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Abstract: Parkinson’s disease (PD) is a slowly progressive multisystem disorder affecting dopamin-
ergic neurons of the substantia nigra pars compacta (SNpc), which is characterized by a decrease of
dopamine (DA) in their striatal terminals. Treatment of PD with levodopa or DA receptor agonists
replaces the function of depleted DA in the striatum. Prolonged treatment with these agents often has
variable therapeutic effects and leads to the development of undesirable dyskinesia. Consequently, a
crucial unmet demand in the management of Parkinson’s disease is the discovery of new approaches
that could slow down, stop, or reverse the process of neurodegeneration. Novel potential treatments
involving natural substances with neuroprotective activities are being developed. Curcumin is
a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric). It has been
demonstrated to have potent anti-inflammatory, antioxidant, free radical scavenging, mitochondrial
protecting, and iron-chelating effects, and is considered a promising therapeutic and nutraceutical
agent for the treatment of PD. However, molecular and cellular mechanisms that mediate the phar-
macological actions of curcumin remain largely unknown. Stimulation of nicotinic receptors and,
more precisely, selective α7 nicotinic acetylcholine receptors (α7-nAChR), have been found to play
a major modulatory role in the immune system via the “cholinergic anti-inflammatory pathway”.
Recently, α7-nAChR has been proposed to be a potential therapeutic approach in PD. In this review,
the detailed mechanisms of the neuroprotective activities of curcumin as a potential therapeutic agent
to help Parkinson’s patients are being discussed and elaborated on in detail.

Keywords: curcumin; Parkinson’s disease; neuroprotection; anti-inflammatory; antioxidant;
α7-nAChR

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease after
Alzheimer’s disease (AD), which was first described by an English physician and surgeon,
James Parkinson, who wrote his Essay on the Shaking Palsy in 1817, and was later named
Parkinson’s disease by Jean-Marie Charcot [1]. PD is a slowly progressive multisystem
disorder rather than just a disease, involving massive neuropathological degeneration in
dopaminergic neurons of the SNpc and their terminals in the striatum.

Pathologically, the disease is distinguished by the phosphorylation of alpha-synuclein
protein and the formation of proteinaceous inclusions, Lewy bodies (LB) in neurons and
Lewy neurites (LN) in axons and dendrites, as well as dopaminergic nigrostriatal neuronal
degeneration [2]. Mechanistically, several factors have been implicated in dopaminergic
neuronal degeneration: (1) A genetic mutation causes protein misfolding and oxidative
stress. (2) Exposure to toxins results in mitochondrial dysfunction and an increase in
reactive oxygen species (ROS). (3) Neuroinflammation and chronic microglial activation,
both of which cause neuronal degeneration by releasing pro-inflammatory mediators and
altering other molecular and cellular functions [3–5].

PD is an age-related disorder, where the prevalence of the disease increases with
advancing age. In industrialized countries, the prevalence is around 1% for people over
the age of 60 and 0.3 percent for people of all ages [6]. Although the vast majority of
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cases are sporadic, about 10–15 percent of patients have a positive family history of PD.
Environmental insults, among other factors, contribute to the degenerative changes seen
in PD, including mitochondrial dysfunction, oxidative stress, changes in protein han-
dling, immune-modulator adaptations, and alterations to other molecular and cellular
functions [3,7].

To date, no drug cures or stops the progression of PD. Being mainly dysfunctional in
the dopaminergic system in the brain, Levodopa or L-dopa (L-3,4-dihydroxyphenylalanine)
were introduced in the 1960s as a prodrug of dopamine (DA) which enhances intracere-
bral DA concentration. Since its approval by the FDA in 1970, L-dopa has been the gold
standard treatment for PD. However, after several months to years of treatment with
L-dopa, patients develop adverse effects such as dyskinesias [8,9], which are known as
L-dopa-induced dyskinesias (LIDs). With the limitation of L-dopa use, other strategies
have been implemented to enhance dopamine release, such as DA agonist, monoamine
oxidase type B inhibitors (MAO-B), catechol-O-methyl transferase inhibitors (COMTIs),
anticholinergic, beta-blocker, antipsychotic, and amantadine [10]. Surgical intervention
becomes an option with deep brain stimulation (DBS) as a direct effect in selected PD
patients [11,12]. Typically, all the available drugs are designed to replace the function of
depleted DA in the striatum without any neuroprotective activity. However, prolonged
treatment with these agents often has variable therapeutic effects and leads to the devel-
opment of undesirable adverse reactions. With time, treatment efficacy starts to decline
and patients’ symptoms and disability get worse, affecting the quality of life with the need
for home care and frequent hospital admission [13,14]. Based on several studies, the life
expectancy of PD patients, after the onset of the disease, ranges from 6.9 to 14.3 years [15].

As previously stated, mitochondrial dysfunction, oxidative stress, and modifications
in protein handling are the three main pathophysiological derangements in PD which
affect cellular functions [2,3,5]. Thus, to ensure fewer side effects and to target different
intracellular signaling pathways, a multidisciplinary approach is needed that employs
several drugs or compounds at minimally effective doses. Natural polyphenol compounds
derived from plants, such as curcumin, have many favorable biological properties. Cur-
cumin is emerging as a promising candidate for the use of innovative strategies of natural
molecules with neuroprotective properties as adjuvant therapy in Parkinson’s disease.

In this context, this review focuses on the neuroprotective activities of curcumin in PD
and the various mechanisms involved. Curcumin’s pharmacokinetics, pharmacodynamics,
biological, cellular, and molecular properties are all addressed. A special emphasis is given
to curcumin’s neuroprotective activities via a α7-nAChR-mediated mechanism, safety
profile, current and upcoming clinical trials for clinical application.

2. Curcumin as a Potential Neuroprotective Agent

Curcumin was named after Vogel and Pelletier, the first to isolate a “yellow coloring-
material” from the rhizomes of Curcuma longa in (turmeric) 1815. Later, in 1842, they
discovered that turmeric is a complex mixture of ingredients and were successful in
isolating pure curcumin oil. In 1910, Milobedeska and Lampe characterized its structure
as diferuloylmethane, or 1,6-heptadiene-3,5-dione-1,7-bis (4-hydroxy-3-methoxyphenyl)
(Figure 1), and three years later they synthesized curcumin [16].
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Figure 1. The source, crude form, and chemical structure of curcumin. (A) The botanic source of turmeric. (B) Crystallized
powder of curcumin. (C) The enol and keto forms of curcumin.

2.1. Chemical and Physical Properties of Curcumin

Curcumin is a symmetric molecule composed of three major chemical entities: two
aromatic ring systems containing O-methoxy phenolic groups linked by a seven-carbon
linker containing α, β-unsaturated diketone moiety (Figure 2). Curcuminoid (the yellow-
pigmented turmeric preparation) accounts for 3–5 percent of turmeric and is primarily com-
posed of three derivatives: curcumin (diferuloylmethane, curcumin I ~77%), demethoxy-
curcumin (DMC, curcumin II), bisdemethoxycurcumin (BDMC, curcumin III), and cyclo-
curcumin [17,18]. All three derivatives are considered to be natural turmeric analogs.
Curcumin exhibits keto-enol tautomerism, with enol forms predominating in alkaline
media and keto forms predominating in acidic or neutral media [17]. Curcumin is a hy-
drophobic compound that is insoluble in polar or neutral solvents such as water. It can be
dissolved in organic or hydrophobic solvents such as dimethylsulfoxide (DMSO), ethanol,
and acetone [19]. Tetrahydrocurcumin (THC), dimethyl curcumin, di-demethyl curcumin,
Vanillylidenacetone, Di-(tert-butyl-dimethylsilyl) curcumin, O-tert-butyl-dimethylsilyl
curcumin, and curcumin-d6 are all commercially available curcumin metabolites.
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Figure 2. Chemical structural groupings that are responsible for the antioxidant properties of
curcumin. Curcumin is composed of three chemical entities: two aromatic ring systems contain-
ing O-methoxy phenolic groups linked by a seven-carbon linker containing of α, β-unsaturated
diketone moiety.



Int. J. Mol. Sci. 2021, 22, 11248 4 of 16

2.2. Pharmacokinetics and Pharmacodynamics of Curcumin

Human studies of curcumin’s pharmacokinetics yielded results that were similar to
those obtained from animal studies. Because of its poor absorption, curcumin has a low
bioavailability in plasma and tissues, rapid hepatic metabolism, as well as rapid systemic
elimination through the gut with a peak human plasma level of 0.41–1.75 µmol/L after the
oral administration of 4–8 g of curcumin [20,21]. Many studies have shown that curcumin
is primarily metabolized in the liver, where it undergoes extensive reduction via alcohol
dehydrogenase, followed by glucuronate and sulfate conjugation [8,21]. Furthermore,
Perkins and colleagues reported that humans require a daily dose of 1.6 g curcumin to
achieve the desired results [22].

Almost all studies have confirmed that unformulated curcumin has low bioavailabil-
ity in both animals and humans [23,24]. Various formulations have been developed to
improve curcumin bioavailability. Nano curcumin, for example, was developed to improve
curcumin solubility in an aqueous solution. Cheng et al. generated a nanoparticle form of
curcumin that resulted in a higher plasma concentration and a six-fold higher AUC with a
longer mean residence time in mice brains. [25]. Polylactic-co-glycolic acid (PLGA) and
liposomal-formulated curcumins improved water solubility of the compound [26–28]. In
regards to curcumin permeability, cyclodextrin (CD) encapsulated curcumin improved cur-
cumin permeability compared to unformulated curcumin [29]. Concomitant administration
of piperine with curcumin significantly reduced elimination and half-life clearance of cur-
cumin [23,24]. Alginate–curcumin nanoparticles (Alg-NP-Cur) [30], glyceryl mono-oleate
nanoparticles loaded with piperine and curcumin (GMO-NP-Pip/Cur) [31], curcumin-
loaded lactoferrin nanoparticles (Lf-NP-Cur) [32], and curcumin-loaded polysorbate 80-
modified cerasome (CPC) nanoparticles (NPs) [33], are different preparations developed to
maximize curcumin bioavailability.

2.3. Biological Properties of Curcumin

Curcumin, a multi-targeted compound, has traditionally been used as a dietary
spice and a medicinal herb in Asian countries for a variety of pathologies due to its
anti-inflammatory properties [34], and antioxidant properties [35,36]. Moreover, curcumin
possesses antibacterial [37], antiviral [38], antifungal [39], anti-arthritic [40], hepatoprotec-
tive [41], anti-thrombotic [42], cardio-protective [43], hypoglycemic [44], anti-allergic [45,46],
wound-healing [47], and chemo-preventive and anticancer properties [48–50]. Curcumin’s
anti-inflammatory and antioxidant effects, among others, form the basis of curcumin’s
critical neuroprotective effects in a variety of neurological diseases affecting both the cen-
tral and peripheral nervous systems. Several molecular targets of curcumin have been
identified based on extensive evidence from in vitro and in vivo studies.

2.4. Molecular and Cellular Neuroprotective Mechanisms of Curcumin in PD

The present review focuses on recent advances and the mechanisms underlying the
wide range of biological effects of curcumin against neurodegenerative diseases, specifically
Parkinson’s disease. Curcumin’s ability to modulate the functions of multiple signal
transduction pathways has been linked to a reduction in disease progression. Curcumin
interacts with transcription factors such as z transcription (STAT) proteins [51], growth
factors and their receptors, e.g, epidermal growth factor receptors and HER2 [52,53],
cytokines, e.g., interleukin 1b (IL-1b), interleukin 6 (IL-6) [54], enzymes, e.g., hemox
(HO-1) [55], and genes that regulate cell proliferation and apoptosis [56]. The ability of
curcumin to modulate and interact with multiple cell signaling pathways and proteins
strongly indicates that this polyphenol is an effective multi-targeted compound [57–59].
This conclusion is in line with several recently published reports identifying curcumin as a
potent epigenetic regulator [60,61]. Interestingly, curcumin’s inhibitory effect on MOA-B
enzyme [62], which would lead to an increase in the level and availability of DA in the
brain, has gained much attention in recent years, as discussed below.



Int. J. Mol. Sci. 2021, 22, 11248 5 of 16

A critical unmet need in the management of PD is the discovery of new approaches
that could slow, stop, or ideally reverse, the process of neurodegeneration. Curcumin’s
neuroprotective potential has been demonstrated in several recent studies using various an-
imal models of Parkinson’s disease [63–70]. For instance, Zbarsky described the protective
effects of curcumin on the number of TH-positive neurons as well as on striatal DA level
and its metabolites; dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA)
against 6-hydroxydopmine (6-OHDA) induced neurodegeneration in animal models of
PD [71]. The advantage of curcumin over other derivatives, such as demethoxycurcumin
(DMC) and bisdemethoxycurcumin (BDMC), was reported on DA receptor (D2) binding
activities and on the number of TH +ve neurons [72]. Yang et al. described the protective
effects of curcumin on the injured hippocampus in an 6-OHDA model of PD, including a
significant improvement in mental status, weight gain, neurobehaviors, learning and mem-
ory, levels of dopamine and norepinephrine, neural regeneration in hippocampal tissue,
and cell survival-related signaling pathways such as BDNF, TrkB, and PI3K [73]. Moreover,
brain-derived neurotrophic factor (BDNF), a member of the neurotrophin growth factor
family, which is involved in various neurological functions, is affected in PD [74]. Cur-
cumin restores neuronal regeneration by stimulating Trk/PI3K signaling cellular cascade,
reducing levels of tumor necrosis factor-α (TNF-α) and caspase activity, hence increasing
levels of BDNF in 6-OHDA model of PD [73,75]. Recently, we investigated the neuropro-
tective effects of curcumin in a 6-OHDA animal model of PD [70]. The results indicated
that curcumin enhances the survival of striatal TH fibers and SNpc neurons, decreases
abnormal turning behavior, and exerts neuroprotective properties at least partly via an α7-
nAChR-mediated mechanism. These findings provide evidence that α7-nAChRs could
be a potential therapeutic target and curcumin would be the first natural agent which is
reported to modulate nicotinic receptors in PD.

2.4.1. Curcumin Anti-Inflammatory Effects

Inflammation is an adaptive physiological process by which our bodies fight against
injuries or infections, and trigger a host–immune response. Inflammation plays a major
role in several pathological conditions including neurodegenerative (PD and AD), au-
toimmune, cardiovascular, endocrine, and neoplastic disorders [76,77]. It is a complex
interaction that aims at removing the invading agent or damaged tissue by the activation
of various inflammatory mediators. Over-activation of the immune system and inflam-
matory responses may cause further tissue damage [78,79]. Neuroinflammation has been
linked to neurodegenerative diseases, including PD, but whether neuroinflammation is
a trigger or a result of neuronal loss remains controversial [78,79]. Current advances in
molecular biology provide evidence that neuroinflammation plays an important role in
the pathogenesis of PD [80,81]. Immune reactions in the form of glial activation and in-
flammatory processes may also participate in the cascade of events, leading to neuronal
degeneration in PD. Activated microglia expresses various cell-surface receptors, leading
to increased levels of cytokines such as TNF-α, interleukin-1β (IL-1β), and interferon-γ in
the substantia nigra of PD patients [82]. These enforce chronic inflammation of the brain,
neuronal dysfunction, and neurodegenerative loss in PD [79,82]. Remarkably, curcumin
exhibits anti-inflammatory activities by inhibiting inflammatory cytokines, interleukins
(ILs), chemokines, as well as inflammatory enzymes, cycloxygenase-2 (COX-2), GFAP
level, and cyclin D1 [83,84]. Additionally, curcumin suppresses the expression of inducible
nitric oxide protein (iNOS mRNA expression), LPS-induced TNF-α, IL-1β, IL-6 production,
and JNK phosphorylation, collectively inhibiting cell apoptotic pathway and enhancing
survival [85,86]. Interaction with and modulation of the effects of various inflammatory
mediators by curcumin verifies its anti-inflammatory properties [16,65].

2.4.2. Curcumin Antioxidant Effects

Oxidative stress plays a major role in acute, chronic, and degenerative diseases. Ox-
idative stress results from an imbalance between the formation and neutralization of
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reactive oxygen species in our bodies, leading to the generation of free radicals and en-
ergy failure [87]. The progressive dopaminergic neurotoxicity in SNpc has been directly
linked to oxidative stress as a major element in the degenerating cascade underlying
neuronal degeneration in PD. ROS oxidative stress is explicitly related to mitochondrial
enzyme dysfunction of the respiratory chain, namely, complex I, which results in the
majority of detrimental neuronal degeneration in PD [5,65]. Additionally, the abundance
of polyunsaturated fatty acids in the brain, which undergoes lipid peroxidation in oxida-
tive stress, liberates more toxic by-products. Besides, the damaging effects of reactive
nitrogen species such as nitric oxide (NO) and peroxynitrite on several steps of dopamine
synthesis, mitochondrial dysfunction, and consequently dopaminergic cell aging and
death in PD, have been reported [88,89]. The potent activity of curcumin against pro-
oxidants such as superoxide radicals, hydrogen peroxide, and nitric oxide radicals, as
well as enhancing anti-oxidant enzymes such as catalase, superoxide dismutase (SOD),
glutathione peroxidase (GPx), and heme oxygenase-1 (OH-1), result in a decrease in lipid
peroxidation and organ damage [90–92]. Through its antioxidant effects, Song et al. re-
ported that curcumin has restorative effects on degenerated neurons in substantia nigra,
and produces marked improvement in the motor, cellular, and biochemical alterations
in PD rats [93]. Likewise, Khawaja provided extensive evidence of the potent activity of
curcumin against pro-oxidants such as superoxide radicals and hydrogen peroxide radicals,
as well as enhancing antioxidant enzymes such as catalase, superoxide dismutase (SOD),
and glutathione peroxidase (GPx), which result in a decrease in lipid peroxidation and
subsequently neuronal damage in SNpc in a 6-OHDA model of PD [94]. Similar findings
of the antioxidant neuroprotective properties of curcumin and, to a lesser extent, other
curcuminoid derivatives such as demethoxycurcumin and bisdemethoxycurcumin, were
later confirmed [72]. Furthermore, curcumin antioxidant activities restored dopamine as
well as tyrosine hydroxylase levels in an MPTP model of PD [95]. One of the main elements
in the development of the nervous system and regulation of brain neurogenesis is the
activation of the Wnt/β-catenin signaling pathway [96]. Curcumin has been shown to
protect against oxidative stress-induced neurodegeneration in 6-OHDA PD by stimulating
the Wnt/β-catenin pathway, which consequently leads to improving cell viability, survival,
and reducing neuronal apoptosis [97]. Modification of the downstream cellular mediators,
such as c-Myc and cyclin D1 in the Wnt signaling cascade, could also play a significant role
in the neuroprotective activities of curcumin [98]. The methoxy and phenolic groups on the
benzene rings and the β-diketone moiety in the curcumin structure (Figure 2) are thought
to be essential for its anti-oxidant properties [17,99]. Interestingly, curcumin exhibits a
stronger anti-oxidant activity even when compared with vitamin C and E [92].

2.4.3. Curcumin Free Radicals’ Scavenging Activities

Oxygen is the motive force for most of the irreversible cellular injury and neurode-
generative changes occurring in PD. Although oxygen is very fundamental for any living
system, it is inherently harmful at the same time, a phenomenon known as “the oxygen
paradox” [100,101]. Preliminary evidence for the role of the oxygen paradox in PD was
strongly supported by post-mortem brain analysis of PD patients demonstrating high levels
of oxidized DNA, protein, and lipid [102,103]. The theory behind the oxygen paradox
relies on the deterioration of cellular scavenging activity, with eventual protein carbonyla-
tion, formation of nitrotyrosine, and subsequent protein aggregation [104,105]. In support
of that, pathological protein aggregates such as α-synuclein, the ubiquitin-proteasome
system (UPS), and chaperones have been reported in PD [106]. Curcumin comprises
several functional groups responsible for its antioxidant activity. In addition, curcumin
can directly scavenge reactive molecules and break the oxidation chain [107]. Curcumin
treatment significantly reduces carbonylated protein and nitrotyrosine-modified proteins
in the rotenone-induced model of PD [104]. ROS consists of both free radical oxidants and
non-radical molecular oxidants. Free radical oxidants participate in single electron transfer
reactions and hydrogen atom abstraction. The three active sites, methoxy and phenolic
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groups on benzene rings and the β-diketone moiety of curcumin, can undergo oxidation
by electron transfer and hydrogen abstraction, and thus form stabilized phenoxyl radicals.
Curcumin is an excellent scavenger for most ROS in a concentration or dose-dependent
manner [92]. Remarkably, curcumin inhibits oligomerization of α-synuclein, protein aggre-
gation, and consequently neural toxicity [65,108], and produces potential inhibitory effects
on astrocytic activation as well as NADPH oxidase system [65]. Regenerating the oxidative
status of curcumin could be achieved by a chain-breaking or a hydrogen donor antioxidant,
such as vitamin E or ascorbic acid (Figure 3).
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2.4.4. Mitochondrial Protection

Mitochondria play a central role in maintaining cellular homeostasis [100]. Neuronal
cells are highly dependent on mitochondrial energy production [109,110]. Extensive data
from cellular, genetic, toxin-induced animal studies, and postmortem human brain demon-
strate mitochondrial dysfunction in PD in the form of inhibited complex I and subsequent
mitochondrial electron chain inhibition, energy failure, oxidative stress, and dopaminer-
gic cell death in PD [3,109,111–113]. Curcumin as a multi-targeted compound that can
serve as a neuroprotective agent. Oral administration of curcumin protects Swiss albino
mice against rotenone-induced dysfunction in the mitochondrial respiratory chain and
conserves the mitochondrial enzyme complex, which is reflected in the improvement of
motor behavior of the animals after three weeks of curcumin administration [114]. In
addition, curcumin beneficially modulates mitochondrial malfunction and immature senes-
cence [115,116]. It efficiently improves mitochondrial enzyme complex activities in the
rotenone-induced PD model [114]. Furthermore, in the PTEN-induced putative kinase
1 (PINK1), a genetically mutated model of PD in mice, pre-treatment with curcumin im-
proves cell viability, improves mitochondrial membrane potential, and reduces apoptosis
in SH-SY5Y neuroblastoma cells [117].

2.4.5. Curcumin Iron-Chelating Properties

Iron is required for several fundamental functions in the brain. Iron homeostasis
management entails controlling iron influx, efflux, and storage. Metals such as iron (Fe),
zinc (Zn), and copper (Cu) accumulate in the brain as we age [118]. With increasing
age, there is an increase in brain iron concentration and deposition as a result of iron
mismanagement, resulting in oxidative injury and neuronal degeneration [119]. Iron is
either stored in lysosomes or bound to neuromelanin and ferritin in neuronal cells. The
latter is a bio-vital chelator that is regulated by the mitochondria [120,121]. Iron deposition
in neuronal cells has also been considered as one of the major findings in postmortem
PD brains, including substantia nigra [122,123]. Notably, the iron-chelating activity of
curcumin has been previously described [124]. Du et al. successfully demonstrated a
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decrease in iron-positive cells following curcumin treatment in 6-OHDA induced model
of PD [125]. Supporting evidence of combined curcumin treatment and desferrioxamine,
a potent iron-chelating agent, reflects the protective effect of curcumin on dopaminergic
neuronal loss in the PD model [126]. The use of deferoxamine in conjunction with a
novel delivery system; curcumin-loaded-nanocarrier in the rotenone-induced Parkinson’s
disease model was recently supported, such combination provided clear protection for
dopaminergic neurons against iron deposition [127]. Sharma and colleagues obtained
similar results when inhibiting iron deposition in dopaminergic neurons [65].

3. Neuroprotective Mechanisms of Curcumin via Nicotinic Acetylcholine Receptors

Curcumin’s pharmacological actions are thought to be mediated by a variety of ligand-
gated ion channels and receptors [128]. The recent study on the effects of the natural
polyphenol compound provides evidence that curcumin possesses a potent neuroprotec-
tive effect as it preserves the integrity of the nigrostriatal dopaminergic system. This is
distinctly manifested in the improved motor behavioral performance in the curcumin-
treated animals through a α7-nAChRs-mediated mechanism [70]. This study adds to
previous in vitro studies that show that curcumin enhances the effects of acetylcholine
(ACh) through the function of α7-nAChRs in a concentration-dependent manner [129]. In
addition, the results from another in vitro study highlight the significant role of curcumin in
modulating the fluxes of calcium (Ca2+) ions via α7-nAChRs [130]. Based on the previous
findings that curcumin acts as a type II PAM of α7-nAChRs and a potentiator of receptor
function by significantly decreasing desensitization [129], it is reasonable to conclude that
curcumin’s PAM action on α7-nAChRs has a beneficial effect in mediating neuroprotective
effects [131,132]. Curcumin’s time-tested safety, neuroprotective efficacy, and preliminary
clinical success of agents targeting nicotinic receptors in PD make it an appealing natural
candidate for further investigation and development in the search for PD therapeutics.

Our in vitro, in silico, and in vivo findings suggest that increasing Ca2+ influx may
have a neuroprotective mechanism in neuronal and non-neuronal cells via various intracel-
lular mechanisms, as shown in Figure 4 [70,129,130]. Stimulation of presynaptic α7-nAChR
stimulates vesicular DA release via a Ca2+-dependent facilitation mechanism [133–135].
Extracellular signal-regulated mitogen-activated protein kinase (ERK/MAPK) activation
can be triggered by protein kinase A (PKA) and/or calcium-calmodulin-dependent protein
kinase (CaMK) [136]. A rise in intracellular Ca2+ levels is considered as a trigger factor
of both signaling cascades. Activation of (ERK/MAPK) is a crucial signaling event in the
cell survival pathway via upregulation of the cellular transcription factor; cAMP response
element-binding (CREB), increasing gene expression of tyrosine hydroxylase and enhanc-
ing DA release [137,138]. α7-nAChR is also expressed on microglia and astrocytes and
plays a major role in immune response via the “cholinergic anti-inflammatory pathway”.
Activation of α7-nAChR results in an increase in intracellular Ca2+ concentration, and
consequently modulates Janus kinase 2 (JAK2) and/or signal transducer and activator
of transcription 3 (STAT3), ending up with an upregulation of protein kinase B (PKB),
leading to inhibition of nuclear factor-kB (NFκB) [139]. The lipid signaling cascade that is
started by protein kinase C (PKC), via phosphorylation of phosphatidylinositol 3-kinase
(PI3K/Akt), is accredited with modulating the activities of neuroprotective and apoptotic
factors, such as Bcl-2 and caspases, respectively [140–142]. Recent data demonstrate that the
regulation of neuroinflammatory reactions by curcumin occurs through the modulation of
the microglial JAK/STAT signaling pathway [143]. Collectively, all or some of these factors
result in decreased apoptosis, enhance neuronal survival, modify immune responsiveness,
and produce alteration in synaptic plasticity [144].



Int. J. Mol. Sci. 2021, 22, 11248 9 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 17 
 

 

of these factors result in decreased apoptosis, enhance neuronal survival, modify immune 

responsiveness, and produce alteration in synaptic plasticity [144]. 

 

Figure 4. Hypothetical model of Ca2+- dependent cell survival mechanism. Curcumin modulate α7-nAChR allosterically 

allowing more Ca2+ entry into the cell as depicted from the electrophysiological recording. Increase in intracellular Ca2+ 

concentration will lead to a cascade of events in dopaminergic neurons (from left to right): Facilitation of dopamine release 

from synaptic vesicles. Activation of ERK by PKA and/or CaMK, upregulate CREB protein, increase tyrosine hydroxylase 

activity, and activate dopamine release.  JAK2/STAT3 signaling pathway leads to inhibition of NF-kB translocation via 

PKB activation. Increase in IC Ca2+ attenuates inflammatory response in immune cells activating protein kinase C, PKC 

appears to activate downstream signaling PI3K/AKT pathways that promotes Nrf-2 translocation resulting in modulation 

of cell survival proteins; Bcl-2 and caspase. 

  

Figure 4. Hypothetical model of Ca2+-dependent cell survival mechanism. Curcumin modulate α7-nAChR allosterically
allowing more Ca2+ entry into the cell as depicted from the electrophysiological recording. Increase in intracellular Ca2+

concentration will lead to a cascade of events in dopaminergic neurons (from left to right): Facilitation of dopamine release
from synaptic vesicles. Activation of ERK by PKA and/or CaMK, upregulate CREB protein, increase tyrosine hydroxylase
activity, and activate dopamine release. JAK2/STAT3 signaling pathway leads to inhibition of NF-kB translocation via PKB
activation. Increase in IC Ca2+ attenuates inflammatory response in immune cells activating protein kinase C, PKC appears
to activate downstream signaling PI3K/AKT pathways that promotes Nrf-2 translocation resulting in modulation of cell
survival proteins; Bcl-2 and caspase.
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4. An Update and Current Perspectives on Curcumin

α7-nAChR is thought to be a potential nutraceutical agent for a variety of neurologi-
cal disorders, including Parkinson’s, Alzheimer’s, and schizophrenia. Clinical trials are
currently underway for a number of α7-nAChR agonists and modulators [145]. Interest-
ingly, α7-nAChR-positive allosteric modulators (PAMs) demonstrated very positive and
promising results. Curcumin, a type II PAM [129], is a natural compound with a high safety
profile and has no reported toxicity from in vitro to in vivo, and clinical trials [20,146–150] if
administered at the recommended dose [22,151]. Curcumin has undergone several clinical
trials for the treatment of neurodegenerative disorder and demonstrated a pro-cognitive
effect in rodents and non-human primates [152–161].

Overall, the current findings of the clinical trial on nicotinic receptors and PD or
curcumin and neurodegenerative disorders such as PD are very promising, but more
pre-clinical studies and clinical trials are needed to improve curcumin’s bioavailability and
define its hidden targets.

5. Concluding Remarks

Curcumin is a neuroprotective agent with antioxidant [35,36], anti-inflammatory [86],
free radical scavenging [107], mitochondrial protecting [62], and iron-chelating proper-
ties [125], which enhance DA levels in the brain [62]. The interaction of curcumin with
α7-nACh receptors provides further evidence for a potential neuroprotective role for cur-
cumin in PD. Additionally, curcumin and derivatives show a high safety profile with
minimal reported toxicity as demonstrated both in in vitro and in in vivo studies in PD
models. Therefore, gaining a better understanding of the neuroprotective properties of
curcumin could have significant therapeutic implications. The evidence reviewed supports
curcumin’s powerful molecular and cellular effects in neurodegenerative disorders as an
appealing strategy for improving PD management and prognosis.
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