.

Homology modeling generates structural models of the target protein based on its
sequence and the experimental structure of a homologous protein (the so-called template).
The quality of the homology model depends on the sequence identity between the target
and template proteins, with 35% sequence identity being considered the minimum thresh-
old for homologous membrane proteins to have similar 3D structures [35,36]. Moreover,
structural rearrangements occur upon ligand binding and opening/closing of the ion chan-
nel pore; thus, it is recommended to choose a template structure not only with the highest
sequence identity, but also captured in the appropriate functional state.

Molecular docking aims at predicting protein–ligand interactions (in the case at hand,
between the ion channel of interest and the photoswitchable ligand) [37]. Docking can be
performed using either an experimental structure or a homology model of the ion channel of
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interest. If information about the putative ligand binding site is already available, it can be
incorporated into the computation protocol to guide the docking (i.e., information-driven
docking). This includes the structural information of the bioactive part of the photoswitch
bound to the ion channel, as well as mutagenesis data, indicating which residues are likely
to be interacting with the bioactive molecule and/or the photoswitch. Otherwise, a blind
docking approach, in which all possible binding pockets on the protein surface are explored,
can be the method of choice. In most docking protocols, the ligand is considered flexible,
whereas the receptor structure can be treated as rigid or flexible. In the latter case, only
amino acids surrounding the binding site are usually allowed to move in order to model the
induced fit effects. In the case of PTLs, the covalent bond between the tether and the reactive
Cys can be modeled by using either a positional constraint (limiting the movement of
the electrophile group within a certain sphere from the reactive Cys) or a distance restraint
between the two groups. Interestingly, molecular docking (and in general computational
modeling) allows one not only to model the photoswitch isomer that preferentially binds
to the target protein, but also the other isomer, providing molecular insights into the light-
modulated changes in ion channel activity. Moreover, virtual mutations can be introduced
in the target protein structure to model the changes in photoswitch binding upon site-
directed mutagenesis or when using different ion channel subtypes.

Homology modeling and molecular docking can provide static structures of the target
protein in complex with the photoswitch. Additionally, Monte Carlo (MC) or molecular dy-
namics (MD) simulations can be performed. Therewith, the target protein–photoswitchable
ligand complex is embedded in a lipid bilayer mimicking the physiological membrane
environment and, upon equilibration/minimization, several configurations of the system
are sampled, thus providing a dynamical picture. MD models the physical movements of
the system as a function of time by solving Newton’s equations of motion, whereas MC
generates an ensemble of configurations according to the corresponding Boltzmann distri-
bution. Such simulations allow one to further characterize the conformational rearrange-
ments occurring upon ligand binding and their connection with ion conduction [38–44].
In combination with enhanced sampling methods and/or free energy calculations, MD can
also provide an estimate of the ligand affinity (e.g., binding energy differences between
the two forms of the photoswitch or between two photoswitchable ligands), as well as
molecular insights into the energetic determinants of binding (e.g., to identify the most
suitable position for introducing a reactive Cys for PTL covalent attachment).

Nonetheless, such computational methodologies also have limitations. The quality
of the homology models may not be sufficient for an accurate prediction of PCL or PTL
binding, especially if the sequence identity of the target protein with the template is low
(i.e., below 35%) and/or the structural changes occurring upon ligand binding are not
similar to those captured in the available experimental structures. Whereas molecular
docking can only model small rearrangements in the protein side chains to accommodate
the ligand, molecular dynamics combined with enhanced sampling techniques can be
attempted to simulate further protein conformational rearrangements. However, it is still
challenging to simulate large structural changes in proteins due to the long time scales of
these processes and the limited quality of the (protein and ligand) force fields. Therefore,
a close interplay of these in silico studies with in vitro and in vivo assays is key for success-
ful photoswitchable ligand design. On the one hand, the experimental data are used to
guide the calculations and to validate the computational models. On the other, the compu-
tational data provide a molecular explanation of the photoswitch-mediated modulation
and help design modifications of the photoswitchable ligand and/or mutations of the ion
channel (including Cys mutants for tethering) that can be tested experimentally. In other
words, structure-based computational methods provide insights complementary to experi-
ments that link the molecular details of the photoswitchable ligands to the experimentally
measured macroscopic effects.

Figure 3 shows a possible workflow for the rational, structure-based designing of
photoswitchable ligands, based on the following steps:
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(1) In the most straightforward case, a search in the Protein Data Bank (PDB) yields an
experimental structure of the target protein in complex with the bioactive molecule to
be used as a basic module of the photoswitchable ligand. A structure of the target
protein bound to a similar molecule (in terms of chemical structure and activity) or
a structure of a homologous protein–ligand complex can also be used as a surrogate,
as demonstrated by the examples mentioned in the Introduction.

(2) In the absence of an experimental structure of the target protein–bioactive molecule
complex, an experimental structure of the apo protein can alternatively be used;
ideally, this structure contains the appropriate subunit composition and was captured
in the relevant functional state.

(3) When no experimental structure is available, homology modeling can generate a struc-
tural model of the target protein based on the experimental structure of a homologous
template protein. When selecting the template structure, one should consider the se-
quence identity between the target and template and, additionally, other features of
the template structure, such as the functional state and the bound ligand(s) .

(4) Although the (experimental or computational) structure of the protein alone is al-
ready informative, carrying out a computational molecular docking of the bioactive
molecule can help to further optimize the photoswitchable ligand design. In par-
ticular, the predicted binding mode can be used to identify the optimal position to
introduce the photochromic group and/or estimate the length of the linker between
the different modules of the PCL or PTL, as well as pinpoint potential residues for
Cys screening.

(5) The photoswitchable ligand (PCL or PTL) design follows the modular approach
depicted in Figure 1b. As mentioned in steps (1)–(4), structural information on
the binding mode of the bioactive module to the target protein can be used to guide
such a design.

(6) In the case of PTLs, their design additionally includes an inspection of the structure of
the target protein, either experimental or computational, in order to identify putative
tethering positions, i.e., residues near the ligand binding site amenable for cysteine
mutagenesis screening.

(7) Upon design of the photoswitchable ligand, synthesis and experimental testing can
already be performed; the latter includes measuring the modulatory effect of the lig-
and under different light conditions, as well as site-directed mutagenesis (either Cys
mutations for PTL covalent attachment or other mutations to confirm the binding site
location and PCL/PTL ligand binding mode).

(8) The observed light-dependent activity (or lack thereof), as well as the effect of muta-
tions, can be rationalized a posteriori by performing a molecular docking of the PCL
or virtual Cys mutation combined with covalent docking for the PTL. The resulting
model of the target protein–photoswitch complex can be inspected to design addi-
tional site-directed mutations to validate the predicted PCL/PTL predicted binding
mode. Alternatively, molecular docking can be used a priori (i.e., before experimental
testing) to select the best candidate among several possible photoswitchable ligand
designs (for subsequent experimental testing), as well as to explore alternative Cys
tethering sites.

(9) Though the (static) computational models described so far are already useful to
understand the molecular basis of light-controlled ion channel modulation, they
can additionally be refined by molecular dynamics. Such simulations, alone or in
combination with enhanced sampling and free energy techniques, can provide further
dynamical and energetic insights into the photoswitch effect, as explained earlier in
this section.

(10) This integrative computational-experimental approach offers a comprehensive under-
standing of the PCL/PTL effect on ion channel function, including but not limited
to the information listed in the last step of the proposed workflow (see Figure 3).
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Figure 3. Proposed workflow for rational, structure-based design of photoswitchable ligands. The de-
sign step is indicated in orange, the experimental steps in green and the computational steps in
blue. Ligand-based data (such as structure–activity relationship data or information about tethered,
non-photoswitchable ligands), though not shown here, can also be integrated in the design step.
Some of the possible information outcomes of this integrative computational-experimental workflow
are listed in the yellow box.

In the following sections, we exemplify the steps of the proposed computational
workflow (Figure 3) by discussing published computational modeling and simulation
studies of photoswitchable ligands targeting VGICs and LGICs (see also Tables S1–S4).

3. Computational Modeling of Photoswitchable Ligands Targeting Voltage-Gated
Ion Channels

VGICs are membrane proteins whose ion conduction pores open and close in response
to changes in membrane voltage, intracellular signaling molecules or both [45–47]. This
superfamily contains voltage-gated potassium, sodium and calcium channels (Kv, Nav
and Cav, respectively), and other members, such as the transient receptor potential (TRP)
channels. Two functional domains can be present in this superfamily (Figure 4): the voltage
sensing domain (VSD), constituted by four transmembrane helices (S1–S4), and the ion
pore domain (PD), formed by two transmembrane helices S5–S6 connected by the pore
(P-)loop, which contains the ion selectivity filter. Kv and TRP channels are tetrameric
proteins in which each subunit contains a VSD and a PD, whereas in the Nav and Cav
channels this tetrameric assembly is encoded in a single gene. Nonetheless, other members
of the VGIC superfamily lack a PD (e.g., Kir, HV1 and TPTE channels) or are not tetrameric
(such as K2P channels).
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Figure 4. Representative structure of a tetrameric voltage-gated ion channel (VGIC). (a) Structure of
the voltage-gated sodium channel Nav1.7, PDB code 6J8J [48], with protein subunits colored in green,
yellow, pink and cyan, respectively. Only the pore-forming subunits are shown. The binding site
of (photoswitchable) pore blockers is indicated with a gray box. (b) Alternative view of the same
structure from the intracellular side. The helices displayed in solid colors correspond to the pore
domain (S5 and S6 helices and the pore loop); the ion-conducting pore is indicated with a dashed
red circle. (c) Detailed view of one Nav1.7 subunit indicating the two functional domains present
in VGICs. The voltage sensor domain (VSD) has four transmembrane helices (S1–S4, colored in
green) and the pore domain (PD) is constituted by two transmembrane helices (S5 and S6, in blue),
connected by the pore (P-)loop, which contains the ion selectivity filter (in orange).

3.1. Photoswitchable Pore Blockers

A structural inspection of the first crystal structures of the KcsA potassium channel
with TEA-like pore blockers [18,20] allowed the design of PTLs that target the homologous
Shaker channel [21,22]. The ammonium binding site located in the extracellular vestibule
of the pore (Figure 2b) appeared to be at the right distance from residue 422 (15–18 Å)
to design a PTL (MAQ, 1 in Figure S1) whose quaternary ammonium group could reach
this binding site when the azobenzene is in the trans configuration (approx. 17 Å long),
but not in cis (~10 Å). The introduction of an E422C mutation for tethering and subsequent
electrophysiological testing indeed revealed the photomodulation of the PTL-modified
Shaker channel. Nonetheless, further structural information of the channel in complex with
the photoswitchable ligand could help improve this initial design as well as characterize
the molecular determinants of the differential effects of the trans and cis azobenzene forms.

In this regard, Mourot and coworkers [49] used a crystal structure of the Kv1.2–2.1
chimera in the open state and molecular docking to generate structural models of the Shaker
K+ channel bound to a PCL composed of two quaternary ammonium moieties connected by
an azobenzene group (QAQ, 2). The extended shape of trans-QAQ places the two positively
charged groups at the right distance to interact with the two quaternary ammonium binding
sites inside the pore, one in the extracellular vestibule and the other below the selectivity
filter. The latter cannot be occupied by cis-QAQ due to its bent shape, explaining why the cis
form is a less potent pore blocker than the trans one. A similar computational approach was
used to rationalize the functional effects of FHU-779 (3), a PCL composed of an azobenzene-
based long tail and the Cav pore blocker diltiazem [50]. In this case, homology modeling
was first used to generate a structural model of the Cav1.2 ion pore, based on an open-state
structure of the bacterial NavAb sodium channel. Afterwards, molecular docking was
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performed by Monte Carlo-based minimizations. The computational models again showed
that both isomers can be accommodated inside the pore. However, the elongated trans-
FHU-779 extends along the pore, with the positively charged nitrogen near the selectivity
filter, the adjacent benzothiazepine moiety bound to a lateral fenestration and the long
photoswitchable tail interacting with the C-terminal region of helix S6. In contrast, the tail
of the “folded” cis form cannot reach the latter region, explaining the reversible light-
dependent block of Cav1.2 by FHU-779.

In order to get further molecular and energetic insights into the binding of pore blocker
PCLs, a recent study [51] used MD simulations, together with an enhanced sampling tech-
nique (Gaussian accelerated MD) and free energy calculations (based on a molecular
mechanics generalized Born surface area or MMGBSA approach). The VGIC studied was
the Nav1.4 channel, for which a recent cryo-EM structure in the inactivated state is available,
and p-diaminoazobenzene (4) was used as a simplified model of the aforementioned pho-
toswitchable pore blockers. Interestingly, the simulations revealed that there is more than
one binding site for p-diaminoazobenzene in the trans configuration. p-diaminoazobenzene
binds to two binding sites compatible with its expected pore blocking activity, one in
the central cavity near the selectivity filter and the other near the intracellular gate. In addi-
tion, the trans form of the PCL appears to bind in a lateral cavity close to the membrane,
which includes some residues previously identified as important for the binding of local
anesthetics. The occupancy of this third binding site suggests that p-diaminoazobenzene
could act not only as pore blocker but also have similar effects to local anesthetics.

3.2. Photoswitchable Modulators

Photoswitchable ligands for VGICs are not limited to pore blockers and pore open-
ers [52]. For instance, several PCLs have been reported for TRP channels that act as
activators or inhibitors [53–56]. The structural information (either experimental structures
or homology models) of TRP channels can then be used to understand the mechanism of
ligand-mediated activation or inhibition. In this regard, Lichtenegger and coworkers [57]
designed a photoswitchable analog of the endogenous activator diarachidonlyglycerol
(OptoDArG, 5) of the TRPC3 channel. A homology model of the TRPC3 channel was
built (based on the cryo-EM structure of the closely related TRPV1) in order to design
a mutagenesis screening of the lipid binding cavity. This screening revealed a single
glycine residue that connects the binding pocket and the selectivity filter through a lat-
eral fenestration, thus providing clues on how lipid sensing controls ion channel gating.
To the best of our knowledge, molecular docking and MD simulations have not been
applied yet to study the binding of photoswitchable lipids to TRP channels. However,
these two computational techniques have been extensively used to investigate channel
modulation by other TRP ligands [58–62] and thus their use could be easily extended to
photopharmacological applications.

4. Computational Modeling of Photoswitchable Ligands Targeting Ligand-Gated
Ion Channels

LGICs are both ion channels that conduct ions across the neuronal membrane and
receptors binding neurotransmitters. There are three main families [47,63,64]: pentameric
LGICs (pLGICs), ionotropic glutamate receptors (iGluRs) and ATP-gated purinergic recep-
tor (P2X) ion channels (Figure 5).

pLGICs [65] are composed of five identical or different subunits (homo- and hetero-
pentamers, respectively). They encompass excitatory, cation-selective nicotinic acetylcholine
receptors (nAchRs), serotonin or 5-hydroxytryptamine type 3 (5-HT3) receptors and zinc-
activated channels (ZAC), as well as inhibitory, anion-selective γ-aminobutyric acid receptors
(GABARs) and glycine receptors (GlyRs). In addition, prokaryotic members of the pLGIC
family include the Gloeobacter ligand-gated ion channel (GLIC), a proton-gated cation-selective
channel; the Erwinia chrysanthemi ligand-gated ion channel (ELIC), a cation-selective channel
activated by small amines, such as GABA; and the C. elegans glutamate-gated chloride channel
(GluCl). Each subunit of these pentameric receptors (Figure 5a) can be divided into an extra-



Int. J. Mol. Sci. 2021, 22, 12072 10 of 26

cellular domain (ECD, contributing to the neurotransmitter binding site), a transmembrane
domain (TMD, formed by four helices, M1-M4, of which M2 lines the ion conduction pore)
and, in some cases, an intracellular domain (ICD).

Figure 5. Representative structures of the three ligand-gated ion channel (LGIC) classes. (a) Shown
from left to right, structures of a pentameric ligand-gated ion channel (pLGIC) based on the nicotinic
acetylcholine receptor (nAchR), PDB code 7EKI [66]; an ionotropic glutamate receptor (iGluR),
based on the AMPA receptor, PDB code 3KG2 [67]; and an ATP-gated purinergic (P2X) receptor,
PDB code 5SVL [68]. Each protein subunit is shown in a different color (yellow, pink, green, cyan
and/or magenta). A gray circle indicates the orthosteric binding site of LGICs, where the agonists or
antagonists used to design most of the PCLs and PTLs mentioned in the text bind. For the sake of
clarity, only one of the symmetric sites of the homomeric receptor is shown (out of the five present in
nAchR, four in AMPAR and three in the P2X3 receptor). (b) Transmembrane domain (TMD) viewed
from the extracellular side. The pore-lining structural elements are displayed in solid colors (i.e.,
the M2 helix for the nAchR and P2X3 receptors or the M2 helix and the re-entrant pore-loop for
AMPAR) and the ion-conducting pore is indicated with a red dashed circle. (c) Detailed view of one
subunit. The extracellular domains (ECD) of both the nAChR and P2X3 receptors are colored in gray,
whereas the transmembrane domain (TMD) is colored in apricot. The AMPAR is displayed with
the same color scheme, but the extracellular part of the receptor is divided into an amino terminal
domain (ATD) and a ligand binding domain (LBD). Transmembrane helices are labeled from M1 to
M4 or from M1 to M2, respectively. The intracellular domain is not shown for the sake of clarity.
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iGluRs are LGICs essential for excitatory neurotransmission and can be classified in
NMDA, AMPA and kainate receptors. They are tetrameric receptors (Figure 5b), with each
subunit containing an extracellular amino terminal domain (ATD), an extracellular ligand
binding domain (LBD, containing the glutamate binding site), a TMD (composed by three
helices, M1, M3 and M4, as well as a re-entrant pore-loop, M2) and an intracellular carboxy-
terminal domain (CTD).

Lastly, P2X receptors conduct mostly cations and are homo- or hetero-trimers (Figure 5c)
composed of an ECD, a TMD (with two transmembrane helices, M1–M2, per subunit) and
a C-terminal cytosolic tail.

4.1. Nicotinic Acetylcholine Receptors

nAchRs are the first ion channels for which light-modulated ligands were reported [11,12].
Based on a nAchR agonist, two photoswitchable ligands were designed [12]: bis-Q (6 in Figure S2),
a PCL with two quaternary ammonium moieties linked by an azobenzene group, and QBr
(7), a PTL composed of a quaternary ammonium, azobenzene and benzylic bromide for Cys
tethering. Both bis-Q and QBr acted as agonists in the trans form, whereas the cis form was almost
inactive. In contrast, azo-CarCh (8) and azo-PTA (9) were found to act instead as light-reversible
antagonists [11], despite the fact that these two PCLs were also designed based on two known
nAChR agonists (carbamylcholine and phenyltrimetylammonium, respectively). This strongly
indicates that small changes in the photoswitchable ligand structure can dramatically affect its
light-modulated activity and thus structural knowledge of the receptor is needed to improve the
ligand design.

Structural information was used by Tochitsky and coworkers [69] to devise light-
modulated nAchRs (LinAchRs) that can be activated or inhibited with light, while re-
sponding normally to acetylcholine. They used PTLs (MAAch and MAHoCh, 10 and 11
in Figure S2, respectively) consisting of a Cys reactive maleimide group, an azobenzene
photoswitch and a ligand head group mimicking known nAChR agonists (acetylcholine
and homocholine, respectively). Potential positions to introduce Cys mutations for PTL
covalent attachment were identified by inspecting the experimental structure of the soluble
AChBP (as a surrogate of the nAChR ECD) in complex with carbamylcholine (a known
nAchR agonist) (Figure 2a), as well as a computational model of α4β2 nAchR in com-
plex with MAAch (generated by combining homology modeling and molecular docking).
The subsequent Cys screening showed that the E61C mutant was photomodulated by both
PTLs, but with the opposite effects. Even though the design of both PTLs was based on
nAChR agonists, E61C nAchR was photoactivated by cis-MAAch, but photoinhibited by
cis-MAHoCh. The agonist activity of MAAch was further studied by repeating the afore-
mentioned docking calculation with the homology model of α4β2 nAchR, but adding
a positional constraint that restricted the maleimide group to be within a certain radius of
the C61 sulfur atom. The obtained docking poses showed that only cis-MAAch, but not its
trans form, can position the bioactive ligand headgroup in the right place. Although a sim-
ilar calculation was not performed for MAHoCh, the unexpected antagonist activity of
this PTL was rationalized based on structural information for other nAChR antagonists.
A ‘foot-in-the-door’ mechanism was proposed [70], by which antagonist binding prevents
the complete closure of the ligand binding site (in particular loop C), as required for
receptor activation.

Molecular docking was also used to rationalize the differential effect of the trans and
cis forms of a PCL targeting an insect nAchR [71]. AMI-10 (12) contains two molecules of
imidacloprid, an AchR agonist normally used as an insecticide, linked by an azobenzene
group. The PCL turned out to be more effective upon irradiation, with the cis form showing
a median lethal dose fivefold lower than the trans. Using a structure of the sea slug
AchBP as a surrogate of the insect nAchR, Xu and coworkers showed that cis-AMI-10 can
place the two imidacloprid moieties inside the binding pocket, whereas for the trans form
the second moiety extends outwards, without forming any interaction with the protein.
The larger number of protein–ligand interactions for the cis isomer thus correlates with its
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higher insecticide activity. A recent study [72] has reported an alternative design, in which
the two imidacloprid moieties are linked by a photoswitchable dithienylethene group
(DitIMI) in order to improve solubility compared to azobenzene.

4.2. 5-HT3 Receptors

The 5-HT3 receptor is another important cationic pLGIC, activated by serotonin, which
is involved in a series of neurological disorders, from schizophrenia to drug abuse. Pharma-
cologically, it is the target of several drugs, including antiemetics, which act as antagonists,
to alleviate the effects of cancer therapies [73]. To the best of our knowledge, only one
study has explored and experimentally characterized azologs of reported antagonists of
the 5-HT3A receptor [74], with only one of the investigated compounds retaining antag-
onist activity with no isomer specificity. Complementarily trans-cis switches based on
Pro analogs have been used to study the gating mechanism of the 5-HT3R. Although still
a controversial mechanism, it has been proposed that the trans-to-cis isomerization of a Pro
residue located in the loop connecting the M2 and M3 helices at the ECD–TMD interface
(Pro8* or Pro281 in the X-ray structure of the mouse 5-HT3R [75]) mediates channel gating.
Mutations of this Pro into unnatural amino acid analogs strongly favoring the trans isomer
resulted in non-functional channels [76], suggesting that, if trans-cis isomerization of Pro8*
cannot occur, the channel would not open. A follow-up computational study [77] used MD
simulations combined with enhanced sampling (metadynamics) to investigate the isomer-
ization of a series of proline analogs (i.e., the ones tested in the aforementioned mutagenesis
experiments) using dipeptide model systems in aqueous solution. A comparison of these
simulations with the electrophysiology data showed an excellent correlation between
the calculated free energy differences between the cis and trans isomers and the effect of
the unnatural mutations on the receptor functional response. However, these simulations
were performed on simplified models and thus did not take into account the effects of
the receptor environment. These were addressed in subsequent molecular dynamics and
metadynamics simulations of a model of the 5-HT3R, built based on an X-ray structure [75]
including the extracellular and transmembrane domains, embedded in a 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer (Figure 6a). These simulations
showed how the protein environment affects the proline isomerization free energy land-
scape, which loses symmetry with respect to the case in water [78]. In addition, they
provided the molecular details of the network of interactions of the proline potential switch
with other residues at the ECD–TMD interface. On the one hand, such interactions select
a preferential isomerization path. On the other, Pro isomerization causes the constriction of
a ring of negatively charged Asp residues at the top of the pore-lining helix, which might
enhance cation attraction and conduction. Altogether, the Pro molecular switch (Figure 6b)
appears to behave as the endogenous counterpart of photoswitchable ligands (e.g., Glyght;
see Section 4.4). In addition to 5-HT3R, other ion channels [79] seem to control activation
by using prolyl isomerization, which is additionally involved in many other biological
processes [80,81]. Complementarily, the recent development of light-sensitive unnatural
amino acids (UAAs) [82] has opened the way to endow light sensitivity to ion channels
directly using these UAA probes.
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Figure 6. Prolyl isomerization in the serotonin or 5-hydroxytryptamine type 3 (5-HT3) receptor.
(a) Receptor model embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid
bilayer. The five protein subunits are displayed in red, yellow, green, light blue, and blue, respectively,
and the lipid molecules as van der Waals spheres. The inset shows the extracellular domain (ECD)–
transmembrane domain (TMD) interface region where the isomerizable Pro281 (in van der Waals
spheres) is located, surrounded by the Cys loop (in yellow), the β1–β2 loop (green), the β8–β9 loop
(blue), and the M2–M3 loop (red). Adapted with permission from Crnjar, A.; Comitani, F.; Hester,
W.; Molteni, C. Trans–cis proline switches in a pentameric ligand-gated ion channel: how they are
affected by and how they affect the biomolecular environment. J. Phys. Chem. Lett. 2019, 10(3),
694–700. Copyright 2019 American Chemical Society. (b) Schematic representation of the trans-cis
isomerization of proline.

4.3. GABAA Receptors

GABAA receptors are highly pharmacologically relevant pLGICs [83–85], being the tar-
gets of benzodiazepines for the treatment of anxiety, insomnia and depression, as well as
of clinically used anesthetics (such as etomidate and propofol). The rich pharmacology
of GABAA receptors offers a wide variety of starting options for the design of photo-
switchable ligands. Nonetheless, until recently, such efforts were hampered by the lack
of experimental structural information on the ligand binding sites [86–88]. The design of
photoswitchable ligands would then rely on ligand structure–activity relationship data,
as well as mutagenesis and Cys scanning data for the receptor binding sites. PCLs and PTLs
were thus generated, targeting the orthosteric (GABA) binding site [89–91] or allosteric
binding sites [92–94].

Homology modeling and molecular docking have been used to further characterize
the experimentally observed photomodulation at the molecular level. For instance, Lin and
coworkers [89] used a homology model of the receptor to map the potential tethering sites
for Cys mutation in the orthosteric site and thereby design a light-modulated GABAAR
(LiGABAAR), formed by α1(T125C), β2 and γ2S subunits. This model was built based on
the experimental structures of AchBP (as a surrogate for the ECD of pLGICs) and the re-
lated Torpedo nAChR (for the TMD) [95]. Furthermore, molecular docking was performed
to rationalize the antagonist effect of one of the proposed PTLs, MAB-0 (13 in Figure S3),
composed of maleimide, azobenzene and 4-hydroxybenzylamine. Although the latter
group is not a typical gabaergic agonist/antagonist, in the trans form it appears to interact
with several aromatic residues in the orthosteric site, thus enabling competitive inhibition
against GABA. Instead, the cis isomer is not able to place the 4-hydroxybenzylamine near
the putative interacting residues, consistent with its lack of effect on channel function. Ho-
mology modeling and molecular docking were also used in a recent study [96] to rationalize
the different binding preferences of azogabazine (14). This PCL is composed of azobenzene
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and gabazine, a known GABAAR competitive antagonist binding to the orthosteric site.
In this case, the homology modeling approach benefited from the resolution of the first cryo-
EM structures of heteropentameric GABAARs. The model for the murine α1β2γ2L receptor
was built using the cryo-EM structure of human α1β3γ2L GABAAR as a template [97].
The trans-azogabazine docking poses revealed protein–ligand interactions similar to those
observed in cryo-EM structures of other GABAAR–antagonist complexes, explaining its
antagonist activity. In addition, the trans-azogabazine docking poses were used to design
site-directed mutagenesis experiments, which further confirmed the predicted binding
mode [96].

The computational methods described above have also been used to investigate
the binding of photoswitchable ligands to allosteric sites. Borghese and coworkers [98]
used docking to identify possible tethering points in a α1β3γ2 GABAAR for MAP20
(15), a PTL composed of methanethiosulfonate, azobenzene and the anesthetic propofol.
Capitalizing on a previously published model [99,100] of the parent compound propofol
bound to the TMD binding site at the β+α- interface [101], they manually superimposed
the anesthetic part of the PTL and then sampled the rotations of the bond connecting
propofol to azobenzene to identify nearby receptor residues amenable for Cys mutation.
Experimental testing of the proposed Cys mutants showed that β3(M283C) and α1(V227C)
are the two Cys mutants displaying the largest photomodulation of GABA-induced currents
upon treatment with MAP20. Subsequent structural modeling of MAP20 conjugated at
these positions showed that the PTL can reach one or two propofol β+α- binding sites
depending on the tethering subunit (α1(V227C) or β3(M283C), respectively). The predicted
number of occupied binding sites is in line with the photomodulation of α1β3(M283C)γ2
GABAAR being larger than for α1(V227C)β3γ2. Moreover, the computational models were
validated retrospectively by comparison with a cryo-EM structure of GABAAR bound to
propofol [102].

Homology modeling and molecular docking have been used to rationalize the un-
foreseen photomodulatory effects of azo-NZ1 (16) [103]. This PCL was based on the ben-
zodiazepine nitrazepam, which was conjugated with the azobenzene photoswitch and
additionally a sulfonate group to improve solubility. Thus, the PCL design aimed at creat-
ing a photoswitchable positive allosteric modulator binding at the benzodiazepine binding
site of GABAAR, located at the α+γ- interface in the ECD. Instead, electrophysiological
data showed that trans-azo-NZ1 acts as a GABAAR blocker, i.e., binds inside the TMD
pore. Moreover, trans-azo-NZ1 inhibited GABA-mediated currents for some GABAAR-ρ
(or GABACR [104]) subtypes, as well as Gly-mediated currents for some GlyRs. This
was completely unexpected, since GABA ρ subunits and GlyRs are insensitive to benzo-
diazepines. In order to understand the complete change of pharmacological activity of
azo-NZ1 compared to the parent benzodiazepine, electrophysiological and mutagenesis ex-
periments were combined with computational modeling. The homology model of α1β2γ2
GABAAR was taken from reference [105] (Figure 7a), whereas the homology models of
GABAAR-ρ were built following reference [106]. The main templates for these models are
crystal structures of the homologous glutamate-gated chloride channel GluCl in the open
state [107] and thus the resulting models are in the right functional state to study pore
blockade upon GABA-triggered opening. Molecular docking (with flexible side chains for
the pore-lining residues) showed that trans-azo-NZ1 has the right length to extend along
the TMD ion pore (Figure 7b). The benzodiazepine core is positioned in the upper part
of the TMD pore, forming hydrogen bonds with the 13’ residues (following the general-
ized numbering of the M2 helix residues for pLGICs) and hydrophobic interactions with
the 6’ and 9’ residues, whereas the sulfonate group binds at the lower part (near the 2’
position). Interestingly, the negatively charged sulfonate overlaps with one of the chloride
ion binding sites detected in cryo-EM structures [108]. Therefore, trans-azo-NZ1 hampers
chloride conduction both sterically and electrostatically, consistent with the experimentally
observed inhibitory effect. In contrast, the cis isomer binds in the middle region of the pore,
which is wider, and thus blockade is less likely, in line with the inhibition relief upon UV
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irradiation. The docking calculations also provided molecular insights into the subtype
selectivity of azo-NZ1 [103]. Electrophysiological experiments showed that both the het-
eropentameric α1β2γ2 GABAAR and the homopentameric GABAAR-ρ2 were inhibited by
trans-azo-NZ1, whereas GABAAR-ρ1 was not. Moreover, sensitivity to azo-NZ1 depended
on the residue at position 2’: the S2’G GABAAR-ρ2 mutation abolishes inhibition, whereas
the P2’S GABAAR-ρ1 mutation endows sensitivity to azo-NZ1. Based on the docking
results on the three GABAARs [103], it was proposed that trans-azo-NZ1-mediated inhibi-
tion requires either a hydrogen-bonding Ser or a residue of similar volume (Ala or Val) at
position 2’.

Figure 7. Computational models of the pore blocker trans-azo-NZ1 bound to γ-aminobutyric acid
type A (GABAA) and Gly receptors. (a) Computational model of α1β2γ2 GABAAR in complex with
GABA [105]. The orthosteric GABA binding sites and the allosteric benzodiazepine binding site in
the ECD are indicated with green and blue circles, respectively. For the sake of clarity, the front subunit
of the heteropentamer is not shown. (b) Docking pose of trans-azo-NZ1 in the GABAAR-ρ2 pore.
Pore-lining residues are labeled according to the generalized numbering of the M2 helix residues for
pLGICs. Hydrophobic interactions between azo-NZ1 and the receptor residues are marked as yellow
transparent surfaces, hydrogen bond interactions and steric repulsion are represented with black and
red dashed lines, respectively. Adapted from reference [103] with permission (CC-BY NC license)
from the British Journal of Pharmacology, published by John Wiley and Sons (2019). (c) Cryo-EM
structure of GlyR in complex with strychnine [109], a competitive antagonist that binds to the glycine
neurotransmitter site, whose location is indicated with a green circle. For the sake of clarity, the front
subunit is not shown. (d) Docking pose of trans-azo-NZ1 in the G2’A α1 GlyR pore. Interactions
are displayed following the same representation as in panel (b). Adapted from reference [110] with
permission (CC-BY license) from eNeuro, published by the Society for Neuroscience (2020).
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4.4. Glycine Receptors

Compared to GABAARs, the number of (photo)pharmacological agents for GlyRs is
more limited [111,112]. Nonetheless, GlyRs are attracting growing attention as possible
targets for painkillers [112,113]. Two PCLs based on azobenzene and a benzodiazepine
core have been developed so far [110,114]. The aforementioned azo-NZ1 (16 in Figure S3),
as well as Glyght (17), exhibited light-modulated responses in an in vivo behavioral
zebrafish assay. In vitro receptor screening using an heterologous expression system
revealed that trans-azo-NZ1 acts as pore blocker for both GABAARs and GlyRs, whereas
cis-Glyght is a GlyR-selective negative allosteric modulator.

The trans-azo-NZ1-mediated pore blockade across several pLGICs resembles the inhibition
mechanism of other pore blockers, such as picrotoxin [115,116]. Similar to GABAARs [103],
homology modeling and molecular docking were used to provide molecular insights into
the binding of azo-NZ1 inside the GlyR ion pore, as well as to explain the GlyR subtype selec-
tivity [110]. Capitalizing on the availability of cryo-EM structures of homomeric α1 GlyR [109]
(Figure 7c), models of the homopentameric G2’A α1 GlyR mutant (as surrogate of α2 GlyR) and
the heteropentameric α2/β GlyR were built. The subsequent docking calculations showed that
the binding mode of azo-NZ1 inside the GlyR ion pore is very similar to the one of GABAARs,
with the elongated trans isomer extending from the 13’ to the 2’ position (Figure 7d). The sul-
fonate group is still accommodated at the 2’ position, despite the lack of a hydrogen-bonding
residue, because the volume of the Ala 2’ residue (present in GlyRs containing wild-type α2
and G2’A α1 mutant subunits) is similar to that of the Ser residue at the same position in
ρ2 and γ2 GABAAR subunits. Instead, the Gly 2’ residue in GlyRs containing wild-type α1
subunits is smaller; as a result, trans-azo-NZ1 is not able to completely block the pore, in line
with the reduced inhibitory effect of the PCL for this GlyR subtype.

As mentioned above, the selective inhibitory effect of Glyght (17) on GlyRs when
in cis form [114] was completely unexpected. The PCL was designed based on a ni-
trazepam/diazepam core and GlyRs do not contain a benzodiazepine binding site. Hence,
a multilevel screening approach (Figure 8) was used to uncover the possible binding site
of Glyght. A blind docking calculation was first run to identify putative binding pockets
on the surface of the complete receptor. The results indicated that Glyght might poten-
tially bind at the interface between ECD and TMD (Figure 8a,b). Therefore, an additional
docking calculation was run, focused on this region. Cis-Glyght was found to bind in five
symmetric sites located between two adjacent subunits in the homopentameric structure
(Figure 8b,c). This region has been shown to participate in the allosteric coupling between
neurotransmitter binding in the ECD and opening of the TMD ion pore [64]. Thus, it
is likely that ligand binding at the ECD–TMD interface can thereby interfere in receptor
activation. Lastly, the Glyght docking poses were further refined by using flexible dock-
ing centered on one out of the identified five symmetric intersubunit sites (Figure 8b,c).
Cis-Glyght strengthens the interaction between M2–M3 and β8–β9 loops, which stabilizes
the closed state. Such a “stapling” mechanism is in agreement with the stronger GlyR
inhibition by cis-Glyght observed experimentally. Interestingly, the Glyght binding site
in GlyR overlaps with the ECD/TMD interface region where the Pro molecular switch
in 5-HT3 receptors is located [76–78]. Thus, the light-modulated effect of Glyght on GlyR
resembles the mechanism by which trans-cis Pro isomerization may mediate channel gating
in the 5-HT3 receptor [76–78]. This further supports the idea of the Pro molecular switch
behaving as the endogenous counterpart of photoswitchable ligands.
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Figure 8. Multilevel docking screening to identify and characterize the binding site of Glyght in GlyR.
(a) Blind docking of Glyght to the cryo-EM structure of α1 GlyR [109]. For the sake of clarity, the front
subunit is not shown. The box size used for the blind docking calculation, encompassing the whole
receptor, is shown as a green box. (b) Density map of the ligand poses of cis-Glyght obtained
in the blind docking. Each contour line corresponds to a number density of 0.0006 particles/Å3.
Among the several high-density regions, the interface between ECD and TMD appears to be the most
likely binding region for cis-Glyght [114], as it shows the largest differences compared to the trans-
Glyght blind docking (data not shown). The box size for the subsequent targeted rigid docking is
indicated as a blue box. (c) Docking poses obtained by rigid docking focused on the ECD–TMD
interface. The five α1 GlyR subunits are represented in ribbons and colored in white, whereas
the most populated ligand poses of cis- (violet) and trans-Glyght (blue) are shown as ball and sticks.
The box size for the subsequent flexible docking is indicated as an orange box. (d) Detailed view
of the cis-Glyght binding pose obtained by flexible docking centered at the ECD–TMD interface
site. Hydrophobic contacts between cis-Glyght and the receptor residues are represented as a yellow
surface, while the atoms involved in receptor–ligand hydrogen bonds are represented with larger
spheres and a dashed line between them. Adapted from reference [114] with permission from Cell
Chemical Biology, published by Elsevier (2020).

4.5. Ionotropic Glutamate Receptors

The design of the first photoswitchable ligands targeting ionotropic glutamate recep-
tors [24,25,28] was based on inspection of X-ray structures of the LBD of the kainate receptor
(GluK2, formerly known as GluR6) in complex with different ligands [23]. The LBD has
a clamshell-like structure and the degree of closure upon ligand binding correlates with
the degree of receptor activation. Moreover, these structures revealed an “exit tunnel”
between the lips of the clamshell that could potentially accommodate the elongated trans
form of the azobenzene photochrome. Based on these structural data, a PCL was designed
consisting of the glutamate agonist and an azobenzene photoswitch (4-GluAzo, 18 in
Figure S4), which acted as an agonist in the trans form but was inactive in the cis form [24],
as intended with the original structure-guided design. In 2013, the crystal structure of
GluK2 in complex with 4-GluAzo was solved [19] and confirmed the predicted binding
mode of the trans isomer (Figure 2c). The glutamate group of 4-GluAzo interacts similarly
to the endogenous glutamate agonist, while the trans-azobenzene is positioned between
the lips of the clamshell. Complementarily, a manual docking calculation of the cis isomer
on the same X-ray structure indicated that the distal phenyl ring in the cis configuration
would clash with the lips of the clamshell and thus cause the opening of the LBD, explaining
why 4-GluAzo is inactive upon irradiation. A follow-up computational study [117] used
MD simulations together with umbrella sampling-based free energy calculations to further
characterize the structural rearrangements occurring in the LBD upon PCL isomerization,
as well as to estimate the change in binding affinity between trans- and cis-4-GluAzo.

An analysis of the available GluK2 X-ray structures [23] also allowed the design of
a Cys mutagenesis screening to identify possible tethering sites of PTLs. Thereby, a light-
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modulated ionotropic glutamate receptor (LiGluR) was developed, containing a L439C
mutation [25], whose activity was modulated by MAG compounds. Such PTLs consisted
of maleimide, azobenzene and the agonist glutamate; the different modules were linked
by one or more glycine units in order to vary the tether length. The first MAG com-
pounds reported acted as photoswitchable LiGluR agonists when in the cis form [24,25,28].
Nonetheless, a subsequent study [118] reported other MAG compounds that were active in
either the cis or trans forms, depending on the PTL tether length and the position where
the tethering Cys was introduced (L439C or G486C). A model of the GluK2 LBD bound
to the PTL MAG0 (19) was built based on the X-ray structure of the protein in complex
with the parent compound glutamate [23]. Subsequent MD simulations and umbrella
sampling-based free energy calculations [118] revealed that two factors contribute to de-
termine which photoisomer is active: (i) the probability to properly orient the glutamate
moiety inside the binding site of the open LBD and (ii) the degree of clamshell closure
upon ligand binding.

A similar structure-based strategy was used to design photoswitchable ligands for
other ionotropic glutamate receptors. In the case of NMDARs, light-modulated recep-
tors (LiGluNs) were designed based on a structure-guided Cys mutagenesis screening to
identify possible tethering sites for PTLs of the MAG series [119]. As described above
for MAG compounds and LiGluRs, the attachment point and the length of the linker can
yield either LiGluNs that are photoactivated (LiGluN2A-V173C or LiGluN2B-V714C) or
photoinhibited (LiGluN1A-G172C and LiGluN1a-E406C) by MAGs. In the case of AMPAR,
the crystal structure of the GluA2 LBD in complex with a benzyltetrazolyl-substituted
AMPA (BnTetAMPA) [67] showed that the clamshell topology of the LBD is conserved
among iGluRs. However, the degree of closure upon ligand binding is tighter for AMPARs
compared to kainate receptors. As a result, the benzyl substituent of the AMPA analog
is located in a cleft that opens into the solvent, suggesting that, upon replacement with
azobenzene, the photochrome could still be accommodated in this cleft, but only if the azo
group is added in the meta (or 3) position with respect to TetAMPA [120]. Hence, a new
series of PCL compounds targeting AMPAR was designed called ATA; said compounds are
composed of the azobenzene photoswitch, a tetrazolyl linker and the AMPA agonist [120].
The ATA PTLs were active in the trans form, as intended, and were selective for AMPARs
over kainate receptors. A follow-up study [121] combined flexible docking, MD simulations
and umbrella sampling-based free energy calculations to rationalize the differential effect
of the two isomers of one of such ATA compounds, ATA-3 (20). Two ligand binding modes
were found. One is similar to the crystallographic poses of other AMPAR agonists and
corresponds to the most stable pose for the active trans isomer. The other could represent
the position of the ligand immediately upon photoisomerization, in which a hydrogen
bond is lost. From this second binding mode, the cis isomer could easily dissociate, unless it
switches back to trans.

Photoswitchable ligands targeting ionotropic glutamate receptors are not limited to
PCLs and PTLs binding to the LBD. A recent study [122] reported a photoswitchable pore
blocker for the glutamate delta2 (GluD2) receptor. Glutamate delta receptors belong to
the iGluR family due to their sequence and structure similarity to AMPA, NMDA and
kainate receptors. However, they are considered to be orphan receptors because their LBD
does not bind glutamate; instead, pore opening is regulated indirectly by metabotropic
G protein-coupled glutamate receptors. Hence, Lemoine and coworkers [122] devised
a PTL based on a known pore blocker (pentamidine), instead of an agonist binding to
the LBD. MAGu (21) is composed of maleimide, azobenzene and a guanidinium head
group that mimics the positively charged groups of pentamidine. The trans isomer is
expected to reach the inside of the pore due to its elongated shape, whereas the shorter
cis isomer will not. In order to identify possible positions to covalently attach MAGu
on the pore-lining M3 helix, a homology model of GluD2 was built based on a crystal
structure of the GluA2 receptor in the activated state. The thus-designed I677C mutant is
blocked by trans-MAGu, but not by the cis form, and is denoted as the light-controllable
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GluD2 (LiGluD2) channel. However, differently to pentamidine, the blockade by MAGu
was not dependent on membrane voltage, suggesting that the two molecules may have
different binding sites. This prediction was tested by performing covalent docking and
ion pore calculations [122]. The positively charged group of MAGu does not seem to
reach the inside of the pore, in line with the different blocking properties of MAGu and
pentamidine observed experimentally. Instead, MAGu appears to alter the geometry and
electrostatics of the pore, thus affecting ion conduction.

4.6. P2X Receptors

A recent review has compiled the photopharmacology applications for purinergic
receptors reported until June 2021 [123]. Here, we showcase a study combining the use of
a photoswitchable ligand and molecular dynamics simulations [124]. The used PTL (MAM,
22) contains two maleimide groups separated by an azobenzene photoswitch, so that end-
to-end distance of this Cys-Cys crosslinker changes with light. As previously carried out for
other PTLs [125], the Cys screening of the transmembrane helices was designed using two
homology models of the P2X2 receptor, based on experimental structures of the homologous
P2X4 receptor in either closed (apo) or open (ATP-bound) states [126,127]. According to
the experimental data for the P2X2 receptor, the two most promising Cys mutations were
introduced into the equivalent positions (I336C and N353C) of the two aforementioned
structures of the P2X4 receptor. Then, the MAM molecule was attached to these Cys
mutants in either a “horizontal” (I336C/I336C mutant) or a “vertical” (I336C/N353C
mutant) configuration and MD simulations were run for both P2X2 states. The simulations
provided structural insights supporting the ideas that the P2X pore fluctuates among
different open conformations and that receptor activation involves bending of the M2
helices at a conserved glycine residue that acts as a hinge for gating.

5. Conclusions and Perspectives

Light-controlled modulation of ion channels can be achieved by using photoswitchable
ligands whose two isomers display different binding properties. Unraveling the molecu-
lar details of the complex between the target protein and the photoswitchable ligand in
each of its two forms can help optimize this differential effect. Moreover, the addition of
the photochromic group can modify the pharmacological properties of the parent bioactive
molecule. Furthermore, the covalent attachment position and the length of the linker of pho-
toswitchable tethered ligands can also result in different light-modulated effects. Given this
complexity, a rational structure-based design approach is strongly recommended [2,6,28].

Indeed, the increasing availability of X-ray and cryo-EM structures has accelerated
the development of both PCLs and PTLs for both VGICs [21,22] and LGICs [24,25]. Such
experimental structural information has been complemented by computational modeling,
in particular, homology modeling, molecular docking and molecular dynamics (Figure 3).
In addition to providing structural models for ion channels without available experimental
structures, these computational methods allow the modeling of the target protein bound to
the photoswitchable ligand in either of its two forms. A comparison of the two counterpart
models can be carried out either a posteriori (to explain the molecular basis of the observed
light-modulation) or a priori (to predict whether the two photoswitch isomers will bind
differently, as intended during the design). In the case of PTLs, covalent attachment can also
be included in the model and thereby the fitness of the Cys mutant and the linker length
can be explored for positioning the bioactive group in the correct binding pocket. Hence,
nowadays, many photopharmacology studies integrate computational structural modeling
together with the experimental data (Tables S1–S4). Based on the successful results obtained
so far, we expect that computational methods will become instrumental in the field of ion
channel photopharmacology in the coming years, especially when considering the ongoing
methodological developments in the field.

Recent advancements in membrane protein structural biology, in particular cryo-EM,
have substantially increased the number of available ion channel and receptor struc-
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tures [128,129] that can be used as input to design photoswitchable ligands. In this regard,
a recent study has reported crystal structures of the glutamate transporter homologue GltTk
in complex with a photoswitchable inhibitor in either cis or trans form [129]. In addition,
these new experimental structures have broadened the range of templates available to
build homology models for other ion channels without experimental structures. Further-
more, computational structural models can now be generated not only through homology
modeling, but also using recently developed machine learning-based methods, such as
AlphaFold [130] and RoseTTaFold [131].

Together with these computational protein structures, the accuracy of the predicted
photoswitchable ligand binding modes is expected to improve thanks to the continuous
development of molecular docking techniques and scoring functions [132]. Covalent dock-
ing methods [133,134] will be particularly useful for PTLs, whereas quantum mechanics
(QM)-based docking approaches [135,136] may be applied to both PCLs and PTLs.

Complementarily, it is expected that the steady increase in computational resources,
as well as the development of more efficient MD algorithms and enhanced sampling/free
energy techniques [137–140], will also pave the way for further studies using classical
simulations of photoswitchable ligands in complex with their target proteins. However,
special care will be needed to develop accurate and transferable force field parameters for
the two photoswitch forms [141]. Quantum mechanics/molecular mechanics (QM/MM)
MD [142], in combination with excited state methods, will also allow us to study the pho-
toisomerization of the azobenzene group within the PCL or PTL, either in solution or
bound to the target protein. Nonetheless, going from the previous studies of azobenzene
in solution [143,144] to photoswitchable ligands in complex with their target protein is
likely to require adjustments in the theoretical treatment of the photochromic group excited
states, as well as to address possible super-heating effects due to photoexcitation.

Hand in hand with these computational advancements, the toolkit of available photo-
switchable ligands is rapidly expanding. The development of photoswitchable amino
acids [82] and lipids [145] opens new avenues to investigate ion channel regulatory
mechanisms. MD simulations are expected to be particularly useful to characterize at
the molecular level the effect of these novel photoswitchable molecules [42,78,146,147].
Although the PCLs and PTLs mentioned in this review are based on azobenzene and its
trans-cis isomerization upon light irradiation, other photochromic groups are increasingly
being used, such as fulgimides [148], diarylethenes [149] and stilbenes [150], for which
photoswitching involves bond formation. In these cases, the aforementioned QM- and
QM/MM-based approaches could be combined with docking, MD and/or excited state
calculations, to model the light-induced bond formation, providing an unprecedented
atomistic picture of these exciting photoswitching processes.
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97. Laverty, D.; Desai, R.; Uchański, T.; Masiulis, S.; Stec, W.J.; Malinauskas, T.; Zivanov, J.; Pardon, E.; Steyaert, J.; Miller, K.W.; et al.
Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 2019, 565, 516–520. [CrossRef] [PubMed]

98. Borghese, C.M.; Wang, H.Y.L.; McHardy, S.F.; Messing, R.O.; Trudell, J.R.; Harris, R.A.; Bertaccini, E.J. Modulation of α1β3γ2
GABAA receptors expressed in X. Laevis Oocytes Using A Propofol Photoswitch Tethered Transmembrane Helix. Proc. Natl. Acad.
Sci. USA 2021, 118, e2008178118. [CrossRef]

99. Bertaccini, E.J.; Yoluk, O.; Lindahl, E.R.; Trudell, J.R. Assessment of Homology Templates and an Anesthetic Binding Site within
the γ-Aminobutyric Acid Receptor. Anesthesiology 2013, 119, 1087–1095. [CrossRef]

100. Cayla, N.S.; Dagne, B.A.; Wu, Y.; Lu, Y.; Rodriguez, L.; Davies, D.L.; Gross, E.R.; Heifets, B.D.; Davies, M.F.; MacIver, M.B.; et al.
A newly developed anesthetic based on a unique chemical core. Proc. Natl. Acad. Sci. USA 2019, 116, 15706–15715. [CrossRef]
[PubMed]

101. GABA receptors composed by α, β and γ subunits are assembled in a β-α-γ-β-α heteropentameric arrangement. In order to
distinguish the different subunit interfaces, a principal (+) and a complementary (−) sides are defined, so that the heteropentamer
contains the following interfaces: β+α-, α+γ-, γ+β- and α+β-. The two GABA binding sites are then located at the two β+α-
interfaces in the extracellular domain.

102. Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M.; Lindahl, E.; Hibbs, R.E. Shared
structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020, 585, 303–308. [CrossRef]

103. Maleeva, G.; Wutz, D.; Rustler, K.; Nin-Hill, A.; Rovira, C.; Petukhova, E.; Bautista-Barrufet, A.; Gomila-Juaneda, A.; Scholze, P.;
Peiretti, F.; et al. A photoswitchable GABA receptor channel blocker. Br. J. Pharmacol. 2019, 176, 2661–2677. [CrossRef]

104. Although GABA receptors formed by ρ-subunits have been traditionally refer to as GABAC receptors, nowadays the NC-IUPHAR
recommends their classification as GABAA receptors, based on structural and functional criteria [85].

105. Bergmann, R.; Kongsbak, K.; Sørensen, P.L.; Sander, T.; Balle, T. A Unified Model of the GABAA Receptor Comprising Agonist
and Benzodiazepine Binding Sites. PLoS ONE 2013, 8, e52323. [CrossRef] [PubMed]

106. Naffaa, M.M.; Chebib, M.; Hibbs, D.E.; Hanrahan, J.R. Comparison of templates for homology model of ρ1 GABAC receptors: More
insights to the orthosteric binding site’s structure and functionality. J. Mol. Graph. Model. 2015, 62, 43–55. [CrossRef]

107. Hibbs, R.E.; Eric, G. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 2011, 474, 54–60.
[CrossRef]

108. Laverty, D.; Thomas, P.; Field, M.; Andersen, O.J.; Gold, M.G.; Biggin, P.C.; Gielen, M.; Smart, T.G. Crystal structures of a GABAA-receptor
chimera reveal new endogenous neurosteroid-binding sites. Nat. Struct. Mol. Biol. 2017, 24, 977–985. [CrossRef]

109. Du, J.; Lü, W.; Wu, S.; Cheng, Y.; Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 2015,
526, 224–229. [CrossRef] [PubMed]

110. Maleeva, G.; Nin-Hill, A.; Rustler, K.; Petukhova, E.; Ponomareva, D.; Mukhametova, E.; Gomila, A.M.; Wutz, D.; Alfonso-
Prieto, M.; König, B.; et al. Subunit-Specific Photocontrol of Glycine Receptors by Azobenzene-Nitrazepam Photoswitcher. eNeuro
2020, 8. [CrossRef]

111. Lynch, J.W.; Zhang, Y.; Talwar, S.; Estrada-Mondragon, A. Glycine Receptor Drug Discovery. In Advances in Pharmacology;
Geraghty, D.P.; Rash, L.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 79, pp. 225–253. [CrossRef]

http://dx.doi.org/10.3389/fnmol.2016.00044
http://dx.doi.org/10.1016/j.sbi.2019.03.023
http://www.ncbi.nlm.nih.gov/pubmed/31129381
http://dx.doi.org/10.1016/j.tibs.2021.01.011
http://www.ncbi.nlm.nih.gov/pubmed/33674151
http://dx.doi.org/10.1021/cb500167u
http://dx.doi.org/10.1016/j.neuron.2015.10.026
http://www.ncbi.nlm.nih.gov/pubmed/26606997
http://dx.doi.org/10.1021/jacs.8b03942
http://dx.doi.org/10.1038/ncomms2094
http://dx.doi.org/10.1002/anie.201205475
http://dx.doi.org/10.1002/chem.202000710
http://dx.doi.org/10.1529/biophysj.104.051664
http://dx.doi.org/10.1016/j.neuropharm.2020.108135
http://dx.doi.org/10.1038/s41586-018-0833-4
http://www.ncbi.nlm.nih.gov/pubmed/30602789
http://dx.doi.org/10.1073/pnas.2008178118
http://dx.doi.org/10.1097/ALN.0b013e31829e47e3
http://dx.doi.org/10.1073/pnas.1822076116
http://www.ncbi.nlm.nih.gov/pubmed/31308218
http://dx.doi.org/10.1038/s41586-020-2654-5
http://dx.doi.org/10.1111/bph.14689
http://dx.doi.org/10.1371/journal.pone.0052323
http://www.ncbi.nlm.nih.gov/pubmed/23308109
http://dx.doi.org/10.1016/j.jmgm.2015.09.002
http://dx.doi.org/10.1038/nature10139
http://dx.doi.org/10.1038/nsmb.3477
http://dx.doi.org/10.1038/nature14853
http://www.ncbi.nlm.nih.gov/pubmed/26344198
http://dx.doi.org/10.1523/eneuro.0294-20.2020
http://dx.doi.org/10.1016/bs.apha.2017.01.003


Int. J. Mol. Sci. 2021, 22, 12072 25 of 26

112. Zeilhofer, H.U.; Acuña, M.A.; Gingras, J.; Yévenes, G.E. Glycine receptors and glycine transporters: Targets for novel analgesics?
Cell. Mol. Life Sci. 2017, 75, 447–465. [CrossRef] [PubMed]

113. Huang, X.; Shaffer, P.L.; Ayube, S.; Bregman, H.; Chen, H.; Lehto, S.G.; Luther, J.A.; Matson, D.J.; McDonough, S.I.; Michelsen, K.;
et al. Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. Nat. Struct. Mol. Biol.
2016, 24, 108–113. [CrossRef]

114. Gomila, A.M.; Rustler, K.; Maleeva, G.; Nin-Hill, A.; Wutz, D.; Bautista-Barrufet, A.; Rovira, X.; Bosch, M.; Mukhametova, E.; Petukhova,
E.; et al. Photocontrol of Endogenous Glycine Receptors In Vivo. Cell Chem. Biol. 2020, 27, 1425–1433.e7. [CrossRef]

115. Zhorov, B.S.; Bregestovski, P.D. Chloride Channels of Glycine and GABA Receptors with Blockers: Monte Carlo Minimization
and Structure-Activity Relationships. Biophys. J. 2000, 78, 1786–1803. [CrossRef]

116. Gielen, M.; Corringer, P.J. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J. Physiol.
2018, 596, 1873–1902. [CrossRef]
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