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Abstract: The programs associated with embryonic roots (ERs), primary roots (PRs), lateral roots
(LRs), and adventitious roots (ARs) play crucial roles in the growth and development of roots in
plants. The root functions are involved in diverse processes such as water and nutrient absorption
and their utilization, the storage of photosynthetic products, and stress tolerance. Hormones and
signaling pathways play regulatory roles during root development. Among these, auxin is the most
important hormone regulating root development. The target of rapamycin (TOR) signaling pathway
has also been shown to play a key role in root developmental programs. In this article, the milestones
and influential progress of studying crosstalk between auxin and TOR during the development of
ERs, PRs, LRs and ARs, as well as their functional implications in root morphogenesis, development,
and architecture, are systematically summarized and discussed.
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1. Introduction

All vascular plants have root systems including embryonic roots (ERs), primary roots
(PRs), lateral roots (LRs), and adventitious roots (ARs) [1], all of which are required for
fixing plants, absorbing water and nutrients, and storing photosynthetic products. The
roots share similar structural features across plant species such as root caps, meristem zone,
elongation zone, and maturation zone. The ERs develop from a zygote acting as totipotent
stem cells. The PRs are derived from the ERs exhibiting geotropism and pluripotency. The
LRs are derived from the pluripotent stem cells of the PR cambium, xylem parenchyma, and
pericycle cells. ARs are differentiated from unipotent stem cells and existing stems, leaves,
old roots, or hypocotyls, which are typically induced and activated by various stresses.
They then undergo cell fate transitions from unipotent stem cells to pluripotent stem
cells for de novo root organogenesis, which is widely used in the asexual reproduction of
horticultural plants, forest trees, and medicinal plants. The accumulated data demonstrate
that plant hormones are the most important regulators of root development, while auxin is
the major player. Studies have demonstrated that target of rapamycin (TOR) signaling also
plays key role in root organogenesis.

Auxin in an important plant hormone proposed to function as a morphogen with
important regulatory functions during plant embryo development [2], organogenesis [3],
gravitropism [4], apical dominance [5], the flowering [6], and stress response [7,8]. The regu-
latory effects of auxin are primarily orchestrated through local biosynthesis, polar transport,
and signal transduction [9]. In the auxin local biosynthesis, the indole pyruvic acid (IPyA)
pathway dominates in higher plants and is the most extensively investigated. In this path-
way, tryptophan aminotransferase of Arabidopsis 1/tryptophan aminotransferase-related

Int. ]. Mol. Sci. 2021, 22, 11357. https:/ /doi.org/10.3390/ijms222111357 https:/ /www.mdpi.com/journal/ijms


https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms222111357
https://doi.org/10.3390/ijms222111357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222111357
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222111357?type=check_update&version=2

Int. J. Mol. Sci. 2021, 22, 11357

20f 15

(TAA1/TAR) converts tryptophan to indole-3-pyruvic acid (IPyA), and then IPyA synthe-
sizes indole-3-acetic acid (IAA) under the catalysis of flavin monooxygenase (YUCs) [10-16].
Auxin must be transported to specific parts to perform its corresponding functions. The
gradient and asymmetric distribution of auxin in plants are crucial to the formation of
plant root development patterns. This polar auxin transport is mediated by auxin influx
and efflux facilitators, whose subcellular polar localizations guide the direction of auxin
flow. Common auxin transport associated proteins primarily include influx carriers auxin
resistantl/like AUX1 (AUX/LAXs), efflux facilitator PIN-formed (PIN), and ATP-binding
cassette/multidrug resistance/P-glycoprotein (ABCB/MDR/PGP) with both influx and
efflux functions [17]. In addition to local biosynthesis and transport, auxin signaling
through receptors and downstream signal components is involved in the regulation of
several developmental processes [18]. The transport inhibitor response 1/ auxin signaling
F-boxes (TIR1/AFBs) protein is an important auxin receptor in Arabidopsis. TIR1/AFBs
is an F-box protein and a component of SKP1, Cullin, and F-box complex (SCF), which
is involved in protein degradation mediated by the proteasome. The auxin/indole-3-
acetic acid (Aux/IAA) protein is a specific substrate of the SCFT'RI/AFBs complex that
negatively regulates auxin signal transduction. Aux/IAAs interact with auxin response
factors (ARFs). ARFs are transcription factors involved in auxin-dependent transcrip-
tional regulation. Post-translational modifications, particularly the reversible protein
phosphorylation catalyzed by protein kinases and phosphatases, are also involved in
the process of auxin biosynthesis, transport, and signal transduction [19]. In addition
to natural auxin, some synthetic auxin analogs with similar structure and activities of
endogenous auxin, such as 2,4-dichlorophenoxyacetic acid (2,4-D), naphthalcneacetic acid
(NAA), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), dicamba, picloram, and quinclorac,
have been developed and are used as growth regulators or herbicides in scientific research
and commercial activities [20,21].

TOR is a phosphoinositide 3-kinase (PI3K)-related kinase [22] that is highly conserved
in eukaryotes. It plays important functions in cell proliferation and growth by regulating
protein translation, ribosome synthesis, and cell-cycle operation [23]. Clinically, mam-
malian TOR (mTOR) is an important target for disease treatment, and many familial
cancers are related to misregulation of TOR [24]. In recent years, TOR has also attracted
increasing attention from plant scientists. Of the components of the target of rapamycin
complex 1 (TORC1), only the key genes including TOR, lethal with SEC13 protein 8 (LSTS),
and regulatory-associated protein of TOR (RAPTOR) have been found in studied plants, while
no members of the TORC2 complex have been observed in plants. The copy number
of TOR differs in various species, but the structure of all TOR proteins is highly con-
served. From the N-terminal to C-terminal, the TOR protein is organized into five domains:
the HEAT repeat motif involved in protein—protein interaction, the FAT domain, the
FRB domain for rapamycin—-FK506-binding protein (FKBP12) interaction, the catalytically
active kinase domain, and the FATC domain. The FRB and FATC domains play a key
role in regulating kinase activity. During plant growth and development, factors such
as nutrition [25,26], energy [27], hormones [28], and adversity [29] activate TOR kinase
activity [30,31], while rapamycin, which is its inhibitor, is a secondary metabolite secreted
by Streptomyces hygroscopicus in the soil. After binding to the FKBP12 protein, rapamycin-—
FKBP12 targets the FRB domain of the TOR protein to form a ternary complex that blocks
TOR kinase activity and ultimately inhibits plant root growth [32]. In many plants, FKBP12
loses its binding function with rapamycin, resulting in a failure to inhibit TOR activity.
Previous genetic results demonstrated that TOR promotes root growth [33]. For example,
the homozygous loss-of-function tor /= mutants in Arabidopsis display defects and lethality
during early embryonic development [34]. Both RNA interference (RNAi)- and artificial
microRNA (amiR)-mediated suppression of TOR activity showed growth defects in the
roots and produced dwarf plants [35,36]. In addition, application of TOR inhibitors such
as rapamycin, asTORis, and AZDB8055 significantly reduced the growth of the PRs, LRs,
and ARs [37-39], while the yeast and human FKBP12 overexpression transgenic lines were
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more sensitive to rapamycin showing similar growth phenotypes [33,40]. These findings
suggest that TOR is involved in the regulation of root growth and development.

Several studies have used genetic and molecular approaches to identify functions of
auxin [41,42] and TOR [43—46] signaling in the growth and development of plant roots.
In recent years, various studies have further confirmed that TOR crosstalk with auxin
mediates plant growth and development [47-49]. This review focuses on the interactions
between auxin and TOR to regulate the development of plant ERs, PRs, LRs, and ARs.

2. Auxin and TOR Interplay Regulates the Formation of Embryonic Roots

Root growth and development depend on the root apical meristem (RAM) established
first during embryogenesis. In dicotyledonous plants such as Arabidopsis, the embryo
development progresses through these key embryo stages: zygote, dermatogen, globular,
heart, torpedo, bent, and mature [50-53] (Figure 1A). During the early embryonic develop-
ment of plants, the zygote polarization, establishment of an apical-basal axis, dermatogen
specialization, symmetrical mode transformation, hypophysis specialization, and root
meristem formation all depend on auxin [54]. The formation of the root meristem, which is
regulated by auxin and TOR (Figure 1B), is a key step for zygotic embryogenesis. Auxin
synthesis in the integuments of the ovule is upregulated and transported to the apical
domain of proembryo, leading to an increase in auxin levels and ultimately mediating
early embryonic development [55]. During embryonic development, the root meristem
initiates at the globular stage, where the auxin transporters PIN1/7 transport auxin to
the suspensor cells, while the transported auxin accumulates in the uppermost cells of
the suspensor [56]. However, auxin accumulation is insufficient to complete the establish-
ment of hypophysis, and additional auxin-dependent signals are required. ARF5 (also
called MONOPTEROS, MP) and TIAA12 (also called BODENLOS, BDL) mediate down-
stream signaling as the core of auxin signaling pathway in Arabidopsis embryogenesis.
The target of monopteros 5 (TMOS5) and TMO7? are members of the bHLH transcription
factor family and expressed in the hypophysis-adjacent embryo cells. These factors are
necessary for IAA12/BDL-ARF5/MP-dependent embryonic root formation [57]. The
TMO5/LHW dimers regulate periclinal division, vascular initial cell production, vascu-
lar cell proliferation, and xylem fate determination in the embryo and RAM [58]. More
importantly, TMO? is synthesized and localized to the hypophysis and plays a role in
auxin-dependent ER formation [57,59]. In addition, ARF5/MP promotes the expression
of PINs in the pro-vascular cells of globular embryos, resulting in auxin accumulation in
the basal pole of proembryos [60]. The hypophysis cells divide unevenly, while smaller
cells develop into a quiescent center (QC), which can maintain the stem-cell characteristics
of the cells around the root meristem and subsequently differentiate into different tissues.
Wauschel-related homeobox 5 (WOX5) is a HOMEOBOX family gene specifically expressed in
QC and plays a vital role in determining the fate of stem cells regulated by ARF5 [61-63].
Many transcription factors and proteins are involved in the development of the ERs in
the later stage of embryonic development, including PLETHORA (PLT), SCARECROW
(SCR), SHORT ROOT (SHR), and RETINOBLASTOMA RELATED (RBR). ARF5 activates
the expression of the downstream target PLT gene [60]. PLT belongs to the AP2/ERF
transcription factor family and plays a key role in the maintenance and specialization of
root stem cells during embryonic development [64]. SHR is a key transcription factor for
cell fate determination containing the GRAS domain and is expressed from the columella.
Its protein migrates to the endothelium, where it interacts with another transcription factor,
SCR, from the same family. It is mobilized into the nucleus by SCR, activates the expression
of CYCD6;1, promotes the asymmetric division of the initial cells, and produces endothelial
and cortical cell lines. CYCD6;1 phosphorylates RBR. The interaction of RBR and SCR
inhibits the transcriptional activation of CYCD6;1 by SHR-SCR, thereby preventing further
asymmetric division [59]. Generally, auxin local biosynthesis, polar transport (PINs and
LAXSs), reporter (TIR1/AFBs), and the downstream output of signal transduction (TMO5/7,
SHR, SCR, PLT, and WOX5/7) work together to trigger the formation of ERs [65].
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Figure 1. Auxin and TOR interplay regulates the formation of ERs. (A) The ontogeny of the root meristem during

embryogenesis. Cell types and tissues are marked with different colors. Note that the hypophysis is specialized and divided

into a quiescent center (QC) and columella in the early globular stage. (B) A schematic diagram for the molecular mechanism

of how auxin and TOR work to regulate the formation of ERs. The straight arrows indicate direct positive regulation; the

dotted arrows indicate indirect or multistep positive regulation; the T-shaped symbols indicate negative regulation. See

main text for details. Abbreviations: ERs, embryonic roots; PIN, PIN-formed; IAA, auxin/indole-3-acetic acid; ARF, auxin
response factor; TMO5/LHW, target of monopteros 5/Lonesome highway; WOX5, Wuschel-related homeobox 5; PLT,
plethora; SCR, scarecrow; SHR, short root; CYCD, cyclin D; RBR, retinoblastoma related; E2F, early 2 factor; TOR, target of
rapamycin; RAPTOR, regulatory-associated protein of TOR; LST8, lethal with SEC13 protein 8.

Due to the lethality of tor/~, the studies of TOR-mediated embryonic development
are much more difficult than those of auxin signaling during embryonic root formation.
Several mutations interfere with normal auxin activity (such as arf5, pinl, 3, 4, 7, yucl, 4, 10,
11) and have been shown to affect embryonic root meristem formation [66]. Furthermore,
Menand et al. were the first to use forward genetics to isolate two T-DNA insertion mutants
tor1 and tor2 from Arabidopsis in 2002; this homozygous mutant can lead to developmental
arrest at the early embryonic stage [30]. Similarly, the mutation of Atraptorl the key
subunit of TOR complex 1 and caused defects during early embryonic development in
plants. It is phenotypically similar to tor [67,68]. TOR also directly regulates ribosomal
protein S6 kinase (S6K) activity through phosphorylation, thereby regulating the protein
translation or re-initiation of translation. Consistently, s6k1/s6k2 has an embryonic lethal
phenotype similar to tor [69]. Another study used chemical genetics to determine that S6K2
overexpression can partially rescue the growth arrest phenotype caused by tor [39]. These
observations imply that the TOR-S6K pathway mediates TOR regulation of the synthesis
of related proteins during plant embryo development, many of which are related to auxin
signaling. Overall, auxin and TOR signals share overlaps during the early embryonic
development of plants and are vital to the formation of ERs.
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3. Auxin and TOR Interact to Regulate the Development of Primary Roots

During post-embryonic seed development, the RAM is one of the main repositories of
self-renewing stem cells, which provides new cells to support root growth. The longitu-
dinal structure of the root is divided into the root cap (RC), the meristem zone (MZ), the
elongation zone (EZ), and the maturation zone (Figure 2A). QC is located on the tip of the
RAM, where stem cells are produced. The stem cells produce their progeny cells, which
divide and differentiate, establishing the elongation zone [70]. Studies have demonstrated
that the maximum concentration of auxin is closely related to root morphogenesis, while
the establishment of an auxin concentration gradient can be achieved by the polar transport
of auxin transport carrier PINs. The polar localization of PIN auxin efflux carriers is closely
related to root gravitropism [71-76]. The auxin signal transduction elements IAA17 (also
known as AUXIN RESISTANT3, AXR3) and ARF10/ARF16 negatively regulate WOX5
transcription and restrict its transcript into QC, thereby inhibiting PLT1/2 gene expression
and mediating the differentiation of distal stem cells (DSCs). At the same time, PLT and
SCR interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription fac-
tors to directly regulate the promoter activity of the WOX5 and maintain WOX5 expression
level in QC [77]. However, in transit-amplifying cells, PLT expression is restricted by root
meristem growth factors (RGFs), while, in the stem-cell niche (SCN), with the highest PLT
levels, PLT activates miR396 to degrade proliferation induction of the mRNA of RGFs [78].
This feedback mechanism helps maintain PLT expression levels around the SCN, forming a
PLT concentration gradient consistent with the auxin concentration gradient. Furthermore,
an RGF peptide gradient recognized by RGF receptors helps stabilize the PLT transcription
factor gradient [79]. Interestingly, Santuari et al. found that auxin can induce PLT expres-
sion, while PLT also controls the synthesis, transport, and signal transduction of auxin. For
example, PLT2 directly activates the gene expression of PIN4, YUC3, and ARF5 [80]. In
summary, the IAA-ARF, PLT-SCR-WOX5, and RGF-PLT signaling pathways are involved
in auxin-mediated growth and development in plant PRs (Figure 2B).

Auxin can also interact with TOR to regulate the development of PRs through the
ABP1-ROP2-PINs signaling pathway (Figure 2B). Auxin-binding protein 1 (ABP1) is one
of the earliest identified cell surface receptors for auxin, which can bind to auxin and syner-
gistically activate GTPase Rho-related protein 2 (ROP2). Activated ROP2 interacts with
PINs on the cell surface to participate in endocytosis [81]. As described in the preceding
part of the text, the PINs act as efflux facilitators, which are involved in the polar transport
of auxin. Additionally, the auxin signal enhances ROP2 activity, which can bind to TOR
and promote its phosphorylation [82]. TOR is a highly conserved master regulator of plant
root development, which is involved in protein translation and the cell cycle. TOR can
activate S6Ks via phosphorylation to control the protein translation process. Schepetil-
nikov et al. found that auxin activates the TOR-S6K1 signaling pathway, which leads
to Eif3h phosphorylation. Phosphorylated Eif3h regulates mRNA containing upstream
open reading frames (uUORFs) to complete the translation re-initiation [83]. Another study
demonstrated that the mRNA regulated by TOR-56Ks includes auxin signaling pathway
elements such as ARFs and RBR [69]. Therefore, auxin activates TOR-56Ks, a signaling
pathway that regulates auxin signaling protein synthesis. Early 2 factors (E2Fs) are key
transcription factors regulating the cell cycle and are a direct substrate of TOR in plants.
TOR can activate gene expression in the G;-S and G,—M phases by phosphorylating E2Fa
and E2Fb, respectively [84]. In contrast, auxin-responsive WOXS5 inhibits the QC cell
division promoted by CYCD3;3 and CYCD1;1, and regulates the expression of CYCD3;3 in
QC by directly interacting with CYCD3;3 promoters. Therefore, WOX5 can initiate and
maintain the quiescent state of QC by excluding CYCD activity from QC and inhibiting cell
division [85]. Additionally, through a large-scale screening of Arabidopsis mutants, Yuan
et al. identified the auxin efflux protein PIN2 as a key downstream target of TOR kinase
and found that glucose-activated TOR phosphorylates and stabilizes the PIN2 protein. This
affects the gradient distribution of PIN2 in the PRs of Arabidopsis [86]. In summary, auxin
regulates the activity of TOR kinase, while TOR determines the auxin maximum and its
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concentration gradient. They coordinate to regulate the development of PRs in protein
synthesis, the cell cycle, and auxin transport.
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Figure 2. A schematic diagram of how auxin and TOR synergistically regulate the development of PRs. (A) The transport and

concentration gradients of auxin in the primary RAM. Cell types and tissues are marked with different colors. Abbreviations:

RAM, root apical meristem; EZ, elongation zone; MZ, meristem zone; RC, root cap; QC, quiescent center. (B) The molecular

mechanism of auxin and TOR cross-regulate primary root development. The straight arrows indicate direct positive

regulation; the dotted arrows indicate indirect regulation; the T-shape symbols indicate negative regulation. See main
text for details. Abbreviations: PIN, PIN-formed; SCF, SKP1, Cullin and F-box complex; TIR1/AFBs, transport inhibitor
response 1/auxin signaling F boxes; IAA, auxin/indole-3-acetic acid; ARF, auxin response factor; WOX5, Wuschel-related

homeobox 5; PLT, plethora; SCR, scarecrow; TCP, teosinte-branched cycloidea PCNA; RGFs, root meristem growth factors;
DSC, distal stem cell; YUC3, yucca3; ROP2, GTPase Rho-related protein 2; ABP1, auxin-binding protein 1; S6K, S6 kinase;
CYCD, cyclin D; RBR, retinoblastoma related; E2F, early 2 factor; TOR, target of rapamycin; RAPTOR, regulatory-associated
protein of TOR; LSTS, lethal with SEC13 protein 8.

4. Auxin and TOR Spatiotemporally Regulate Lateral Roots Organogenesis

Evolved root branches, which are primarily LRs, can enhance the plasticity of plants [87].
LRs are mainly derived from pericycle cells, which are located in the outermost layer of the
central column [88]. The formation of pericycle cells can maintain the ability of a cell to
divide for a long time, allowing the plant to flexibly form LRs in response to environmental
changes [89]. The formation of LRs includes several key processes (Figure 3): (i) priming
of LRs: the Auxin is polarly transported to and accumulates in xylem pole pericycle cells,
specifying a group of LR founder cells; (ii) initiation of LRs: the activated specified LR
founder cells undergo nuclear migration, and then produce LR primordium (LRP) via
asymmetric cell division [90]; (iii) patterning of LRs: in the LRP, the polar transport of auxin-
mediated PINs forms an auxin maximum, which induces the division and differentiation
of the LRP. In this way, the LRP passes through the endodermis, cortex, and epidermis
of the primary root, until it breaks through the surface of the primary root to form LRs.
Interestingly, the auxin maximum formed in pericycle cells plays a key role in the initiation
of the LRP; however, auxin can only induce the formation of the LRP in the xylem pole
pericycle. This indicates that auxin signaling and xylem pole pericycle cell specification
both contribute to the initiation of the LRP [91].
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Figure 3. A schematic of the synergistic regulation of LRs organogenesis by auxin and TOR. (A) Models of different types of
roots, using Arabidopsis as an example. PR represents the primary root, which develops from the ER. LR represents the
lateral root, which develops from the PR. (B) The process and molecular mechanism of auxin and TOR synergistically
regulate the development of LRs. In certain xylem-pole pericycle cells, the transport and perception of auxin specify a
set of LR founder cells. The accumulation of auxin triggers the LR founder cells with nuclei migration, asymmetric cell
division, and formation of LRP. The auxin maximum induces the division and differentiation of the LRP and forms an LR
apical meristem. The straight arrows indicate direct positive regulation; the dotted arrows indicate indirect or multistep
regulation; the T-shape symbols indicate negative regulation. See main text for details. Abbreviations: LRP, lateral root
primordium; PIN, PIN-formed; SCF, SKP1, Cullin and F-box complex; TIR1/AFBs, transport inhibitor response 1/auxin
signaling F boxes; IAA, auxin/indole-3-acetic acid; ARF, auxin response factor; LBD, lateral organ boundaries domain; YUC,
yucca; LAX, like AUX1; WOX5, Wuschel-related homeobox 5; PLT, plethora; SCR, scarecrow; SHR, short root; QC, quiescent
center; SCN, stem=cell niche; S6K, S6 kinase; E2F, early 2 factor; TOR, target of rapamycin; RAPTOR, regulatory-associated
protein of TOR; LSTS, lethal with SEC13 protein 8.

Studies on Arabidopsis and other plant species have revealed the role of auxin in the
formation of the LRs [92]. First, auxin signals are transported to xylem pole pericycle cells
by AUX1 and PINs, which are sensed by the auxin receptors TIR1 and AFBs (AFB1, AFB2,
and AFB3). Second, this auxin leads to the degradation of IAA14 (Aux/IAA repressor
protein, also called solitary root, SLR) through the SCFTIRI/AFBs complex and 26S protea-
some. The de-inhibition of ARF protein activity (ARF7/ARF19) activates the target gene
lateral organ boundaries domain 16/19 (LBD16/LBD29) and other target genes required
for asymmetric cell division, initiating the formation of the LRP [93]. LBD16 (also called
ASYMMETRIC LEAVES 2-LIKE 18, ASL18) is essential for LR initiation in Arabidopsis,
which is a member of the LBD/ASL gene family encoding plant-specific transcription
factors. Recent studies in legumes have found that LBD16 is involved in the formation
of LRs and nodules, and the gene plays an important role in both processes [94,95]. Both
ARF7 and ARF9 are required for LR formation, and the arf7arf9 double mutant exhibits
defects in LR generation [96]. The overexpression of PLT3, PLT5, and PLT7 is sufficient to
restore the blocking of the formation of LRP in the arf7arf9 mutant, while, in the plt3plt5plt7
triple mutant, the morphology of the LRP, the auxin response gradient, and the expression
of the RAM marker genes are all affected [97]. These three PLT genes are downstream
of the ARF7- and ARF9-mediated auxin-response pathway. As the downstream signal of
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ARF7/19, the auxin influx and efflux carrier proteins LAX3 and PIN3 are considered a
feedback mechanism for auxin signal amplification [98]. Similar situations also occur as
PLTs affect auxin synthesis genes YUCs and transport protein PINs [98]. Additionally, the
findings of Berckmans et al. (2011) demonstrated that auxin-induced LBD18 and LBD33
could form a heterodimer and activate the expression of the transcription factor E2Fa [99].
Importantly, the loss-of-function mutant of E2Fa, E2FaRB severely affects the development
of the LRs [100]. Therefore, the ARF-LBD-E2F pathway uncovers a molecular mechanism
that converts auxin signals into cell-cycle signals.

In legumes, the results of RNAi of TOR demonstrated that TOR inhibited LR elon-
gation, changed the density, size, and number of root hairs, and reduced the expression
of cell cycle-related genes CyclinD1 and CyclinD3 [101]. In Arabidopsis, the TOR inhibitor
AZDB8055 (1 uM) inhibits cell division in LR primordia and interferes with the stimula-
tion of Azospirillum brasilense Sp245 (a symbiotic bacterium) on plants. Additionally, the
Azospirillum brasilense mutant FAJO09 with impaired auxin synthesis fails to elicit TOR
signals, displaying a phenotype similar to that of the wild type [102]. Similarly, studies in
Phaseolus vulgaris also indicate that TOR is a key regulator of LR formation during mycor-
rhizal symbiosis [103]. In summary, the plant hormone auxin is essential for stimulating
TOR signaling, while TOR also plays a pivotal role in the development of LRs in plants.

5. Auxin and TOR Synergistically Regulate the Regeneration of Adventitious Roots

The ARs and LRs share key elements of genetic and hormone regulatory networks;
however, their regulation mechanisms slightly differ. The regeneration of ARs is essen-
tial for survival after a serious wound and is considered to be a strong natural selective
trait [104]. Plants can rapidly induce auxin biosynthesis at the stimulation site via signaling
such as developmental status, environment, and wounding signals, which then trigger a
signal cascade reaction to promote cell fate transition and produce ARs (Figure 4A). Xu et al.
divided the de novo regeneration of ARs into three continuous phases: early signaling,
auxin accumulation, and cell fate transition. Cell fate transition is further divided into four
steps: priming, initiation, patterning, and emergence. This completes the transition from
cells with regenerative capacity to fully form ARs [105,106] (Figure 4B). The entire process
involves two types of cells with different functions: one is the converter cell that converts
early signals (input) into auxin flux (output); the other is the regenerative competent cell
that undergoes a fate transition under the guidance of auxin [105]. The protocambium cells
and xylem parenchyma cells around the vascular tube at the stimulation site (stems and
leaves) can regenerate. In vitro tissues stimulate the synthesis, transport, and accumulation
of auxin in the body under stimulus signal induction. The auxin maxima activate the
expression of the transcription factor WOX11 and its homologous gene WOX12. This func-
tionally upregulates LBD16 and LBD29, leading to cell fate transition in the parenchyma
cells located in or near the phylloblastoma to the initiating cells of root regeneration. This
clarifies the first step of the de novo regeneration of ARs [107]. WOX11/12 further activates
downstream WOX5/7 [108] and LBD16/29 [107], while LBDs then activate the cell-cycle
regulatory protein E2F [84]. In the [bd16 mutant, the upregulation of WOX5 and PLT1/2
was slower, compared with the wild type [109]. However, there is currently no evidence
that PLT1/2 and WOX5 are directly or indirectly regulated by LBD16. As such, LR founder
cells are transformed into root primordium cells via cell division. This is the second oc-
currence of cell fate transition, after which the root primordium cells continue to divide
and differentiate to form complete ARs. Therefore, auxin is responsible for the formation
of ARs.
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Figure 4. Auxin and TOR synergistically regulate the regeneration of ARs. (A) AR represents adventitious roots, which

can be formed after leaves, stems, or hypocotyls are injured or can be formed on hypocotyls or hypocotyl-root nodes in
response to environmental and/or developmental signals. (B) The process and molecular mechanism of auxin and TOR
synergistically regulate the development of ARs. According toXu (2018) [105] and Yu (2017) [106], the organogenesis of
ARs contains three continuous phases: early signaling, auxin accumulation, and cell fate transition. The cell fate transition
is further divided into four stages: priming, initiation, patterning, and emergence. The straight arrows indicate direct
positive regulation; the dotted arrows indicate indirect, multistep, or no direct evidence of regulation; the T-shape symbols
indicate negative regulation. See main text for details. Abbreviations: ASA1, anthranilate synthase 1; TAA1, tryptophan
aminotransferase of Arabidopsis 1; IPyA, indole-3-pyruvic acid; YUCs, yuccas; PIN, PIN-formed; IAA, auxin/indole-3-
acetic acid; ARF, auxin response factor; S6K, S6 kinase; LBD, lateral organ boundaries domain; LAX, like AUX1; WOX,
Wuschel-related homeobox; PLT, plethora; SCR, scarecrow; TCP, teosinte-branched cycloidea PCNA; E2F, early 2 factor;
TOR, target of rapamycin; RAPTOR, regulatory-associated protein of TOR; LST8, lethal with SEC13 protein 8.

ARs exist in many plant and tree species in nature, such as poplar, willow, rose, holly,
and chuanxiong, and they play an important role in asexual reproduction. Analysis of
AUX/IAA gene family mutants has demonstrated that the mutants have no or reduced ARs
similar to iaa28, iaal4/slr1, iaa19/msg2, and iaa3/hy. In contrast, overexpression of TIR1
and AUXI1 promoted the development of ARs [110]. In poplar trees, the Arabidopsis TIR1
homologous gene PagFBL1 has been identified, and it is involved in the formation of
ARs. Overexpression of PagFBL1 stimulates adventitious root formation and increases root
biomass, while knockdown of PagFBL1 delays adventitious root formation and reduces
root biomass. Further research found that PaglAA28 is a downstream target of PagFBLI,
while the PagFBL1-PagIA A28 module promotes the formation of ARs and can increase
the reproductive efficiency of poplars via cuttings [111]. In the banyan tree, a comparative
analysis of multi-omics data performed on aerial root types (Ficus microcarpa) and nonaerial
root types (Ficus hispida) demonstrated that PIN1, TAR, YUC, IAA14, ARF7/19, PLT2, and
WOX11 were highly expressed in the RAM of the aerial roots [112]. Studies in potatoes
found that TOR and auxin are required in adventitious root formation. The auxin receptor
mutant tir1 is sensitive to TOR inhibitors, while the double and quadruple mutants tirlafb2,
tirlafb3, and tirlafblafb2afb3 are more sensitive to the rapamycin inhibitor asTORis than the
single mutant tirl. Consistently, overexpression of AtTIR1 in Arabidopsis and potatoes can
partially overcome the inhibitory effect of asTORis and promote adventitious root forma-
tion under asTOR:is treatment. These observations indicate that TOR signaling regulates
adventitious root formation by mediating auxin signals in Arabidopsis and potatoes [38]. In
conclusion, auxin and TOR are involved in the regulation of ARs regeneration in plants.
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Considering the conservative regulation of the TOR signaling pathway on protein transla-
tion and the cell cycle, the auxin and TOR synergistic regulation of ARs regeneration needs
further study.

6. Outlook

Present studies have demonstrated that different types of plant roots share key
elements of the genetic and auxin-TOR regulatory networks, including TIR1/AFBs—
Aux/IAAs-ARFs, auxin—~ABP1-ROP2, SHR-SCR-PLT, WOX5/7, PINs, CYC-RBR-E2F,
and TOR-S6K/E2F/PINs. However, their specific underlying mechanisms differ slightly.
Future studies related to TOR regulation induced by plant hormones will, therefore, be of
great importance.

Additionally, studies have demonstrated certain basic principles, including the special-
ization mechanism of stem cells, cell fate determination, and cell reprogramming of plant
roots. Studying plant roots can promote their application in agriculture and biotechnology.
The “single tree makes a forest” of banyan tree, the “one bamboo makes a sea” of bamboo,
and the deep rooting of alhagi (Alhagi sparsifolia Shap.) are examples of how powerful plant
roots can be. The aerial roots of the banyan tree can grow on high-altitude branches far
from the ground. They rapidly grow toward the ground until they penetrate the soil, where
they quickly develop into supporting roots. This can reduce the risk of tree collapse and
contribute to roots constantly expanding around the tree, making the growth of a forest
possible. This mechanism has significant potential in urban agriculture, tropical agriculture,
and leisure tourism agriculture. In contrast to the banyan tree, the ARs of bamboo grow
underground; horizontal stems take root at the stem nodes. Eventually, the roots grow
downward and connect with other roots through the underground creeping rhizome. The
strong reproductive and regenerative ability of bamboo roots can form a dense forest of
bamboo trees. The alhagi plant is a desert pioneer with a huge root system. Its primary
roots can penetrate 20-30 m underground to reach water in arid environmental conditions.
As such, alhagi is expected to become a pioneer plant on Mars and other desert planets,
which could give it a central role in future Martian expeditions. There are countless plants
with well-developed root systems in nature. An in-depth study of the key functional genes
for the formation of these plant roots, a deep understanding of the biological mechanism
of root development, and the use of advanced technologies such as synthetic biology and
gene editing will all contribute to a better understanding of other economically valuable
crops, such as fruit trees and other trees with significant agronomic value.
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