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Abstract: Melanoma is one of the most aggressive types of skin cancer, with significant heterogene-
ity in overall survival. Currently, tumor-node-metastasis (TNM) staging is insufficient to provide
accurate survival prediction and appropriate treatment decision making for several types of tu-
mors, such as those in melanoma patients. Therefore, the identification of more reliable prognosis
biomarkers is urgently essential. Recent studies have shown that low immune cells infiltration is sig-
nificantly associated with unfavorable clinical outcome in melanoma patients. Here we constructed a
prognostic-related gene signature for melanoma risk stratification by quantifying the levels of several
cancer hallmarks and identify the Wnt/β-catenin activation pathway as a primary risk factor for low
tumor immunity. A series of bioinformatics and statistical methods were combined and applied to
construct a Wnt-immune-related prognosis gene signature. With this gene signature, we computed
risk scores for individual patients that can predict overall survival. To evaluate the robustness of
the result, we validated the signature in multiple independent GEO datasets. Finally, an overall
survival-related nomogram was established based on the gene signature and clinicopathological
features. The Wnt-immune-related prognostic risk score could better predict overall survival com-
pared with standard clinicopathological features. Our results provide a comprehensive map of the
oncogene-immune-related gene signature that can serve as valuable biomarkers for better clinical
decision making.

Keywords: immunotherapy; clinical outcomes; prognosis; immune evasion

1. Introduction

Melanoma is considered a highly aggressive type of skin cancer, and the incidence rate
of this type of malignancy has significantly been increasing over the past few decades [1].
Although melanoma accounts for less than 5% of all skin cancer types, it is responsible for
approximately 75% of skin cancer deaths [2]. Metastasis in the brain is a common issue
and accounts for the high death rate in patients with advanced melanoma [3]. Nearly 20%
of patients diagnosed with melanoma are found to have brain metastasis at the time of
diagnosis, which is significantly associated with poor prognosis and survival [3–5]. The
survival rate dramatically decreases to 23% in metastasis patients [6]. The effort of most
research has been focused on identifying reliable markers to evaluate and estimate the
prognosis of melanoma patients [7–10]. The tumor microenvironment harbors cellular and
non-cellular components. Cellular components such as immune cells have a strong influ-
ence on tumorigenesis, progression, and metastasis. Understating tumor immunity and
the tumor microenvironment (TIME) led to the development of cancer immunotherapies.
There are several extra and intracellular mechanisms correlated with tumor immuno-
genicity and immune escape. Immune escape has been considered a critical hallmark
of solid tumors. Tumor cells may escape immune recognition through the downregula-
tion of MHC class I expression [11], production of immunosuppressive cytokines such as
TGF beta [12], IL10, and immune checkpoint proteins expressed on the cancer cell such
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as PDL1, CTLA-4, and TIGIT [13]. The activation of several oncogenes, such as Wnt/β
catenin [13] and MYC [14], or loss of PTEN [15] function can trigger the production of
immune suppression molecules. An extracellular mechanism such as hypoxia [16] or aber-
rant tumor vascularization [17] also has a high impact on tumor immunogenicity. Cancer
immunotherapy strategies, including PD-1/PD-L1 and CTLA-4 inhibitors, have become
one of the most important therapy for melanoma [18]. However, due to the complexity of
the tumor microenvironment, only a minority of patients respond to it, and the majority
have a partial response or no response to the therapy [19]. The discovery of biomarkers
using public databases has been applied to investigate the prognostic markers in several
cancer types. Currently, only a few prognosis models based on immune-related genes
that systematically evaluate the tumor immune microenvironment (TIME) and predict the
overall survival of melanoma patients are available [20]. Therefore, it is crucial to construct
a prognosis gene signature that can provide better values for recognizing high-risk patients
than the traditional tumor-node-metastasis (TNM) staging system, especially for the earlier
stages. Here we aimed to discover novel biomarkers that would effectively predict low
tumor immunity and the overall survival of melanoma patients. In the present study, a
large cohort of melanoma patients from the Cancer Genome Atlas (TCGA) database was
used to screen for the primary risk factor for low tumor immune-cells infiltration. Next,
a prognosis gene signature was constructed. After constructing the risk signature score,
multiple melanoma transcriptome datasets from the Gene Expression Omnibus (GEO)
database were adopted as the validation sets for evaluating the result. Furthermore, the
immune-related gene signature was analyzed in order to predict the durable clinical benefit
of immune checkpoint blockade therapy using the melanoma immunotherapy dataset.

2. Results
2.1. Identification and Validation of Melanoma Immune Subtypes

The detailed workflow of the study design and analysis is shown in Figure S1. After
data processing, a total of 461 TCGA–SCKM patients with an overall survival greater than
30 days were included for the rest of this study. The expression signature score of 28 im-
mune gene-sets was used as the definitive input for the ssGSEA analysis and consensus
clustering. Based on the comparison of the cumulative distribution function (CDF) curve
from two to nine cluster numbers, the consensus clustering matrixes (Figure S2a,b), and the
number of tests supporting the cluster number from the gap statistics analysis (Figure 1a),
three distinct clusters were identified. PCA and the silhouette coefficient confirm the stabil-
ity of the three clusters (Figure S2c,d). Patients in cluster C3 (n = 86) presented significantly
better prognostic values for overall survival (OS), while patients in cluster C2 displayed
a strong tendency for poor clinical outcomes (Figure 1b). The extent of the immune infil-
tration score increased in the following order: C3 > C1 > C2. Meanwhile, the ESTIMATE
algorithm (a known immune scoring algorithm) was used to calculate the immune score of
the three subtypes. For instance, C3 had the highest ssGSEA scores for the genes related to
the Th1 cells, B cell, activated CD8 T cells, and immune checkpoint, along with the higher
ESTIMATE immune score (Figure 1c). Then, the expression of seven immune checkpoint
proteins (CD80, PDCD1, CD274, PDCD1LG2, CTLA4, HAVCR2, and LAG3) was analyzed.
With respect to three immune subtypes, the expression of the checkpoint genes decreased
in the sequence of C3 > C1 > C2 (Supplementary Figure S3a–g).
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Figure 1. Classification of human skin cutaneous melanoma (SKCM) based on immune cells infil-
tration; (a) Estimation of optimal cluster number by gap statistics analysis; (b) Kaplan–Meier plot of 
overall survival for patients in the three immune-related groups; (c) Heatmap of the immune sub-
types based on the ssGSEA scores for 28 immune gene sets. 
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A literature survey was carried out to collect mechanisms and related gene signatures 
correlated with low tumor immunity or immune evasion. Based on the ssGSEA scores of 
cancer immune evasion mechanisms and immune subtypes information in the training 
set, the odds ratio of each mechanism was calculated and ranked. Compared with other 
cancer-immune-evasion mechanisms, such as Hypoxia, MYC activation, angiogenesis, 
and fatty acid metabolism, multinomial logistic regression analysis indicated that Wnt/β 
catenin activation was the primary risk factor among various hallmarks of cancer (odd 
ratio: 2.678, p–value <0.01). Table 1 shows the odds ratio derived from multinomial regres-
sion analysis for each cancer-immune-evasion mechanism. Figure 2a shows that the Z-
scores of the Wnt/β ssGSEA were significantly elevated in the low immune subtype com-
pared with patients with higher immune cell infiltration. In addition, we found a negative 
correlation between increasing Wnt/β scores and survival status (Figure 2b). 

  

Figure 1. Classification of human skin cutaneous melanoma (SKCM) based on immune cells infil-
tration; (a) Estimation of optimal cluster number by gap statistics analysis; (b) Kaplan–Meier plot
of overall survival for patients in the three immune-related groups; (c) Heatmap of the immune
subtypes based on the ssGSEA scores for 28 immune gene sets.

2.2. Wnt/β Activation Is Identified as the Primary Risk Factor for Low Immune Infiltration
in Melanoma

A literature survey was carried out to collect mechanisms and related gene signatures
correlated with low tumor immunity or immune evasion. Based on the ssGSEA scores of
cancer immune evasion mechanisms and immune subtypes information in the training
set, the odds ratio of each mechanism was calculated and ranked. Compared with other
cancer-immune-evasion mechanisms, such as Hypoxia, MYC activation, angiogenesis,
and fatty acid metabolism, multinomial logistic regression analysis indicated that Wnt/β
catenin activation was the primary risk factor among various hallmarks of cancer (odd ratio:
2.678, p-value < 0.01). Table 1 shows the odds ratio derived from multinomial regression
analysis for each cancer-immune-evasion mechanism. Figure 2a shows that the Z-scores of
the Wnt/β ssGSEA were significantly elevated in the low immune subtype compared with
patients with higher immune cell infiltration. In addition, we found a negative correlation
between increasing Wnt/β scores and survival status (Figure 2b).
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Table 1. Result of multinomial logistic regression in melanoma TCGA sample.

Dependent Variable

Low Immune High Immune

Hypoxia 2.459 * 0.556
Wnt/β catenin Signaling Pathway 2.678 ** 0.718

TGF-β Signaling Pathway 1.749 0.274 **
DNA Repair 0.6 1.628

NOTCH Signaling Pathway 1.524 0.276 **
PI3K_AKT_MTOR Signaling Pathway 0.391 ** 0.878

MTORC1 Signaling Pathway 0.779 1.485
MYC Oncogene activation 0.98 3.345 *

EMT 1.694 1.18
Fatty Acid Metabolism 2.143 0.097 ***

Oxidative Phosphorylation 0.442 4.502
Glycolysis 2.248 0.194 **

P53_Pathway 1.289 1.323
Angiogenesis 0.607 0.115 **

Mismatch Repair 1.067 0.625
MAPK Signaling Pathway 0.180 *** 3.115

Antigen Processing and Presentation 0.026 ** 4.273 ***
p-value: * <0.05; ** <0.01; *** <0.001

Note: An odds ratio above 1 indicates that there is a higher likelihood of having the outcome, and an odds ratio
of below 1 means that there is a smaller likelihood of having the outcome.
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free R2 = 0.95) was selected as the soft-thresholding parameter to construct a scale-free 
network (Figure S4a,b). In total, seven non-grey modules were identified. For genes that 
are not assigned to any of the modules and not co-expressed, WGCNA represents them 
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Figure 2. (a) Wnt/β catenin activation was significantly elevated in patients with low immune
infiltration; (b) Survival status and a higher Wnt/β activation score are significantly correlated.

2.3. Establishment of Prognosis Wnt–Immune–Related Gene Signature

To identify Wnt/β-related gene modules associated with the immune score, WGCNA
was performed in the TCAG melanoma samples using known Wnt/β-catenin activation
genes and immune scores (Figure 3a). In the presented study, the power of β = 3 (scale-
free R2 = 0.95) was selected as the soft-thresholding parameter to construct a scale-free
network (Figure S4a,b). In total, seven non-grey modules were identified. For genes
that are not assigned to any of the modules and not co-expressed, WGCNA represents
them in a grey module. Among all, the brown module showed the highest correlation
with immune score (Figure 3b). The correlation between individual genes and biological
traits (immune score) was defined as the gene significance (GS). Using the threshold of
the p-value of <0.0001, 215 hub genes were extracted. The hub genes were submitted
to the univariate cox regression analysis. With a threshold of p-value < 0.001, 70 genes
significantly correlated with survival were identified. Then, the LASSO regression model,
with an optimal lambda value of 0.0515, was used to find the most robust survival-related
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prognosis genes (Figure 3c,d). Here, in order to prevent overfitting, we used 10–fold cross–
validation. Seven non-zero coefficient genes (IRX3, GBP4, CSNK1E, DOK1, FGD1, IFIH1,
DDX60) were identified as final prognosis−related genes. The distribution of LASSO
coefficients of the candidate genes is summarized in Figure 3e. Using the expression of each
candidate gene and coefficient value derived from LASSO regression, the Wnt-immune
risk score for each patient was constructed using the following equation: ∑i: Coefficient
(mRNAi) × Expression (mRNAi). Finally, the estimation of the cutoff value for defining
high- and low-risk score subtypes (Figure 3e) was performed by the maximally selected
rank statistics method (the most significant split based on the standardized log-rank test),
and patients were grouped into the low- and high-risk subtypes.
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Figure 3. Establishment of a Wnt−immune-related gene signature. (a) WGCNA was performed with 
WNT beta catenin activation−related genes and immune scores; (b) A total of 7 non−grey modules 
Figure 3. Establishment of a Wnt-immune-related gene signature. (a) WGCNA was performed with
WNT beta catenin activation-related genes and immune scores; (b) A total of 7 non-grey modules
were identified. The brown module, which shows the highest correlation (r = 0.93, p = 4e−202),
was considered the most correlated with hypoxia; (c,d) The LASSO Cox regression model was used
to identify the most robust markers, with an optimal λ value of 0.0515; (e) Distribution of LASSO
coefficients of the WNT-Immune-related gene signature; (f) Scatter plot shows the standardized
log-rank statistic value for each corresponding risk score cutoff.
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2.4. Wnt-Immune Risk Score Serves as a Risk Factor for Overall Survival Prediction

In the melanoma TCGA dataset, out of seven risk markers, four were shown to be
positively correlated with the immune score, while three showed a negative correlation
(Figure 4a). A Kaplan–Meier analysis showed that the patients with low-risk scores exhibited
a better prognosis than higher risk-scored patients (Figure 4b). The risk curve and scatter
plot illustrate that an increasing risk score was correlated with higher mortality (Figure 4c).
In addition, among several clinicopathological features, the risk score driven from our
candidate gene signature acted as an independent risk factor for overall survival (HR:4.2,
p-value < 0.001) in the multivariate Cox regression analysis (Figure 4d). The heatmap of
the risk score signature in this cohort showed that the expression levels of DDX060, GBP4,
IFIH1, and DOK1 were higher in the low-risk group than in the high-risk group. In contrast,
FGD1, IRX3, and CSNK1E expression were higher in the high-risk patients (Figure 4e).
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Figure 4. Prognostic analyses of 7 gene signatures in TCGA dataset. (a) Pearson correlations of the
seven gene signatures with the tumor immune score. Four genes showed a positive correlation with
tumor immune score, and three negatively correlated. The line thickness represents the correlation
value; (b) Kaplan–Meier analysis showed higher risk scores correlated with worse OS; (c) Risk score
distribution in TCGA dataset; (d) Multivariate Cox regression analysis revealed that risk score was
an independent risk factor for OS; (e) Heatmap of the candidate genes in the prognostic classifier.
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2.5. Validation of Risk Score in the Test Datasets

To confirm the robustness of the candidate biomarkers for predicting the survival of
melanoma patients, the result was further validated in the four independent melanoma
gene expression datasets. Similar to the training dataset, Kaplan–Meier analysis and risk
score distribution revealed that higher risk scores predicted worse overall survival in all
test datasets (Figure 5a–d).
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Kaplan–Meier analysis, distribution of risk score of validation datasets I to IV, respectively. The
black dotted line indicates optimum cutoff dividing patients into low-risk and high-risk subtypes.
Statistical significance was determined by the log-rank test.
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2.6. Enriched Pathways, Immune Infiltration, and Genomic Alterations Analyses between Different
Risk Groups

To further discover differences in pathways activation between high- and low-risk
score patient groups, a single sample gene set enrichment analysis was performed using
10 KEGG pathways correlated with metabolism, environmental signaling, cell growth, and
death. All pathways and correlated categories have been summarized in Table S3. In total,
36 pathways (Figure 6a) were differentially enriched between two groups (|FC| > 1.2,
FDR < 0.01). The result showed that patients with higher risk scores had decreased activa-
tion of cell death-related pathways. In contrast, the mTOR signal transduction pathway
was enriched in the high-risk group (Figure S5a,b). Next, we evaluate the correlation
between risk score and T cell infiltration using the T cell score dried from the immune
scoring step. As we expected, the result indicated that high-risk patients have lower CD8
T cells infiltration (Figure 6b). We further analyzed the occurrence of somatic mutations
and their influences on gene expression. The top 20 most frequently mutated genes in each
risk score group are shown in Figure S5c,d. By analyzing the TCGA genomics, we also
found that the gene alteration rates in the melanoma TCGA dataset were 12% for DDX60,
5% for CSNK1E, 2.8% for FGD1, 2.1% for GBP4, 4% for IFIH1, 1% for DOK1, and 0.7%
for IRX3 (Figure 6c), and these alterations were not significantly correlated with mRNA
expression. Instead, we found the DNA methylation levels of protective genes such as
GBP4, DOK1 negatively correlated with their mRNA levels (Figure 6d–f), suggesting that
DNA hypermethylation may underlie the low expression of these genes in the high-risk
group (low immunity). Moreover, hypermethylation of CSNK1E in the low-risk group
(high-immunity) might be correlated with the lower expression of this gene. The heatmap
summarized the gene signature methylation levels in high and low risk (Figure 6g). FGD1
was excluded from this analysis due to a lack of methylation data.
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2.7. Wnt-Immune-Derived Signatures Predict Immunotherapy Response

Next, we evaluated whether the signature could predict the response to immune
checkpoint blockade (ICB). By analyzing a melanoma immunotherapy dataset (GSE91061),
we found that patients with low-risk scores had a higher immunotherapy response rate
than patients with high-risk scores (chi-square test, p = 0.01, Figure 7a). The ROC curve
also showed that the gene signature could predict the Nivolumab therapy response of
melanoma patients (AUC = 0.726, 95% CI = 0.5653–0.8868, Figure 7b). Kaplan–Meier
analysis of this cohort showed that patients with high-risk scores had a worse survival
rate than patients with low-risk scores (log-rank p = 0.001, Figure 7c). ROC curves for
survival prediction showed that the risk score had a higher AUC than other immune-related
biomarkers (PD-L1, CD8A, and IFNG, Figure 7d). In summary, these results suggest that
the seven-gene signature is a potential predictor of immunotherapy response.
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2.8. Construction and Validation of Nomogram Based on Immune-Related Gene Signature and
Clinicopathological Risk Factor

Furthermore, with the integration of risk score, age, tumor stage, gender, and Breslow
thickness, a nomogram using the TCGA melanoma dataset was established to predict
individual risk of three- and five-year survival (Figure 8a). The result indicates that the
seven-gene signature is significantly associated with the clinical outcome of melanoma
patients. Compared with the ideal model (45-degree grey line), the calibration plots for
three and five-year survival rates were predicted well in the TCGA dataset Figure 8b. The
result of the ROC analysis revealed that the nomogram prediction efficiency was better than
other clinicopathological features (Figure 8c). Finally, the nomogram result was validated
in the independent dataset (Figure S6a,b). The validation result confirmed the robustness
of the nomogram. In summary, the nomogram showed the most potent and stable ability
for survival prediction, with an average AUC above 0.7, better than the pathological TNM
staging alone.
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3. Discussion

Melanoma is considered the most aggressive and fatal type of skin cancer, with the
challenge of identifying reliable and robust prognostic biomarker candidates. As tumor
immunogenicity is an important factor that may confound immunotherapy response and
tumor progression, the development of immune-related biomarkers can provide a new
approach to clinical design making and individualizing treatment. So far, some immune-
related gene signatures have been established for survival prediction in different cancer
types, including melanoma, bladder, and breast cancer. Several recent studies constructed
their gene signatures by only comparing high and low immune infiltration subtypes using
immune-related genes from previously published literature. Although, this type of study
is commonly used, the underlying mechanism of tumor low immunity cannot be identified
through the analysis processes. Understanding the relationships between immune infiltra-
tions with cancer cells or environmental mediators empowers the characterizing of tumor
complex biology, thereby supporting more precise therapy decisions. In this study, out of
various tumor-related mechanisms, we identified Wnt/β activation as the primary risk
factor for low immune infiltration using ssGSEA and multinomial logistic regression in the
TCGA melanoma dataset. WGCNA was performed to identify Wnt/β activation-related
gene modules based on transcriptome profiling data. Next, the univariate and LASSO Cox
regression analyses were preformed to screen robust prognostic biomarkers and establish a
Wnt-immune-related gene signature. Afterward, the prognostic value of the gene signature
was validated in four independent melanoma transcriptome datasets. In all validation
datasets, the gene signature showed the capacity to discriminate high-risk patients. The
result suggested that the signature can serve as a reliable risk factor for melanoma patient
stratification. Enriched pathways, genomic alterations were also analyzed and compared
in different risk score groups, and we observed that a high-risk score was significantly
correlated with more aggressive molecular changes, such as enriched mTOR activation, and
downregulation of the apoptosis pathway. Interestingly, pathways correlated with amino
acid and fatty acid metabolisms were differentially enriched between two risk score groups,
suggesting a potential correlation between Wnt/β catenin activation and the metabolic
reprogramming of cancer cells which can affect tumor immunogenicity and survival. Seven
genes identified by this study can bring new insights into melanoma progression. In the
current study, we found that higher expressions of FGD1, CSNK1E, and IRX3 are corre-
lated with shorter survival of melanoma patients. Faciogenital Dysplasia 1 (FGD1) was
involved in multiple biological processes, such as cell cycle progression and cell polarity,
and exhibits oncogenic behaviors in hepatocellular carcinoma and osteosarcoma [21,22].
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It has been known that FGD1 regulates the expression of PDL1 in a PTEN-dependent
manner and regulates PDL1 therapy resistance [21]. CSNK1E (Casein Kinase 1 Epsilon)
has been found as a synthetic lethal (SL) to TP53 and has been suggested as a promising
target for TP53-mutated cancer patients [23]. This gene is a known component of the Wnt
signaling pathway, and in response to WNT signaling, CSNK1E phosphorylates a large
number of proteins [24]. Interestingly, we found that a higher expression of CSNK1E is
correlated with shorter survival in melanoma patients. This gene might act as an SL pair
for mutated TP53 in melanoma patients, which constitute ~30% of patients and, therefore,
a potential novel therapeutic target in this type of tumor. IRX3 (Iroquois Homeobox 3) is
a risk biomarker for melanoma patients. IRX3 has been suggested as a tumor-promoting
gene in several tumors such as hepatocellular carcinoma [25] and may contribute to tumor
angiogenesis [26]. Based on the literature, these three genes may have oncogenic properties
in melanoma and can be considered novel melanoma therapeutic biomarkers. We also
found that the overexpression of GBP4, DOK1, DDX60, and IFIH1 is correlated with better
overall survival in several melanoma datasets. Guanylate-binding protein 4(GBP4) belongs
to the interferon-stimulated factor that acts as a protective factor in host defense, and
several genes from the GBP family act as tumor suppressors [27,28]. In addition, a recent
study found the GBP4 was positively correlated with immune cell infiltration in melanoma
patients [29]. Docking protein-1 (DOK1), a tumor suppressor, is frequently downregulated
in human tumors such as ovarian cancer, Burkitt lymphoma, head and neck cancer (HNC),
chronic lymphocytic leukemia (CLL), lung cancer, and breast cancer [30,31]. Based on
our result, we hypothesize that this gene might act as a tumor suppressor in melanoma.
DExD/H-Box Helicase 60 (DDX60) is involved in RIG-I-dependent and independent im-
mune response [32]. Interferon induced with Helicase C Domain 1 (IFIH1) is a member
of the IFN gamma family and has been suggested as an inducer of growth inhibition or
apoptosis of multiple types of cancer cells [33]. Our result found a positive correlation
between the expression of this gene and longer survival. A recent study emphasized the
function of Wnt/β catenin activation in immunotherapy resistance [34]. Therefore, we ana-
lyzed the prediction power of the signature in immunotherapy response. In addition to the
survival prediction power of the signature, we found that in the immunotherapy dataset,
patients with higher risk scores exhibited less therapeutic responses compared to lower risk
score patients, which indicates the gene signature could also serve as a potential marker
of immunotherapy response prediction in melanoma. In the present study, by integrating
several features, we generated a nomogram model. Nomograms combine multiple clinical
features, and thus nomograms have become a powerful and easy-to-use tool to evaluate
the survival probability of cancer patients. Notably, the results from this study showed
that the immune-related gene signature nomogram had significantly higher efficiency than
the staging system alone, with an average AUC above 0.7. The genes found by this study
could serve as prognosis and disease progression biomarkers. The Wnt-immune-related
signature constructed by this study could serve as prognosis, disease progression, and
immunotherapy biomarkers.

4. Materials and Methods
4.1. Data Collection and Preprocessing

Gene expression data and clinical information of melanoma patients were downloaded
from the Gene Expression Omnibus datasets (GEO) and The Cancer Genome Atlas (TCGA).
For the microarray dataset (GSE54467, GSE19234, GSE19293, GSE22153, and GSE65904),
background correction and normalization were performed by applying the robust multi-
array averaging algorithm [35]. The TCGA read counts data were normalized using the
TMM method implemented in the “edgeR” Bioconductor package [36] and then recalculated
for a library size of one million. Finally, the calculated read counts per million (CPM) values
were used as a measure of the mRNA level of a gene for the rest of the analysis. The RAN
sequencing data of the malignant melanoma subjects that received anti-PD-1 and anti-
CTLA4 therapy (GSE91016) was also downloaded from the GEO database. Patient 3 was
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excluded from the analysis due to the authors’ annotations [37]. Next, the raw count data
was normalized and quantified by the “edgeR” package. All the gene expression levels have
been log-transformed. Patients with an unknown diagnosis/follow-up date or survival
status were excluded from this study. Clinical features for data are summarized in Table S1.

4.2. Identification and Validation of Melanoma Immune Subtypes

The immune score for each sample in the training set was calculated by determining
the expression signature score for 28 immune gene-sets that have been reported as indi-
cators of immune cell infiltration [38,39]. The gene sets include tumor immune-related
cells such as T cell, B cell, and NK cell, and the gene set was correlated with activated
immune cell products such as IFNG signaling pathways, IL1, and TNFA signaling path-
way, etc. Table S2 summarizes all the immune gene sets and related references. We used
the single-sample gene set enrichment analysis (ssGSEA) method implemented in the
“GSVA” package (which calculates a gene set enrichment score per sample as the normal-
ized difference in empirical cumulative distribution functions of gene expression ranks
inside and outside the gene set) [40] to determine the enrichment score of 28 immune-
associated gene sets in each human skin cutaneous melanoma (SKCM) sample in the TCGA
database. Next, consensus clustering of patients based on their ssGSEA result was per-
formed using the “ConsensusClusterPlus” package [41]. In summary, the k-mean clustering
algorithm was used, with 1000 iterations and each using 80% of the overall samples. The
optimal number of clusters was evaluated using the “NbClust” R package (version 3;
http://cran.r-project.org/web/packages/NbClust/index.html (accessed on 5 November
2021)). In addition, the silhouette method and principal component analysis (PCA) were
used to assess the optimal number of clusters. Next, the ssGSEA score xi for each TCGA
melanoma patient i was rescaled to x′i using Equation (1).

x′i =
xi − xmin

xmax − xmin
(1)

where xmax and xmin represent the maximum and minimum ssGSEA scores obtained from
the melanoma TCGA dataset, respectively, then “pheatmap” package in R (version 1.0.12;
https://CRAN.R-project.org/package=pheatmap (accessed on 5 November 2021)) was
used for heatmap visualization of the clustering result. The ESTIMATE algorithm [42] was
used to calculate the immune score in each subtype. The algorithms use gene expression
data to infer the tumor cell composition and infiltration. The algorithm was implemented
using the “ESTIMATE” package in R.

4.3. Candidate Biomarkers Selection and Signature Construction

First, the performances of several known cancer immune evasion mechanisms in the
training set were quantified by a single-sample gene set enrichment analysis (ssGSEA)
algorithm based on TCGA melanoma transcriptome profiling data and immune evasion
mechanism-related gene sets from the Molecular Signatures Database (MSigDB) [43].
Table S3 summarized the mechanisms and related gene signatures. Multinomial logistic
regression (MLR) analysis [44] using R package “nnet” [45] was performed to identify the
effect of each mechanism on tumor immunity. Multinomial logistic regression is often
used for modeling the association between covariates and the likelihood of observing a
particular categorical outcome and can deal with categorical target variables with more than
two classes [46]. A total of 1877 genes associated with aberrant Wnt/β-Catenin signaling
from cell lines or tumor tissue-based studies were collected from the literature [47–53].
The Wnt/β activation-correlated genes were used to construct a scale-free co-expression
network and identify an immune-related module (a set of co-expressed genes which highly
correlated with the immune score) based on the patient’s transcriptome profiling data and
immune scores. The R package “WGCNA” (weighted gene co-expression network analysis)
was used for this analysis [54]. With a threshold of the p-value of GS <0.0001 and the p-value
of univariate Cox regression <0.001, candidate genes from the ‘immune-related module

http://cran.r-project.org/web/packages/NbClust/index.html
http://cran.r-project.org/web/packages/NbClust/index.html
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
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were identified. Gene significance (GS) computes the association of individual genes with
the immune score. Next, a least absolute shrinkage and selection operator (LASSO) Cox
regression model was applied to screen for the most robust prognostic markers. The 3-fold
cross-validation and 1000 iterations were performed to eliminate the potential instability of
the result. The optimal tuning parameter λ was selected through the 1-SE (standard error)
criteria. A Wnt-immune-related risk score for each patient was construed as follows:

Risk score =
n

∑
i=1

(
Expgenei × βgenei

)
(2)

where βgenei indicates the coefficients derived from the LASSO model and Expgenei repre-
sents the relative gene expression value. An optimal cutoff value was identified using the
maximally selected rank statistics method. Subsequently, a Kaplan–Meier survival curve
was constructed to evaluate the survival of the high- and low-risk group of patients. The
result was validated using the validation GEO datasets.

4.4. Further Bioinformatics and Statistical Analyses

The KEGG pathways were downloaded from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database 2021 (https://www.genome.jp/kegg/ (accessed on 5 Novem-
ber 2021)). A total of 169 human pathways were collected and clustered into 10 major cate-
gories based on the KEGG classification. Single set gene set enrichment analysis (ssGSEA)
was utilized to compute the enrichment score of each pathway in each melanoma TCGA
sample. In order to identify pathways that are differentially enriched among high- and
low-risk score subtypes, the “limma” R package [55] was used. The Benjamini–Hochberg
(BH) false discovery rate method was applied for p-value adjustment. Adjusted p-value
less than 0.01 and FC > 1.5 were considered to be included for the rest of the analysis. The
results were visualized by using the “ComplexHeatmap” R package [56]. The T cell infiltra-
tion gene–set from Table S2 was used to calculate the score of T cell infiltration for risk
score subtypes. The correlation of each gene expression and methylation level score was
calculated by the Spearman correlation. The correlation of the immune-related risk score
with the response to immunotherapy was further investigated using the anti-PD1 RNA–seq
dataset (GSE91061). All independent prognostic predictors, including age, tumor stage,
and candidate signature scores, were applied to develop a prognostic nomogram. Receiver
operating characteristic (ROC), area under the curve (AUC), and calibration curves were
plotted to predict the discrimination and accuracy of the nomogram. Next, decision curve
analysis (DCA) was performed to assess the clinical utility of the nomogram. Finally, the
result was validated on the external GEO dataset. A nomogram and calibration curve were
constructed using the R package “rms”.

4.5. Statistical Analysis

All analyses were performed using R software (version 4.1.0; https://www.r-project.org/
(accessed on 5 November 2021)) version 4.0.0 and corresponding packages. Kaplan–Meier
analysis was further conducted to evaluate the relationship between immunogenicity score
and overall survival using the “survimer” R package. The “glmnet” R package was used
for LASSO analysis. Multiple testing was adjusted by the FDR method. In this study,
FDR < 0.05 was considered a “significant” result.

5. Conclusions

In summary, we have successfully constructed a predictive model which combined
the oncogene-immune-related genes signature with clinical characteristics to estimate
the overall survival of melanoma patients. The candidate prognostic signatures devel-
oped by this study might serve as a prognostic classifier for clinical decision making and
therapeutic strategies.

https://www.genome.jp/kegg/
https://www.r-project.org/
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